一些常用函数的曲线图及应用简说
roc曲线求阈值程序实现-解释说明

roc曲线求阈值程序实现1.引言1.1 概述在机器学习和数据挖掘领域中,ROC曲线是一种常用的性能评估方法,广泛应用于二分类问题中。
ROC曲线能够绘制出分类器的敏感性和特异性之间的关系,通过改变分类器的阈值来得到不同的工作点。
因此,求解ROC 曲线的阈值,对于优化分类器的性能至关重要。
本文旨在介绍ROC曲线求阈值的方法,并实现一个相应的程序,以便读者能够更好地理解和应用这一技术。
首先,我们将对ROC曲线进行简要介绍,包括其原理和常见应用场景。
然后,我们将详细介绍几种常用的求解ROC曲线阈值的方法,并分析它们的优缺点。
最后,我们将利用Python编写一个简单的程序来演示如何实现ROC曲线的阈值求解过程。
通过阅读本文,读者将能够全面了解ROC曲线的求阈值方法,理解其在分类器性能评估中的重要性,并具备使用Python进行实现的能力。
此外,本文还将展望后续研究方向,希望能够为相关研究提供一定的指导和启发。
接下来,我们将进入正文部分,首先介绍ROC曲线的基本概念和原理。
文章结构部分应该对整篇文章的组成部分进行简要介绍,包括各个章节的主题和内容。
文章结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 ROC曲线简介2.2 ROC曲线求阈值方法3. 结论3.1 结论总结3.2 后续研究展望在本篇长文中,文章的结构主要分为三个部分:引言、正文和结论。
引言部分将首先从整体上介绍文章的目的和意义,包括对ROC曲线求阈值程序实现的背景和重要性进行概述。
随后,具体介绍文章的结构,展示各个章节的主要内容。
正文部分将分为两个章节,分别是"2.1 ROC曲线简介"和"2.2 ROC曲线求阈值方法"。
在第二章节中,将对ROC曲线的概念、应用和特点进行详细阐述,以便读者理解后续章节中的方法。
接着,在第三章节中,将重点介绍如何通过ROC曲线求阈值的方法来进行数据分析和分类。
matlabplot函数详解

matlabplot函数详解plot函数是MATLAB中最重要和最常用的绘图函数之一、它可以绘制多种类型的图形,如折线图、散点图、柱状图等。
在本文中,我们将详细介绍plot函数的用法和参数,以及一些实例演示。
plot函数的一般用法为:plot(x, y, LineSpec),其中x和y分别是要绘制的数据点的横坐标和纵坐标,LineSpec是一个可选参数,用于指定线条的样式和颜色。
1.绘制简单的折线图首先,我们来绘制一个简单的折线图,假设我们有一个数据集x和一个对应的函数y = sin(x)。
我们可以使用以下代码绘制这个折线图:x = linspace(0, 2*pi, 100); % 生成0到2π之间的100个等间距点y = sin(x); % 计算对应的sin值plot(x, y) % 绘制折线图运行以上代码,我们就能得到一个以x为横轴,以y为纵轴的折线图。
2.指定线条样式和颜色我们可以使用LineSpec参数来指定线条的样式和颜色。
LineSpec是一个由3个部分组成的字符串,分别表示线条类型、标记类型和颜色。
例如,我们可以使用红色实线和圆形标记来绘制折线图,代码如下所示:plot(x, y, 'r-o')其中,'r'表示红色,'-'表示实线,'o'表示圆形标记。
运行以上代码,我们可以得到红色实线和圆形标记的折线图。
3.绘制多条曲线plot函数可以同时绘制多条曲线。
我们只需要将不同的数据点传递给x和y,然后用逗号分隔开即可。
例如,我们可以绘制一个由两条正弦曲线构成的图形,代码如下所示:y1 = sin(x);y2 = sin(2*x);plot(x, y1, x, y2)运行以上代码,我们将得到两条正弦曲线组成的图形。
title('折线图示例')xlabel('x')ylabel('y')5.修改坐标轴范围有时候,我们希望修改坐标轴的范围,以更好地展示数据。
11三次函数的性质及其简单应用

所以 1 2 c 3c 或 1 2 c 3c 解之得 0 c 7 4 3或c 7 4 3 7 4 3 ) 故所求c的范围是(0, ( 7 4 3, )
例5 设
a为实数,函数 f ( ) 的极值; 在什么范围内取值时,曲线 y f ( x)与 x 轴仅有一个交点 (2)当 2 解:(1) f ( x ) 3 x 2 x 1 1 5 f ( x ) f ( ) a , 极小值是 f (1) a 1 ∴ 的极大值是 3 27 (2)函数
南京一中
孔凡海
由二次函数类比三次函数的图象和性质
二次函数
y ax2 bx c
三次函数
y ax3 bx2 cx d
图象特征 单调性 对称性
a 0 开口向上 a 0 开口向下
单调区间2个 对称轴 x
b 2a
a 0 朝向右上 a 0 朝向右下
单调区间1个或3个
所以
y ax3 bx2 cx d (a ≠0),函数的对称中心是(
b b ,f ( ) )。 3a 3a
3 2 f ( x ) ax bx cx d (a ≠0是中心对 ) 性质3:函数 b b , f ( ) )。 称图形,其对称中心是( 3a 3a
尽管如此,我们还要进一步加强对三次函数 的单调性、极值、对称性、图象变化规律、切线 方程等性质的研究,这也有助于提高知识的系统 性以及对三次函数的理解水平,拓宽解题思路。
解:(I)(b 1) 4c 3 2 2 (II)因为 F ( x) f ( x) g( x) x 2bx (b c) x bc ,2 3 x 4bx b 2 c 0 所以F(x)的导方程为:
自由曲线与曲面

11.1 解析曲面 11.2 Bezier曲面 11.3 B样条曲面 11.4 NURBS曲面 11.5 曲面的其它表达 11.6 曲面求交算法
11.1 解析曲面(代数曲面)
代数曲面在造型系统中常见,但远远不能满足复 杂曲面造型的要求
适合构造简单曲面,不能构造自由曲面 不同类型曲面拼接连续性难以保证 不同曲面求交公式不一,程序实现量大 工程设计交互性差
通常样条曲面的求交算法采用离散逼近、迭代求精 与跟踪的方法,求交精度不高,计算量大,速度慢,对 共点、共线、共面难以处理,从而影响布尔运算的效率 和稳定性。
基本的求交算法:
由于计算机内浮点数有误差,求交计算必须引进容差。假定
容差为e,则点被看成是半径为e的球,线被看成是半径为e的圆管, 面被看成是厚度为2e的薄板。
c)然后固定指标i,以第一步求出的n+1条截面曲线的控制顶 点阵列中的第i排即: di,j, j 0,1,, n 为“数据点”,以上一 步求出的跨界切矢曲线的第i个顶点为”端点切矢”,在节点矢 量V上应用曲线反算,分别求出m+3条插值曲线即控制曲线的 B样条控制顶点di.j ,i 0,1,,m 2; j 0,1,,n 2 ,即为所求双
superquadric
superquadric曲面在商用 CAD系统应用相对较少,但 在动画软件中常用
superquadric toroids
(
x
)2/E2
(
y
)2/E2
E2/E1 a
(
z
)2/E1
1
rx
ry
rz
superquadric ellipsoids
(
x
)2/E2
(
y
E2/E1 )2/E2
常用函数公式及函数汇总

常用函数公式及函数汇总函数是数学中的重要概念,在数学的各个分支中都有广泛的应用。
本文将介绍一些常用的函数及其公式,供参考。
1. 线性函数:线性函数是一种简单而常用的函数形式,表示为f(x) = ax + b。
其中,a和b是常数,称为线性函数的斜率和截距。
2. 平方函数:平方函数是一种次数为2的多项式函数,表示为f(x) = ax^2 + bx + c。
其中,a、b和c是常数,a不等于0。
3.开方函数:开方函数是指返回其平方等于输入值的数的函数。
例如,开方函数的一种形式是平方根函数f(x)=√x。
5. 对数函数:对数函数是指返回以一些指定的底数为底,得到输入值的幂的函数。
常见的对数函数有自然对数函数f(x) = ln(x)和常用对数函数f(x) = log(x)。
6. 三角函数:三角函数是以角度或弧度为自变量的周期函数,常见的三角函数有正弦函数f(x) = sin(x)、余弦函数f(x) = cos(x)和正切函数f(x) = tan(x)等。
7. 反三角函数:反三角函数是三角函数的逆函数,用来解决三角函数的反问题。
常见的反三角函数有反正弦函数f(x) = arcsin(x)、反余弦函数f(x) = arccos(x)和反正切函数f(x) = arctan(x)等。
8.绝对值函数:绝对值函数表示为f(x)=,x,它的值恒为输入值的非负数。
9.取整函数:取整函数是指返回最接近输入值的整数,常见的取整函数有向上取整函数f(x)=⌈x⌉和向下取整函数f(x)=⌊x⌋等。
10.最大函数和最小函数:最大函数返回给定多个输入值中的最大值,最小函数返回给定多个输入值中的最小值。
11.断尾函数:断尾函数指的是将输入值的小数部分舍弃,保留整数部分的函数,常用的断尾函数有向上断尾函数f(x)=⌈x⌉和向下断尾函数f(x)=⌊x⌋。
12. 双曲函数:双曲函数是与三角函数相似的函数,但它们以指数为基,而不是以圆形为基。
常见的双曲函数有双曲正弦函数f(x) =sinh(x)、双曲余弦函数f(x) = cosh(x)和双曲正切函数f(x) = tanh(x)等。
各种窗函数_时域_频率曲线__概述说明以及解释

各种窗函数时域频率曲线概述说明以及解释1. 引言1.1 概述这篇长文旨在介绍和解释各种窗函数及其时域频率曲线。
窗函数在信号处理和频谱分析中被广泛应用,用于调整信号的频谱特性。
了解窗函数的定义、作用以及其选择准则对于正确应用窗函数起着关键作用。
1.2 文章结构本文将按照以下几个部分展开讨论:引言、各种窗函数、时域频率曲线概述、各种窗函数的时域表达式及频率响应解释以及特殊情况下窗函数的优化与改进方法。
1.3 目的本文的目标是提供读者对各种窗函数及其时域频率曲线有一个全面和清晰的理解。
通过详细介绍不同类型的窗函数,并解释它们在时域和频率上的表达形式和响应特性,读者可以更好地理解并选择适当的窗函数来处理不同类型的信号,并了解如何分析时域频率曲线。
此外,我们还将探讨一些优化和改进方法,以帮助读者在特殊情况下更好地使用窗函数。
该部分提供了文章引言部分(Introduction)的概述、结构和目的。
2. 各种窗函数2.1 窗函数的定义和作用:窗函数是一种数学函数,通常在信号处理中使用。
它们被用来将一个无限长的信号截断为有限长度,并且减小由此引起的频谱泄漏。
窗函数主要应用于频谱分析、滤波器设计、图像处理等领域。
窗函数的作用是在时域上对信号进行加权,在频域上对信号进行频率选择。
当我们处理周期性信号或者非周期但局部平稳的信号时,经常需要采用窗函数来分析信号的频谱。
2.2 常见窗函数介绍:2.2.1 矩形窗函数(Rectangular Window):矩形窗函数是最简单的窗函数,其在选取样本之外的区域值为0,而在选取样本内的区域值为1。
其时域表达式为x(n) = 1,频率响应为方形脉冲。
2.2.2 海明窗函数(Hamming Window):海明窗函数是一种平滑且连续可导的窗函数,其在选取样本内外都有非零值。
它具有较好的副瓣抑制能力和宽主瓣特性,在实际应用中十分常见。
其时域表达式为x(n) = 0.54 - 0.46 * cos(2πn/(N-1)),频率响应为类似于钟状的形态。
matlab中line的用法

Matlab中line的用法一、简介在M at la b中,l ine是一个常用的绘图函数,用于绘制直线或曲线。
本文将介绍l in e函数的基本用法以及一些常见的参数设置。
二、基本用法l i ne函数的基本用法如下:l i ne(X,Y)其中,X和Y分别是表示线段或曲线的横坐标和纵坐标向量。
它们可以是相同长度的向量,也可以是不同长度的向量,但需要保证至少有两个坐标点。
li ne函数将根据这些坐标点绘制出对应的线段或曲线。
三、常见参数设置除了基本的用法外,l i ne函数还可以通过一些参数的设置来实现更多的绘图效果。
以下是一些常见的参数设置:1.颜色可以通过指定参数'c o lo r'来设置线条的颜色。
例如:l i ne(X,Y,'co lo r','re d')上述代码将线条的颜色设置为红色。
除了红色,还可以使用其他常见的颜色名称,如'blu e'、'g re en'等。
此外,还可以通过RG B值来指定颜色,例如'co lo r',[0.50.50.5]`表示灰色。
2.线型可以通过指定参数'l i ne st yl e'来设置线条的类型。
例如:l i ne(X,Y,'li ne sty l e','--')上述代码将线条的类型设置为虚线。
除了虚线,还可以使用其他常见的线型,如'-'表示实线,':'表示点线,'-'表示短线等。
可以通过指定参数'l i ne wi dt h'来设置线条的粗细。
例如:l i ne(X,Y,'li ne wid t h',2)上述代码将线条的粗细设置为2个单位。
可以根据需要调整粗细。
4.标记点可以通过指定参数'm a rk er'来设置线条上的标记点。
高考数学一轮总复习第4章三角函数第4节函数y=Asinωx+φ的图象及简单应用教师用书

第四节 函数y =A sin(ωx +φ)的图象及简单应用考试要求:1.结合具体实例,了解函数y =A sin(ωx +φ)的实际意义.2.能借助图象理解参数A ,ω,φ的意义,了解参数的变化对函数图象的影响.3.会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、教材概念·结论·性质重现1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0,x ≥0)振幅周期频率相位初相A T =f ==ωx + φ φ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )在一个周期内的简图时,要找五个特征点,如下表所示:ωx +φ0π2πxy =A sin(ωx+φ)0A 0-A 01.五点法作简图要取好五个关键点,注意曲线凹凸方向.3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径:由函数y =sin x 的图象经过变换得到y =sin(ωx +φ)的图象,如先伸缩,再平移时,要平移个单位长度,而不是|φ|个单位长度.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( × )(2)函数f(x)=A sin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )(3)若函数y=A sin(ωx+φ)(A≠0)为偶函数,则φ=kπ+(k∈Z).( √ )(4)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( √ ) 2.(2021·常州一模)已知函数f(x)=2sin x,为了得到函数g(x)=2sin的图象,只需( )A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移个单位长度B.先将函数f(x)图象上所有点的横坐标变为原来的,再向右平移个单位长度C.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的D.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的2倍B 解析:将f(x)=2sin x的图象上各点的横坐标缩短到原来的,纵坐标不变,得到的函数解析式为f(x)=2sin 2x;再将函数f(x)=2sin 2x图象上所有的点向右平移个单位长度,得到函数f(x)=2sin.3.函数f(x)=cos(ω>0)的最小正周期是π,则其图象向右平移个单位长度后得到的图象对应函数的单调递减区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)B 解析:由题意知ω==2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos=cos=sin 2x的图象,由2kπ+≤2x≤2kπ+(k∈Z),解得函数的单调递减区间为(k∈Z).4.(2021·东城区一模)已知函数f(x)=A sin(2x+φ),其中x和f(x)部分对应值如表所示:x-0f(x)-2-2-222那么A=________.4 解析:由题意得f(0)=A sin φ=-2,f=-A cos φ=-2,所以A2(sin2φ+cos2φ)=16,因为A>0,所以A=4.5.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3 解析:观察函数图象可得周期T=,故T==,所以ω=3.考点1 由图象确定y=A sin ωx+φ 的解析式——基础性1.(2022·银川模拟)已知函数y=sin(ωx+φ)的图象如图所示,则此函数的解析式可以是( )A.y=sinB.y=sinC.y=sinD.y=sinC 解析:由函数y=sin(ωx+φ)的图象知,T=2×=π,ω==2,由五点法画图知,是函数图象的第三个关键点,即2×+φ=π,解得φ=,所以此函数的解析式是y=sin.2.若函数f(x)=sin(ωx+φ)满足f=f(x),且f(x)的图象如图所示,则φ=( )A. B.-C. D.-D 解析:因为函数f(x)=sin(ωx+φ)满足f=f(x),所以函数f(x)的图象关于直线x=对称,结合图象,-=×,所以ω=2.结合五点法作图可得,2×+φ=,所以φ=-.3.(2021·全国甲卷)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f =________.- 解析:由题意可得T=-=,所以T=π,ω==2,当x=时,ωx+φ=2×+φ=2kπ,所以φ=2kπ-π(k∈Z),令k=1可得φ=-,据此有f(x)=2cos,f =2cos=2cos=-.4.如图,某地一天6~14时的温度变化曲线近似满足函数T=A sin(ωt+φ)+b,则这段曲线对应的函数解析式为____________.y=10sin+20,x∈[6,14] 解析:从题图中可以看出,6~14时是函数y=A sin(ωx+φ)+b的半个周期,所以A=×(30-10)=10,b=×(30+10)=20.又×=14-6,所以ω=.又×10+φ=2π+2kπ,k∈Z,取φ=,所以y=10sin+20,x∈[6,14].1.由图象求解析式问题,求①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=+kπ,k∈Z;“最小值点”(即图象的“谷点”)时ωx+φ=+kπ,k∈Z.考点2 函数y=A sin ωx+φ 的图象变换——综合性(1)(2021 ·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin的图象,则f(x)=( )A.sin B.sinC.sin D.sinB 解析:由已知的函数y=sin逆向变换,第一步:向左平移个单位长度,得到y=sin=sin的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象,即为y=f(x)的图象,所以f(x)=sin.(2)(2021·山西二模)将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度得到y =cos 2x的图象,则φ的值可能为( )A. B.C. D.A 解析:将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度,得到y=sin=sin=cos=cos=cos.若要得到y=cos 2x的图象,则-2φ-=2kπ,即φ=-kπ-,k∈Z.因为φ>0,所以当k=-1时,φ=.本例(1)若改为:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度得到函数y=f(x)的图象,则f(x)=________.sin 解析:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin,向右平移个单位长度得到函数f(x)=sin=sin.1.由函数y移后伸缩”与“先伸缩后平移”.要特别注意这两种情况下平移的单位长度.2.当变换前后解析式三角函数名称不同时,要注意利用诱导公式转化.1.(2022·泰安模拟)已知函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C上所有点的( )A.横坐标伸长到原来的2倍,纵坐标不变B.纵坐标缩短到原来的倍,横坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.横坐标缩短到原来的倍,纵坐标不变D 解析:函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C 上所有点横坐标缩短到原来的倍,纵坐标不变,即可.2.已知函数f(x)=cos是偶函数,要得到函数g(x)=sin 2x的图象,只需将函数f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度C 解析:因为函数f(x)=cos是偶函数,所以φ-=kπ(k∈Z).因为|φ|<,所以φ=,所以f(x)=cos 2x,要得到函数g(x)=sin 2x=cos的图象,只需将函数f(x)=cos 2x的图象向右平移个单位长度.考点3 三角函数模型及其应用——应用性(2021·上海模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )A.5米B.(4+)米C.(4+)米D.(4+)米D 解析:以圆心O1为原点,以水平方向为x轴正方向,以竖直方向为y轴正方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一圈.设∠OO1P=θ,运动t(秒)后与地面的距离为f(t).又T=12,所以θ=t,所以f(t)=3-2cos t,t≥0;风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达点P,θ=6π+,P(,1),所以点P的高度为3-2×=4(米).因为A(0,-3),所以AP==,所以点P到点A的距离与点P的高度之和为(4+)米.三角函数模型的应用体现在两方面:一是已知函数模型求解数模型,再利用三角函数的有关知1.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O的半径为4 m,P0在水平面上,盛水筒M 从点P0处开始运动,OP0与水平面所成角为30°,且2分钟恰好转动1圈,则盛水筒M距离水面的高度H(单位:m)与时间t(单位:s)之间的函数关系式是( )A.H=4sin+2B.H=4sin+2C.H=4sin+2D.H=4sin+2A 解析:以O为原点,过点O的水平直线为x轴,建立如图所示平面直角坐标系,因为∠xOP0=30°=,所以OM在 t(s) 内转过的角度为t=t,所以以x轴为始边,以OM为终边的角为t-,则点M的纵坐标为4sin,所以点M距水面的高度H(m)表示为时间 t(s) 的函数是H=4sin+2.2.据市场调查,某种商品一年内每件出厂价在7 000元的基础上,按月呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份).已知3月份达到最高价9 000元,9月份价格最低,为5 000元,则7月份的出厂价格为________元.6 000 解析:作出函数简图如图:三角函数模型为y=A sin(ωx+φ)+B,由题意知A=(9 000-5 000)=2 000,B=7 000,T=2×(9-3)=12,所以ω==.将(3,9 000)看成函数图象的第二个特殊点,则有×3+φ=,所以φ=0,故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).所以f(7)=2 000×sin+7 000=6 000(元).故7月份的出厂价格为6 000元.考点4 三角函数图象与性质的综合问题——综合性(1)(多选题)将函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x),则下列结论正确的是( )A.函数g(x)的图象关于直线x=对称B.函数g(x)的图象关于点对称C.函数g(x)在上单调递减D.函数g(x)在[0,2π]上恰有4个极值点AD 解析:函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x)=2sin的图象,对于A:当x=时,g=2,故A正确.对于B:当x=时,g=2sin=,故B错误.对于C:当x∈时,2x-∈,故函数在该区间上单调递增,故C错误.对于D:令2x-=kπ+(k∈Z),解得x=+(k∈Z),当k=0,1,2,3时,x=,,,,正好有4个极值点,故D正确.(2)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是( )A. B.(-2,2)C.(-2,-) D.(-2,-1)D 解析:方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,题目条件可转化为=sin t,t∈,有两个不同的实数根.所以y=和y=sin t,t∈的图象有两个不同交点,如图:由图象观察知,的范围为,故m的取值范围是(-2,-1).已知关于x的方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则实数m的取值范围是________.1≤m<2 解析:2sin2x-sin 2x+m-1=-cos 2x-sin 2x+m=-2sin+m.因为x∈,所以2x+∈.要使方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则2x+∈且2x +≠,此时2sin∈[1,2),所以1≤m<2.1.研究y=1.(2021·运城模拟)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论错误的是( )A.f(x)=2sinB.若把f(x)的横坐标缩短为原来的,纵坐标不变,则得到的函数在[-π,π]上是增函数C.若把函数f(x)的图象向左平移个单位长度,则所得图象对应的函数是奇函数D.函数y=f(x)的图象关于直线x=-4π对称B 解析:由图象可得T=-2π=,所以T=6π,所以ω==.因为f(2π)=2,所以f(2π)=2sin=2,即sin=1,所以+φ=2kπ+(k∈Z),所以φ=2kπ-(k∈Z).因为|φ|<π,所以φ=-.所以f(x)=2sin,故A正确.把f(x)的横坐标缩短为原来的,纵坐标不变,得到的函数为y=2sin.因为x∈[-π,π],所以-≤x-≤,所以y=2sin在[-π,π]上不单调递增,故B错误.把函数f(x)的图象向左平移个单位长度,得到的函数为y=2sin=2sin x,是奇函数,故C正确.f(-4π)=2sin=2,是最值,故x=-4π是f(x)的对称轴,故D正确.2.若将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后得到的图象关于y轴对称,则函数f(x)在上的最大值为( )A.2 B.C.1 D.A 解析:将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后,得到的y=2sin的图象关于y轴对称,所以φ=,函数f(x)=2sin.因为x∈,所以2x+∈,则当2x+=时,函数f(x)在上的最大值为2.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .[四字程序]思路参考:构造正弦型函数的解析式.B 解析:y =cos x +sin x =2sin ,函数的图象向左平移m (m >0)个单位长度,得y =2sin 的图象.由x +m +=k π+(k ∈Z ),得函数y =2sin 的图象的对称轴为x =-m +k π(k ∈Z ).因为所得的图象关于y 轴对称,所以-m +k π=0(k ∈Z ),即m =k π+(k ∈Z ),则m 的最小值为.思路参考:构造余弦型函数的解析式.B 解析:函数y =cos x +sin x =2cos 的图象向左平移m (m >0)个单位长度得到y =2cos 的图象.因为此函数图象关于y 轴对称,所以y =2cos 为偶函数,易知m 的最小值为.思路参考:根据图象对称轴与函数最值的关系.B 解析:由解法1,得y =2sin .因为所得的图象关于y 轴对称,可得当x =0时,y =±2,进而sin =±1,易知m 的最小值为.思路参考:利用函数图象.B 解析:y=cos x+sin x=2sin,可得此函数图象的对称轴为x=kπ+(k∈Z),可知离y轴最近的对称轴为x=和x=-.由图象向左平移m(m>0)个单位长度后关于y轴对称,易知m的最小值为.1.基于课程标准,解答本题一般需要提升运算求解能力、逻辑推理能力,体现逻辑推理、数学运算的核心素养.2.基于高考数学评价体系,本题涉及三角恒等变换、三角函数的图象与性质等知识,渗透了转化与化归思想方法,有一定的综合性,属于中低档难度题.将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在上的最大值为( )A.0 B.C. D.1D 解析:将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,可得函数g(x)=sin的图象.根据所得图象关于原点对称,可得+φ=kπ.因为|φ|<,所以φ=,f(x)=sin.在上,2x+∈,故当2x+=时,f(x)取得最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:正弦余弦曲线:更一般应用的正弦曲线公式为:
A 为波幅(纵轴),ω 为(相位矢量)角频率=2PI/T,T为周期,t 为时间(横轴),θ 为相位(横轴左右)。
周期函数:正余弦函数可用来表达周期函数。
例如,正弦和余弦函数被用来描述简谐运动,还可描述很多自然现象,比如附着在弹簧上的物体的振动,挂在绳子上物体的小角度摆动。
正弦和余弦函数是圆周运动一维投影。
三角函数在一般周期函数的研究中极为有用。
这些函数有作为图像的特征波模式,在描述循环现象比如声波或光波的时候很有用。
每一个信号都可以记为不同频率的正弦和。
谐波数目递增的方波的加法合成的动画。
余弦函数的(通常是无限的)和;这是傅立叶分析的基础想法。
例如,方波可以写为傅立叶级数:
在动画中,可以看到只用少数的项就已经形成了非常准确的估计。
如果明白了上书基本原理,也就不难理解我所用的浮动频率合成曲线的道理。
2:指数函数:形如y=ka x的函数,k为常系数,这里的a叫做“底数”,是不等于1 的任何正实数。
指数函数按恒定速率翻倍,可以用来表达形象与刻画发展型的体系,比如金价2001年以来的牛市轨迹基本就是指数方程曲线。
特例:应用到值x上的这个函数可写为exp(x)。
还可以等价的写为e x,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还叫做欧拉数。
即函数:
定义于所有的a > 0,和所有的实数x。
它叫做底数为a的指数函数。
注意这
个的定义依赖于先前确立的定义于所有实数上的函数的存在。
注意上述等式对于a = e成立,因为
指数函数可“在加法和乘法之间转换”,在下列“指数定律”的前三个和第五个中表述:
它们对所有正实数a与b和所有实数x与y都是有效的。
3:幂函数:是形如f(x)=x a的函数,a可以是自然数,有理数,也可以是任意实数或复数。
下图是幂函数; 自上至下: x1/8, x1/4, x1/2, x1, x2, x4, x8
注意到上图中a值有分数的情形,这个就是分形数学的源头。
分数维意味着两个量x,y之间存在着幂函数关系,即y=ax b。
而这里的b可以不是正整数。
语言学中Zipf定律与经济学中的Pareto定律都是简单的幂函数,也称之为幂律分布;还有其它形式的幂律分布,像名次——规模分布、规模——概率分布,这四种形式在数学上是等价的,幂律分布的示意图如图1右图所示,其通式可写成y=c*x^(-r),其中x,y是正的随机变量,c,r均为大于零的常数。
这种分布的共性是绝大多数事件的规模很小,而只有少数事件的规模相当大。
对上式两边取对数,可知lny与lnx满足线性关系,也即在双对数坐标下,幂律分布表现为一条斜率为幂指数的负数的直线,这一线性关系是判断给定的实例中随机变量是否满足幂律的依据。
幂率的另一层重要意义:理解幂律分布就是所谓的马太效应,二八原则,即少数人聚集了大量的财富,而大多数人的财富数量都很小。
4:对数函数曲线:群论对于对数的视角,是俺常用的:即从纯数学的观点来看,恒等式
,
在两种意义上是基本的。
首先,其他算术性质可以从它得出。
进一步的,它表达了在正实数的乘法群和所有实数的加法群之间的同构。
对数函数是从正实数的乘法群到实数的加法群的唯一连续同构。
5:均匀分布:
先看一下离散型均匀分布,在概率论中,离散型均匀分布是一个离散型概率,其中有限个数值拥有相同的概率。
设随机变量X取n个不同的值,其概率分布为:
P{X=xi}=1/n, i=1,2...n; 则称X服从n个点{x1,x2,...xn}上的均匀分布。
这个东西表面看起来抽象,其实只需要记住一个例子就很好理解,赌博用的有6个面的骰子,6个面出现的几率是相等的,即为均匀分布。
连续型均匀分布,如果连续型随机变量具有如下的概率密度函数,则称服从上的均匀分布(uniform distribution),记作
概率密度函数:
期望值(即均值):
均匀分布具有下属意义的等可能性。
若,则X落在[a,b]内任一子区间[c,d]上的概率:
只与区间[c,d]的长度有关,而与他的位置无关。
均匀分布可以代表信息极度贫乏的体系或无序状态的体系。
而如果一个系统不属于均匀分布或随机游走,即均匀分布或随机游走的否定,就等于肯定了该系统具有信息,或者说具有某种程度的有序性。
这个就是均匀分布的实际应用价值之一。