相似三角形判定与性质定理

合集下载

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

三角形的相似性质和判定

三角形的相似性质和判定

三角形的相似性质和判定三角形是几何中最基础的图形之一,具有广泛的应用价值。

在研究三角形的性质时,相似性质和判定是我们需要重点关注的内容。

本文将介绍三角形的相似性质和判定方法,帮助读者深入理解和应用这一重要概念。

一、相似三角形的定义和特点相似三角形指的是具有相同形状但可能不相等的三角形。

相似三角形的定义可以由以下两个条件来表示:1. 对应角相等:两个三角形的对应角度相等,即对应角度的度数相同。

2. 对应边成比例:两个三角形的对应边的比例相等,即两边的长度之比相同。

相似三角形具有以下重要的特点:1. 全等三角形是相似三角形的一个特例,全等三角形的对应边和角都相等。

2. 相似三角形的形状相似,但大小可能不同。

3. 当两个三角形相似时,它们的各个对应角度的度数相等,对应边长的比例相等。

二、相似三角形的判定方法判定两个三角形是否相似有多种方法,以下是常用的两种判定方法:1. AA相似定理:如果两个三角形的两个角分别相等,那么这两个三角形是相似的。

这个定理又称为“角-角相似定理”。

2. SSS相似定理:如果两个三角形的三个对应边长之比相等,那么这两个三角形是相似的。

这个定理又称为“边-边-边相似定理”。

需要注意的是,在使用相似三角形判定时,要保证对应角和对应边是正确对应的,否则可能会得出错误的结论。

三、相似三角形的应用相似三角形的概念在几何学和实际应用中都有广泛的应用,以下是一些常见的应用场景:1.解决实际测量问题:通过观察和测量,我们可以利用相似三角形的性质来计算无法直接测量的长度和距离。

2.设计和建筑:在建筑和设计领域,相似三角形的概念被广泛用于绘制和设计建筑物、家具、道路等的比例。

3.地图和导航:地图中的比例尺就是通过相似三角形的概念来确定的。

通过相似三角形,我们可以在地图上测量出实际距离。

4.影子和高度测量:在日常生活中,我们可以利用相似三角形的性质来测量高楼、树木等的高度,以及计算无法直接测量的距离。

相似三角形的判定定理是什么

相似三角形的判定定理是什么

相似三角形的判定定理是什么
1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。

2、所有等腰直角三角形相似,所有的等边三角形都相似。

3、一条直角边与斜边成比例的两个直角三角形相似。

4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。

5、三边对应平行的两个三角形相似。

扩展资料
相似三角形的性质
1、相似三角形的'对应角相等
2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;
3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。

5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。

知识讲解—相似三角形的判定及有关性质

知识讲解—相似三角形的判定及有关性质
条件一:∠1=∠B.
条件二:∠2=∠ACB.
条件三: ,即 .
【变式2】已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,
Q是CD的中点.求证:△ADQ∽△QCP.
【答案】因△ADQ与△QCP是直角三角形,虽有相等的直角,但不知AQ与PQ是否垂直,所以不能用两个角对应相等判定.而四边形ABCD是正方形,Q是CD中点,而BP=3PC,所以可用对应边成比例夹角相等的方法来判定.具体证明过程如下:

【变式4】如右图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H.
求证:(1)DG2=BG·CG;
(2)BG·CG=GF·GH.
【答案】(1)DG为Rt△BCD斜边上的高,
∴由射影定理得DG2=BG·CG.
(2)∵DG⊥BC,∴∠ABC+∠H=90°,
2有时需要用到方程的思想.
3在复杂图形中分解出射影定理的基本图形来使用它的性质进行证明,是一种常用的证明线段等积式的方法,必要时需结合代换线段或线段的等积式来解决问题.
【典型例题】
类型一、平行截线定理的应用
例1.如图,D、E、F分别为△ABC边BC、CA、AB上的点, 。连结DE、CF。求证:DE和CF互相平分。
要点三、射影定理
直角三角形斜边上的高是两直角边在斜边上射影的比例中项,两直角边分别是它们在斜边上的射影与斜边的比例中项。
如右图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,
则AD2=BD·DC,AB2=BD·BC,AC2=CD·BC。
要点诠释:
1根据射影定理,已知“直角三角形斜边上的高”图形中六条线段中的任意两条,就可求出其余四条线段,
∴DE和CF互相平分

相似三角形的性质

相似三角形的性质

相似三角形的性质【知识梳理】判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(简述为:两角对应相等,两三角形相似)判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(简述为:两边对应成比例且夹角相等,两三角形相似)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(简述为:三边对应成比例,两三角形相似)【例题精讲】1、如图,∠ABD=∠C,AD=2, AC=8,求AB。

2、如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=172,求AD的长。

3、一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米,此时一棵水衫树的影长为10.5米,这棵水衫树高为( )A.7.5米 B.8米 C.14.7米 D.15.75米4、如图是一面镜子,则有__ _∽__ __。

(第4题) (第5题)5、如图,某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.6米,标杆高为3.2米,且BC =1米,CD =5米,求电视塔的高ED 。

A 【夯实基础】1.如图所示,矩形ABCD ,E 、F 分别为CD 、BC 上的点,且∠AEF=90°,则一定有( ) A .△ADE ∽△ECF B .△AEF ∽△ABF C .△EFC ∽△AFE D .△ADE ∽△AEF2.如图,已知ABC ∆,P 是边AB 上的一点,连结CP ,以下条件中不能判定ABC ACP ∆∆~的是( ) A 、B ACP ∠=∠ B 、ACB APC ∠=∠ C 、AC 2=AP •AB D 、BCABCP AC =APBC3.已知:如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出ABP∆与ECP∆相似的是()A、EPCAPB∠=∠ B、90=∠APE C、P是BC的中点 D、BP:BC=2:34.ABC∆中,D是AB上一个固定点,E是AC上的一个动点.若使ADE∆与ABC∆相似,则这样的点E有() A、1个 B、2个 C、3个 D、很多5.如图,若点D为ABC∆中AB边上一点,且ACDABC∠=∠,AD=2cm,BC=4cm,则AC的长为()A、12cmB、22cmC、3cmD、2cm6.下列说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的两个等腰三角形相似;④有一个角为60°的两个直角三角形相似,其中正确的说法是()A.②,④ B.①,③ C.①,②,④ D.②,③,④7.△ABC中,D是AB上一固定点,E是AC上的一个动点,若使△ADE与△ABC相似,则这样的点E有()。

相似三角形的性质

相似三角形的性质

相似三角形的性质相似三角形是初中数学重要的概念之一,它们有着特定的性质和应用。

在本文中,我们将探讨相似三角形的定义、性质以及应用。

一、相似三角形的定义相似三角形指的是具有相同形状但大小不同的三角形。

两个三角形相似的条件是:它们对应角度相等,或者它们的对应边比例相等。

基于这个定义,我们可以得出以下相似三角形的性质和定理。

二、相似三角形的性质1. AA相似定理:如果两个三角形的对应角度相等,那么它们是相似的。

2. SSS相似定理:如果两个三角形的对应边比例相等,那么它们是相似的。

3. SAS相似定理:如果两个三角形的一个内角相等,且对应边比例相等,那么它们是相似的。

4. 相似三角形中,对应边的比例关系是恒定的,我们可以表示为a/b = c/d = e/f。

其中,a、b、c、d、e、f分别表示两个相似三角形的对应边。

5. 相似三角形的高、中线和角平分线也成比例。

三、相似三角形的应用1. 测量无法直接获得的长度:我们可以利用相似三角形的性质,通过已知长度和已知角度的三角形推导出其他长度的值。

例如,可以利用相似三角形的边比例关系来测量高楼的高度。

2. 解决间接测量问题:相似三角形的性质也可以应用于间接测量问题。

例如,当我们无法直接测量河流宽度时,可以通过测量自己位置与河对岸某一点之间的距离及角度,运用相似三角形的理论来计算出河流的宽度。

3. 几何证明:相似三角形的性质在几何证明中也起到重要的作用。

通过利用相似三角形的角等性质和边比例关系,可以简化、解决一些几何问题。

4. 模型建立:相似三角形的性质也可以应用于模型建立。

例如,制作比例模型时,可以根据相似三角形的比例关系来设计模型的尺寸。

四、相似三角形的推论基于相似三角形的性质和定理,我们还可以得出一些推论。

1. 正弦定理的推论:当两个角相等时,一般使用正弦定理来求解三角形的边长。

但是,当角等于30°、60°或90°时,我们可以运用相似三角形的性质,通过已知边长求解其他边长。

相似三角形的判定和性质

相似三角形的判定和性质

A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。

2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。

三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。

3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。

如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。

相似三角形的判定和性质-备战2023年中考数学考点微专题

相似三角形的判定和性质-备战2023年中考数学考点微专题

考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。

3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。

4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。

第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。

5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
判定方法
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。

如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。

方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。

(这是相似三角形判定的定理,是以下判定方法证明的基础。

这个引理的证明方法需要平行线分线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似。

(AA')
方法三
如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似(SAS)
方法四
如果两个三角形的三组对应边的比相等,那么这两个三角形相似(SSS)
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形。

相关文档
最新文档