2018版高考数学复习函数与导数文
考点10 导数的几何意义-2018版典型高考数学试题解读与变式(解析版)

考点十:导数的几何意义【考纲要求】(1)了解导数概念的实际背景.(2) 通过函数图像直观理解导数的几何意义. (3) 根据导数的定义求基本函数的导数.(4) 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如)(b ax f +的复合函数)的导数. 【命题规律】导数的运算是导数应用的基础,一般较少直接考查,而导数的几何意义----切线问题是高考考查的热点. 预计2017年的高考将会继续保持稳定,坚持考查导数的几何意义,命题形式会更加灵活、新颖. 【典型高考试题变式】 (一)求函数的导函数例1.【2017浙江高考改编】已知函数()()x 1fx x-2x-1e x 2-⎛⎫=≥ ⎪⎝⎭,求()f x 的导函数. 【答案】(I )()()(12121()221x x x e f x x x ----=>-';【方法技巧归纳】求函数的导函数要做到:1.基本初等函数的导函数相当熟悉;2.导函数的四则运算要熟练.另外,在求导的过程中,要注意对原式进行变形,使得便于我们求导.【变式1】【函数中含有参数,利用某函数值的导数求参数的值】【2015天津卷(文)】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3 【解析】因为()()1ln f x a x '=+ ,所以()13f a '==.【变式2】【赋值法在求导得应用,题型变为填空题】【2017江西太原高三模考一(文)改编题】已知函数()()()2102x f f f x e x xe '=+-,则)(x f 的最小值为___________________.【答案】1(二)导数的几何意义例2.【2017天津卷(文)】已知a ∈R ,设函数()ln f x ax x =-的图像在点()()1,1f 处的切线为l ,则l 在y 轴上的截距为 . 【答案】1【解析】(1)f a =,切点为(1,)a ,1()f x a x '=-,则切线的斜率为(1)1f a '=-,切线方程为:(1)(1)y a a x -=--,令0x =得出1y =,l 在y 轴的截距为1.【方法技巧归纳】切线的斜率就是函数在切点处的导数,倾斜值的正切值就是斜率.【变式1】【已知含参函数的切线斜率,求参数的值(或取值范围)】【2017四川乐山第三次调研考试(理)】已知曲线()221x x f x e e ax =-+-存在两条斜率为3的切线,则实数a 的取值范围是( )A. ()3,+∞B. 73,2⎛⎫⎪⎝⎭ C.7,2⎛⎫-∞ ⎪⎝⎭ D. ()0,3 【答案】B 【解析】由题得()222x x f x e e a'=-+,则方程2223x x e e a -+=有两个解,令xt e =,且()2223g t t t a =-+-,则由图象可知,有()0g t >且0∆>,即30a ->且()4830a -->,解得732a <<,故选B.【变式2】【函数的切线斜率与切线的倾斜角之间的关系】【2017安徽宣城六校联考改编题】过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为A. 3π0,4⎡⎤⎢⎥⎣⎦ B.π3π0,,π24⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦ C. 3π[,π) 4 D.π3π(,24⎤⎥⎦ 【答案】B【解析】由题意得()22k f x x x ==-'=()2111x --≥-,即tan α1k =≥-,解得πα02≥≥或3παπ4≤≤.即切线倾斜角的范围为π3π0,,π24⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦.故选B. 【变式3】【两个函数的切线垂直求切点的取值范围】【2015陕西卷(理)】设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x =>上点P 处的切线垂直,则P 的坐标为 .【答案】()1,1【变式4】【两个函数的切线平行求参数的值】【2014江苏】在平面直角坐标系中,若曲线(为常数)过点,且该曲线在点处的切线与直线平行,则.【答案】【解析】曲线过点,则①,又,所以②,由①②解得所以.(三)在一点处的切线方程例3.【2017全国1卷(文)】曲线21 y xx=+在点(1,2)处的切线方程为_________________________. 【答案】1y x=+【解析】设()y f x=,则()212f x xx-'=,所以()1211f='-=,所以曲线21y xx=+在点()1,2处的切线方程为()211y x-=⨯-,即1y x=+.【方法技巧归纳】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设()00,P x y是曲线()y f x=上的一点,则以P为切点的切线方程是()()000y y f x x x'-=-.若曲线()y f x=在点()()00,P x f x处的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0x x=.【变式1】【例题中增加函数性质】【2016全国3卷(理)】已知()f x为偶函数,当0x<时,()()ln3f x x x=-+,则曲线()y f x=在点()1,3-处的切线方程是__________.【答案】21y x=--【变式2】【增加例题中函数的参数,求参数的取值】【2017届衡水中学押题卷3(文)改编题】已知函数()()1e xf x bx a=-+(a,Rb∈).若曲线()y f x=在点()()0,0f处的切线方程为y x=,求a,b 的值分别为________.【答案】2,1【解析】函数()f x的定义域为R,()()e1ex xf x b bx=+-'()1e xbx b=+-.因为曲线()y f x=在点()()0,0f处的切线方程为y x=,所以()()00,{01,ff'==得10,{11,ab-=-=解得1,{2.ab==(四)过一点的切线方程例4.【2015全国1卷(理)改编题】已知函数,.(1)当为何值时,轴为曲线的切线.【答案】(Ⅰ);【解析】(Ⅰ)设曲线与轴相切于点,则,,即,解得.因此,当时,轴是曲线的切线.【方法技巧归纳】对于曲线)(xfy=上“过”点),(nm的切线问题,一般要先设切点),(yx,于是切线为))(('mxxfny-=-,再根据切点在曲线上得)(xfy=,切点在切线上得))(('mxxfny-=-.列方程组,可得切点的值.【变式1】【增加例题的难度,求切线的取值范围】【2017甘肃第二次高考诊断考试(理)】若P是函数()()()1ln1f x x x=++图象上的动点,点()1,1A--,则直线AP斜率的取值范围为()A. [)1,+∞B.[]0,1C.(1,e e-⎤⎦D.(1,e-⎤-∞⎦【答案】A切线过点()1,1--,则:()()()()000011ln1ln111x x x x⎡⎤--++=++--⎣⎦,解得:00x=,切线的斜率()ln111k x=++=,综上可得:则直线AP斜率的取值范围为[) 1,+∞.(五)两曲线的公切线例5.【2016全国2卷(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则b = .【答案】1ln2-【解析】ln 2y x =+的切点为()11ln +2x x ,,则它的切线为111ln 1y x x x =⋅++.()ln 1y x =+的切点为()22ln +2x x ,,则它的切线为:()22221ln 111x y x x x x =++-++,所以()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,212x =-,所以1ln 11ln 2b x =+=-.【方法技巧归纳】两曲线有公共切线,一般可以分别求出两曲线的切线,然后说明这两直线重合;或者先求出其中一条曲线的切线,然后说明其也和另一曲线相切.【变式1】【例题中曲线添加参数,求参数的值】【2015全国2卷】已知曲线ln y x x =+在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则a= . 【答案】8【解析】由11y x '=+可得曲线ln y x x =+在点)1,1(处的切线斜率为2,故切线方程为21y x =-,与1)2(2+++=x a ax y 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.【变式2】【改编题目问法,两曲线存在公切线求参数范围】【2017河南六市第二次联考(理)】若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为__________.【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭ 【解析】由y=ax2(a>0),得y ′=2ax ,由y=ex,得y ′=ex ,曲线C1:y=ax2(a>0)与曲线C2:y=ex 存在公共切线,设公切线与曲线C1切于点(x1,ax12),与曲线C2切于点()22,x x e ,则22211212x x e ax ax e x x -==-,可得2x2=x1+2,∴11212x ea x +=,记()122x ef x x +=,则()()1222'4x e x f x x +-=,当x ∈(0,2)时,f ′(x)<0,f(x)递减;当x ∈(2,+∞)时,f ′(x)>0,f(x)递增.∴当x=2时,()2min4e f x =.∴a 的范围是2,4e ⎡⎫+∞⎪⎢⎣⎭ . 【数学思想】 无限逼近的极限思想(1)由()()'()limx f x x f x f x x ∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限,充分说明极限是人们从近似中认识精确的数学方法.极限的实质就是无限近似的量,向着有限的目标无限逼近而产生量变导致质变的结果,这是极限的实质与精髓,也是导数的思想及其内涵. (2)曲线的切线定义,充分体现了运动变化及无限逼近的思想:“两个不同的公共点→两公共点无限接近→两公共点重合(切点)”⇒“割线→切线”.(3)在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点. 【处理导数的几何意义问题注意点】对于曲线切线方程问题的求解,对函数的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.对于已知的点,应首先认真审题,对于确定切线的方程问题,要注意区分“该曲线过点P 的切线方程”与“该曲线在点P 处的切线方程”的两种情况,避免出错.从历年高考题看,“该曲线在点P 处的切线方程”问题的考查较为普遍.【典例试题演练】1.【2017宁夏银川一中高三二模(文)】已知在平面直角坐标系中,曲线()ln f x a x x=+在x a =处的切线过原点,则a =A. 1B. eC. 1e D. 0【答案】B2.【2017辽宁沈阳东北育才学校第九次模拟考试(理)】已知函数()xaf x x e=- (0)a >,且()y f x =的图象在0x =处的切线l 与曲xy e =相切,符合情况的切线 A. 有0条 B. 有1条 C. 有2条 D. 有3条 【答案】A【解析】函数f(x)= xax e -的导数为f ′(x)=1−1xa ea ,a>0.易知,曲线y=f(x)在x=0处的切线l 的斜率为1−1a,切点为(0,−1),可得切线的方程为y=(1−1a )x −1.假设l 与曲线y=ex 相切,设切点为(x0,y0),即有e x0=1−1a =(1−1a )x0−1,消去a 得e x0=e x0⋅x0−1,设h(x)=exx −ex −1, 则h ′(x)=exx,令h ′(x)>0,则x>0,所以h(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增, 当x →−∞,h(x )→−1,x →+∞,h(x )→+∞, 所以h(x)在(0,+∞)有唯一解,则e x0>1, 而a>0时,1−1a<1,与e x0>1矛盾,所以不存在. 故选:A.3.【2017湖南长沙长郡中学高三5月模考(理)】设曲线()x f x e x=--(e 为自然对数的底数)上任意一点的切线为1l,总存在曲线()32cos g x ax x=+上某点处切线2l,使得12l l ⊥,则实数a 的取值范围为( )A. []1,2-B. []3,+∞C. 21,33⎡⎤-⎢⎥⎣⎦ D.12,33⎡⎤-⎢⎥⎣⎦【答案】D【解析】因为()()1,32sin x f x e g x a x''=--=-,所以直线12,l l 的斜率分别为()11201,32sin x k e k a x =-+=-,则由题设可得()()10132sin 1x e a x -+-=-,即10132sin 1x a x e -=+,又因为对任意1x ,都有11011x e <<+,故 存在0x 使得0032sin 1a x <-<,即存在0x 使得002sin 312sin x a x <<+,故1232a -≤≤,即1233a -≤≤,应选答案D . 4.【2017安徽蚌埠高三二质检(理)】已知函数()1xf x x a e ⎛⎫=- ⎪⎝⎭,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是( )A. ()2,e -+∞B. ()2,0e - C. 21,e⎛⎫-+∞ ⎪⎝⎭ D. 21,0e ⎛⎫- ⎪⎝⎭【答案】D 【解析】曲线()y f x =上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直,()()'10x f x a x e -∴=+-=有两个不同的解,即得()1xa x e -=-有两个不同的解,设()1xy x e -=-,则()'2,2,'0,2,'0x y x e x y x y -=-∴,()1xy x e -=-在(),2-∞上递减,在()2,+∞上递增2x ∴=时,函数取得极小值2,e --又因为当2x >时总有()10xy x e -=-<,所以可得数a 的取值范围是21,0e⎛⎫- ⎪⎝⎭,故选D.5.【2017四川绵阳高三月考(理)】过点()2,1A 作曲线()33f x x x=-的切线最多有( )A .3条B .2条C .1条D .0条 【答案】A6.【2018河北石家庄二中开学考试(理)】已知函数()()21,f x g x x x ==.若直线l 与曲线()(),f x g x 都相切,则直线l 的斜率为__________. 【答案】4-【解析】因为()()21,f x g x x x ==,所以()21‘,f x x =-设曲线()f x 与l 切于点111x x ⎛⎫ ⎪⎝⎭,,则切线斜率211k x =-,故切线方程为()121111y x x x x -=--,即21112y x x x =-+,与()2g x x =联立得:2211120x x x x +-=,因为直线l 与曲线()g x 相切,所以02411221=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛x x ,解得112x =-,故斜率211k 4x =-=-.故答案为: 4-7.【2018广东茂名高三五校联盟9月联考(理)】若函数的图象在点处的切线斜率为,则函数的极小值是__________.【答案】【解析】因为,所以由导数的几何意义可得切线的斜率,故,令可得,则函数的极小值为,应填答案.8.【2017河南新乡三模(文)】若()()2f x f x +-= 33x x ++对R x ∈恒成立,则曲线()y f x =在点()()2,2f 处的切线方程为__________.【答案】1315y x =-(或13150x y --=) 【解析】()()()()()()3323,23f x f x x x f x f x x x +-=++∴-+=-+-+()()()()333233f x x x x x ⎡⎤∴=++--+-+⎣⎦()()()321,31,213f x x x f x x f ''∴=++=+=又()211f =,则曲线()y f x =在点()()2,2f 处的切线方程为()11132y x -=- ,即1315y x =-9.【2017湖南郴州市高三第四次质量检测(文)】若函数()在区间只有一个极值点,则曲线在点处切线的方程为__________.【答案】【解析】由题意可得,所以即在有唯一奇次根.根据根的存在性定理,即,,又因为,所以.,,,所以切线方程为.答案为:x-y+6=0.10.【2018河南周口市中英文学校开学考】曲线()C:sin 2x f x x e =++在0x =处的切线方程为_____.【答案】23y x =+ 【解析】由()sin 2x f x x e =++,得()cos xf x x e ='+,()03f =,切线的斜率为()02k f ='=,故切线方程为23y x =+,故答案为23y x =+.11.【2018贵州贵阳高三8月摸底考】已知函数()()1*n n f x x x n N +=-∈,曲线()y f x =在点()()2,2f 处的切线与y 轴的交点的纵坐标为nb ,则数列{}n b 的前n 项和为__________.【答案】12n n +⋅【解析】对函数求导可得: ()()1'1n nf x nx n x -=-+,则()()()11'221222n n n f n n n --=⨯-+⨯=--⨯,且:()12222n n nf -=-=-,曲线在()()2,2f 处的切线方程为()()12222nn y n x -+=--⨯⨯-,令0x =可得: ()1222n y n -=+⨯,即()1222n n b n -=+⨯,错位相减可得其前n 项和为12n n -⋅.12.【2017湖南省郴州市高三第四次质量检测(文)改编】已知函数()与函数有公共切线.则求的取值范围为_____________. 【答案】13.【2017吉林实验中学八模(理)改编】已知函数()()ln af x x a R x =+∈.(Ⅰ)若函数()f x 在1x =处的切线平行于直线20x y -=,求实数a 的值.【答案】(1)1a =-【解析】试题分析:(1)利用导数的几何意义,得()12f '=, 1a =-;试题解析:(Ⅰ)()21'a fxx x=-,函数()f x在1x=处的切线平行于直线20x y-=.()112,1f a a∴=-=∴=-'.14.【2017陕西省西安市西北工业大学附属中学第八次模拟(理)】已知函数()()1lnt xf x e t x-=-(常数0t>). (Ⅰ)求函数()f x的单调区间;(Ⅱ)若曲线()y f x=与直线y tx=相切,证明:2t<.【答案】(1)()f x的单增区间为()1,+∞,单减区间为()0,1;(2)见解析.【解析】试题分析:(Ⅰ)求出()'f x,()'0f x>得增区间,()'0f x<得减区间;(Ⅱ)设曲线()y f x=与直线y tx=的切点为()()00,x f x,由0011ln t x txx+-=,可得()0001lnxtx x x+=+,()()1lnxr xx x x+=+,其中11,1xt⎛⎫∈+⎪⎝⎭,利用导数研究函数的单调性可得()()12r x r<=,即2t<.(Ⅱ)证明:设曲线()y f x=与直线y tx=的切点为()()00,x f x,因为()()11t xf x t ex-⎛⎫=-⎝'⎪⎭,所以()()011t xf x t e tx-⎛⎫=-=⎪⎝⎭',即()111t xex-=+.因为直线y tx=经过切点()()00,x f x,所以()()01000lnt xf x e t x tx-=-=,于是,有0011ln t x txx+-=,即()0001lnxtx x x+=+.令()()111t xh x ex-=--,则()()121t xh x tex-+'=>,故()h x单增,又()110h=-<,11101th et t⎛⎫+=-->⎪+⎝⎭,所以()h x有唯一零点0x,且11,1xt⎛⎫∈+⎪⎝⎭.再令()()1lnxr xx x x+=+,其中11,1xt⎛⎫∈+⎪⎝⎭,则()()2223ln1lnx x xr xx x x----=<+',故()r x单减,所以()()12r x r<=,即2t<.。
2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
2018高考数学(文)第二篇 函数、导数及其应用 第4节 指数函数

第4节指数函数【选题明细表】基础对点练(时间:30分钟)1.(2016·山东济南模拟)若实数a>0,则下列等式成立的是( D )(A)(-2)-2=4 (B)2a-3=(C)(-2)0=-1 (D)()4=解析:A,B,C错,D正确.故选D.2.(2016·湖北黄冈自主招生考试)化简-()2,结果是( D )(A)6x-6 (B)-6x+6(C)-4 (D)4解析:因为-()2,所以所以x≥,所以-()2=-()2=3x-1-(3x-5)=4.故选D.f(x)=a x,其中a>0且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于( A )(A)1 (B)a (C)2 (D)a2解析:因为以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上, 所以x1+x2=0,又因为f(x)=a x,所以f(x 1)·f(x2)=·==a0=1,故选A.4.(2016·黑龙江大庆二模)若x∈(e-1,1),a=ln x,b=()ln x,c=e ln x,则a,b,c的大小关系为( B )(A)c>b>a (B)b>c>a(C)a>b>c (D)b>a>c解析:因为x∈(e-1,1),a=ln x所以a∈(-1,0),即a<0,又y=()x为减函数,所以b=()ln x>()ln 1=()0=1,即b>1,又c=e ln x=x∈(e-1,1),所以b>c>a.故选B.5.(2016·山东菏泽二模)若函数f(x)=2x+b-1(b∈R)的图象不经过第二象限,则有( D )(A)b≥1 (B)b≤1(C)b≥0 (D)b≤0解析:因为y=2x,当x<0时,y∈(0,1),所以函数f(x)=2x+b-1(b∈R)的图象不经过第二象限,则有b-1≤-1,解得b≤0.故选D.6.(2015·广东珠海四模)已知奇函数y=如果f(x)=a x(a>0且a ≠1)对应的图象如图所示,那么g(x)等于( D )(A)()-x(B)-()x(C)2-x (D)-2x解析:当x>0时,函数单调递减,则0<a<1,因为f(1)=,所以a=,即函数f(x)=()x,当x<0,则-x>0,则f(-x)=()-x=-f(x),则y=-()-x=-2x,即g(x)=-2x,x<0,故选D.7.(2016·上海长宁区一模)方程9x+3x-2=0的解是.解析:因为9x+3x-2=0,即(3x)2+3x-2=0,所以(3x+2)(3x-1)=0⇒3x=-2(舍),3x=1.解得x=0.答案:08.(2016·天津期末)若函数f(x)=定义域为R,则a的取值范围是.解析:因为函数f(x)=定义域为R,所以-1≥0恒成立,即x2+2ax-a≥0恒成立,则Δ=(2a)2+4a≤0,解得-1≤a≤0.答案:-1,0]f(x)=2|x-a|(a∈R)满足f(2+x)=f(2-x),且f(x)在m,+∞)上单调递增,则实数m的最小值为.解析:因为f(x)=2|x-a|,所以f(x)关于x=a对称,又f(2+x)=f(2-x),所以f(x)关于x=2对称,所以a=2,所以f(x)=所以f(x)的单调递增区间为2,+∞),又f(x)在m,+∞)上单调递增,所以实数m的最小值为2.答案:210.(2016·济南期末)已知指数函数f(x)=a x(a>0,且a≠1)过点(-2,9).(1)求函数f(x)的解析式;(2)若f(2m-1)-f(m+3)<0,求实数m的取值范围.解:(1)将点(-2,9)代入到f(x)=a x得a-2=9,解得a=,所以f(x)=()x.(2)因为f(2m-1)-f(m+3)<0,所以f(2m-1)<f(m+3),因为f(x)=()x为减函数,所以2m-1>m+3,解得m>4,所以实数m的取值范围为(4,+∞).11.已知函数f(x)=().(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.解:(1)当a=-1时,f(x)=(),令g(x)=-x2-4x+3,由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y=()x在R上单调递减,所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的递增区间是(-2,+∞),递减区间是(-∞,-2).(2)令h(x)=ax2-4x+3,则f(x)=()h(x),由于f(x)有最大值3,所以h(x)应有最小值-1, 因此必有解得a=1,所以当f(x)有最大值3时,a的值等于1.能力提升练(时间:15分钟)12.函数y=()的值域为( A )(A),+∞) (B)(-∞,](C)(0,] (D)(0,2]解析:令t(x)=2x-x2=-(x-1)2+1≤1,因为y=()t单调递减,所以()1≤(),即y≥.故选A.13.(2016·河北石家庄一模)设函数f(x)=e|ln x|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是( C )(A)x2f(x1)>1 (B)x2f(x1)=1(C)x2f(x1)<1 (D)x2f(x1)<x1f(x2)解析:f(x)=作出y=f(x)的大致图象,若0<x1<1<x2,则f(x1)=>1,f(x2)=x2>1,则x2f(x1)>1,则A可能成立;若0<x2<1<x1,则f(x2)=>1,f(x1)=x1>1,则x2f(x1)=x2x1=1,则B可能成立;对于D,若0<x1<1<x2,则x2f(x1)>1,x1f(x2)=1,则D不成立,若0<x2<1<x1,则x2f(x1)=1,x1f(x2)>1,则D成立.故C一定不成立.故选C.14.如果函数y=a2x+2a x-1(a>0,a≠1)在区间-1,1]上的最大值是14,则实数a的值为.解析:设t=a x,则函数等价为y=f(t)=t2+2t-1=(t+1)2-2,对称轴为t=-1,若a>1,则0<≤t≤a,此时函数的最大值为f(a)=(a+1)2-2=14,即(a+1)2=16,即a+1=4或a+1=-4,即a=3或a=-5(舍);若0<a<1,则0<a≤t≤,此时函数的最大值为f()=(+1)2-2=14,即(+1)2=16,即+1=4或+1=-4,即=3或=-5(舍),解得a=.答案:3或15.已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈-3,0]的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.解:(1)当a=1时,f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,x∈-3,0],则t∈,1].故y=2t2-t-1=2(t-)2-,t∈,1],故值域为-,0].(2)关于x的方程2a(2x)2-2x-1=0有解,令m=2x,等价于方程2am2-m-1=0在(0,+∞)上有解.记g(m)=2am2-m-1,当a=0时,得m=-1<0,不成立.当a<0时,抛物线开口向下,对称轴m=<0,过点(0,-1),不成立.当a>0时,抛物线开口向上,对称轴m=>0,过点(0,-1),方程必有一个根为正,所以a>0.得a的取值范围为(0,+∞).16.已知函数f(x)=e x-e-x(x∈R且e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.解:(1)因为f(x)=e x-()x,且y=e x是增函数,y=-()x也是增函数,所以f(x)是增函数.由于f(x)的定义域为R,且f(-x)=e-x-e x=-f(x),所以f(x)是奇函数.(2)存在满足题意的t.由(1)知f(x)是增函数也是奇函数,所以f(x-t)+f(x2-t2)≥0对一切x∈R恒成立⇔f(x2-t2)≥f(t-x)对一切x∈R恒成立⇔x2-t2≥t-x对一切x∈R恒成立⇔t2+t≤x2+x对一切x∈R 恒成立⇔(t+)2≤(x+)2]min对一切x∈R恒成立⇔(t+)2≤0⇔t=-.即存在实数t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立.好题天天练a为何值时,函数y=(a-1)2x-恒过一定点,这个定点坐标是( C )(A)(1,-) (B)(1,)(C)(-1,-) (D)(-1,)解题关键:转化为方程恒成立.解析:函数y=(a-1)2x-的解析式可化为(2x-)a-(2x+y)=0,若不论a为何值时,函数y=(a-1)2x-恒过一定点,即不论a为何值时,(2x-)a-(2x+y)=0恒成立,则2x-=0,2x+y=0,解得x=-1,y=-,即恒过的定点坐标是(-1,-).故选C.2.(2016·辽宁沈阳期中)若关于x的方程:9x+(4+a)·3x+4=0有解,则实数a的取值范围为( D )(A)(-∞,-8)∪0,+∞) (B)(-8,-4)(C)-8,-4] (D)(-∞,-8]解题关键:本题分离参数后换元利用不等式求范围,也可转化为根的分布求解.解析:因为a+4=-,令3x=t(t>0),则-=-(t+),因为t+≥4,所以-≤-4,所以a+4≤-4,所以a的范围为(-∞,-8].故选D.。
2018版高考数学(理)一轮复习文档第三章导数及其应用3-3Word版含解析

1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × ) (4)微积分基本定理中的F (x )是唯一的.( × )(5)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )1.(2017·福州质检)ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1 答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=e +1-1=e.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8),图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=(2x 2-14x 4)|20=8-14×24=4,故选D.3.(教材改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是( )A.132 m B .6 m C.152 m D .7 m 答案 A解析 s =ʃ21(3t +2)d t =(32t 2+2t )|21=32×4+4-(32+2) =10-72=132(m).4.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则ʃe 0f (x )d x 的值为________.答案 43解析 ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11xd x =13x 3|10+ln x |e1=13+ln e =43.题型一 定积分的计算例1 (1)(2016·九江模拟)若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1(2)定积分ʃ2-2|x 2-2x |d x 等于( )A .5B .6C .7D .8 答案 (1)B (2)D解析 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2,所以λ=1.(2)ʃ2-2|x 2-2x |d x=ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x=(x 33-x 2)|0-2+(x 2-x 33)|20 =83+4+4-83=8. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.(1)若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( )A .-1B .1C .- 3 D. 3(2)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( )A.34B.45C.56D.67 答案 (1)A (2)C 解析 ππ220(1)(sin cos )d (cos sin )|x a x x x a x ⎰-=--=0-a -(-1-0)=1-a =2, ∴a =-1.(2)ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21 =13+(4-12×4)-(2-12) =56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2 (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积, ∴ʃ313+2x -x 2d x =14×π×4=π.(2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y=0围成的图形的面积, 又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m=-1.命题点2求平面图形的面积例3(2017·青岛月考)由曲线xy=1,直线y=x,y=3所围成的封闭平面图形的面积为______.答案4-ln 3解析 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰ =(3-1-ln 3)+(9-92-3+12)=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分; (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(1)定积分ʃ309-x 2d x 的值为( )A .9πB .3π C.94π D.92π (2)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________. 答案 (1)C (2)163解析 (1)由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ309-x 2d x =π·324=94π,故选C.(2)由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为ʃ1-1(2x 2+4x +2)d x =(23x 3+2x 2+2x )|1-1=(23×13+2×12+2×1)-[23×(-1)3+2×(-1)2+2×(-1)]=163. 题型三 定积分在物理中的应用例4 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t =[7t -32t 2+25ln(1+t )]|40 =28-24+25ln 5=4+25ln 5.思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎣⎡⎦⎤⎝⎛⎭⎫5x -13x 3×3221=433, ∴F (x )做的功为433 J.4.利用定积分求面积典例 由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 错解展示解析 所求面积S =ʃ20(x 2-1)d x =(13x 3-x )|20=23. 答案 23现场纠错解析 如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=(x -x 33)|10+(x 33-x )|21=(1-13)+[83-2-(13-1)]=2.答案 2纠错心得 利用定积分求面积时要搞清楚定积分和面积的关系;定积分可正可负,而面积总为正.1.π220sin d 2xx等于( ) A .0 B.π4-12 C.π4-14D.π2-1答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰π2011π1(sin )|.2242x x =-=- 2.ʃ101-x 2 d x 的值为( )A.14B.π4C.12D.π2 答案 B 解析 ʃ101-x 2 d x 的几何意义为以(0,0)为圆心,以1为半径的圆位于第一象限的部分,圆的面积为π, 所以ʃ101-x 2 d x =π4.3.(2016·南昌模拟)若ʃa 1(2x +1x )d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6 答案 A解析 由题意知ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2,解得a =2. 4.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=(x -x 22)|10+(x 22-x )|21=(1-12)+(222-2)-(12-1)=1.5.由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8 答案 A解析 22333200228(()|,333m mS m x mx x m m ==-=-=⎰解得m =2.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 方法一 S 1=13x 3|21=83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.7.π)d 4x x +=________.答案 2解析 依题意得π)d 4x x +ππ220(sin cos )d (sin cos )|x x x x x =+=-⎰=(sin π2-cos π2)-(sin 0-cos 0)=2.8.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-(-sin π3)= 3.*9.(2016·湖北省重点中学高三阶段性统一考试)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1), 所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =(x 44-x 3)|20=-4. 10.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为________.答案 29解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a , 由二次函数的性质可得f (a )max =-(23)24×(-12)=29. 11.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解 由⎩⎪⎨⎪⎧ y =x ,y =2-x得交点A (1,1); 由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B (3,-1).故所求面积S =ʃ10⎝⎛⎭⎫x +13x d x +ʃ31⎝⎛⎭⎫2-x +13x d x 32123201211()|(2)|363x x x x =++- =23+16+43=136. 12.(2016·武汉模拟)如图,矩形OABC 的四个顶点依次为O (0,0),A (π2,0),B (π2,1),C (0,1),记线段OC ,CB 以及y =sin x (0≤x ≤π2)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC 内任意投一点M ,求点M 落在区域Ω内的概率.解 阴影部分的面积为π20π(1sin )d 1,2x x -=-⎰ 矩形的面积是π2×1=π2, 所以点M 落在区域Ω内的概率为π2-1π2=1-2π. *13.已知函数y =F (x )的图象是折线段ABC ,其中A (0,0),B (12,5),C (1,0),求函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积.解 由题意,F (x )=⎩⎨⎧ 10x ,0≤x ≤12,-10x +10,12<x ≤1, 则xF (x )=⎩⎨⎧ 10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为11122323122101022101010d (1010)d |(5)|33x x x x x x x x +-+=+-⎰⎰ =103×18+(5-103)-(54-103×18)=54.。
浙江2018版高考数学复习三角函数解三角形3.1导数的概念及运算教师用书

(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形 3.1 导数的概念及运算教师用书1.导数与导函数的概念(1)一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f x0+Δx-f x0Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0Δy Δx=limΔx→0f x0+Δx-f x0Δx.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=fx g x -f x gx[g x2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1fx ]′=-f x [fx2(f (x )≠0).(3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)若f (x )=x ·e x,则f ′(1)等于( ) A .0 B .e C .2e D .e 2答案 C解析 f ′(x )=e x+x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x+3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos x e x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x)′=1x -1x2.(3)y ′=(cos xex )′=cos x ′·e x -cos x e x′e x 2=-sin x +cos x ex. (4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u ,则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017,得2 017+lnx 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2016·全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 (2016·舟山模拟)函数y =e x的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x, 得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0), 又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e. (2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的; 当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)(2016·台州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D.12(2)(2016·临海模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x ,∴2'x y π==-1.由条件知1a=-1,∴a =-1.3.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0'x x y ==3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.(2016·东阳模拟)若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0,所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎪⎨⎪⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.5. (2016·杭州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×(-13)=0. 6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12C .1D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x , 由f ′(14)=g ′(14),得12×121()4-=a 14, 可得a =14,经检验,a =14满足题意. 7.已知函数f (x )满足f (x )=f ′(1)ex -1-f (0)x +12x 2.那么f (x )的解析式为________. 答案 f (x )=e x -x +12x 2 解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x ,所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1.又f (0)=f ′(1)e -1,所以f ′(1)=e.从而f (x )=e x -x +12x 2. 8.(2016·金华模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.答案 12ln 2解析 y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1). ∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞), ∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2. *10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________.答案 -1解析 f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1.11.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解 (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知, ⎩⎪⎨⎪⎧ k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧ a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=203(1)x +(x -x 0), 即y -⎝ ⎛⎭⎪⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。
2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法
高考数学复习专题 函数与导数

高考数学复习专题 函数与导数以函数为载体,以导数为工具,以考查函数诸多性质和导数极值理论、单调性质、几何意义及其应用为目标,是高考导数与函数交汇试题的显著特点和命题趋向。
一、考情预测1.考查导数与函数最值问题 设y=f(x)为可导函数,函数f(x)在某点取得极值的充要条件是该点的导数为零或不存在且该点两侧的导数异号;定义在闭区间上的初等函数必存在最值,它只能在区间的端点或区间内的极值点取得。
高考常结合求函数极值(最值)、参数取值X 围、解决数学应用等问题考查导数最值性质在函数问题中的应用。
2.考查导数与函数单调性问题 设函数y=f(x)在某个区间内可导,如果f'(x)>0,则f(x)为增函数;如果f'(x)<0则f(x)为减函数。
反之亦然。
高考常以函数单调区间、单调性证明等问题为载体,考查导数的单调性质和分类讨论思想的应用。
3.考查导数与函数图象切线问题 函数f(x)在点x 0处的导数f'(x0)是曲线y=f(x)在点(x 0f(x 0))处切线的斜率。
高考常结合函数图象的切线及其面积、不等式等问题对导数几何意义的应用进行考查。
4.考查导数与函数不等式证明问题构造函数,运用导数在函数单调性方面的性质,可解决不等式证明、参数取值X 围等问题。
设置此类试题,旨在考查导数基础性、工具性、现代性的作用,以强化数学的应用意识。
5.考查导数与函数建模问题 设计导数与数学建模问题,旨在考查将实际问题抽象为数学问题,运用导数性质或不等式知识去解决最优化问题的数学应用意识与实践能力。
求解此类问题时,可从给定的数量关系中选取一个恰当的变量,建立函数模型,然后根据目标函数的结构特征,确定运用导数最值理论或不等式性质去解决问题。
二、高考题例1. (2005年某某卷)已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0.(Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值X 围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.解:(I )xax x x h b 221ln )(,22--==时,则.1221)(2x x ax ax x x h -+-=--='因为函数h (x )存在单调递减区间,所以)(x h '<0有解.又因为x >0时,则ax 2+2x -1>0有x >0的解.①当a >0时,y=ax 2+2x -1为开口向上的抛物线,ax 2+2x -1>0总有x >0的解; ②当a <0时,y=ax 2+2x -1为开口向下的抛物线,而ax 2+2x -1>0总有x >0的解; 则△=4+4a >0,且方程ax 2+2x -1=0至少有一正根.此时,-1<a <0. 综上所述,a 的取值X 围为(-1,0)∪(0,+∞).(II )证法一设点P 、Q 的坐标分别是(x 1, y 1),(x 2, y 2),0<x 1<x 2.则点M 、N 的横坐标为,221x x x +=C 1在点M 处的切线斜率为,2|1212121x x x k x x x +==+=C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+=假设C 1在点M 处的切线与C 2在点N 处的切线平行,则k 1=k 2.即bx x a x x ++=+2)(22121,则)2()(2)()(2)(21212221221222112bx x abx x a x x b x x a x x x x +-+=-+-=+-=.ln ln 1212x x y y -=-所以.1)1(2ln 121212x x x x x x +-=设,12x x t =则.1,1)1(2ln >+-=t t t t ①令.1,1)1(2ln )(>+--=t t t t t r 则.)1()1()1(41)(222+-=+-='t t t t t t r因为1>t 时,0)(>'t r ,所以)(t r 在+∞,1[)上单调递增. 故.0)1()(=>r t r则t t t +->1)1(2ln . 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行.证法二:同证法一得).(2)ln )(ln (121212x x x x x x -=-+因为01>x ,所以).1(2ln )1(121212-=+x xx x x x令12x x t =,得.1),1(2ln )1(>-=+t t t t ②令.11ln )(,1),1(2ln )1()(-+='>--+=t t t r t t t t t r 则 因为22111)1(ln t t t t t t -=-='+,所以1>t 时,.0)1(ln >'+t t 故t t 1ln +在[1,+)∞上单调递增.从而011ln >-+t t ,即.0)(>'t r于是)(t r 在[1,+)∞上单调递增.故.0)1()(=>r t r 即).1(2ln )1(->+t t t 这与②矛盾,假设不成立. 故C 1在点M 处的切线与C 2在点N 处的切线不平行.2. (2004年高考理科数学全国卷II )已知函数f(x )=ln(1+x )-x ,g(x )=x ln x . (1)求函数f(x)的最大值;(2)设0<a <b,证明0<g(a )+g(b)-2g(2ba +)<(b-a)ln2.本小题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力,满分14分.(1)解:函数)(x f 的定义域为),1(+∞-. .111)(-+='x x f 令.0,0)(=='x x f 解得当,0)(,01>'<<-x f x 时当.0)(,0<'>x f x 时又,0)0(=f故当且仅当x =0时,)(x f 取得最大值,最大值为0.(2)证法一:2ln )(ln ln )2(2)()(ba b a b b a a b a g b g a g ++-+=+-+.2ln 2lnb a bb b a a a +++=由(Ⅰ)结论知),0,1(0)1ln(≠-><-+x x x x 且由题设,021,02,0<-<->-<<b ba a ab b a 得因此,2)21ln(2lna ab a a b b a b -->-+-=+,2)21ln(2ln b ba b b a b a b -->-+-=+所以.0222ln 2ln=---->+++ba ab b a b b b a a a又.2ln )(2ln )(2ln 2ln 2ln 2ln,22a b b a ba b b a b b b b a a b a b b b a a a b ba b a a -<+-=+++<++++<+综上.2ln )()2(2)()(0a b ba gb g a g -<+-+<证法二:.1ln )(,ln )(+='=x x g x x x g设),2(2)()()(xa g x g a g x F +-+=则.2ln ln ])2([2)()(x a x x a g x g x F +-='+-'='当,0)(,0<'<<x F a x 时在此),0()(a x F 在内为减函数. 当),()(,0)(,+∞>'>a x F x F a x 在因此时上为增函数.从而,当)(,x F a x 时=有极小值).(a F因此,0)(,,0)(>>=b F a b a F 所以即).2(2)()(0ba gb g a g +-+<设,2ln )()()(a x x F x G --=则).ln(ln 2ln 2lnln )(x a x xa x x G +-=-+-='当.0)(,0<'>x C x 时因此),0()(+∞在x G 上为减函数.因为,0)(,,0)(<>=b G a b a G 所以即.2ln )()2(2)()(a b ba gb g a g -<+-+3. ( 2005年全国卷III )用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的体积为V , 则V=(90-2x )(48-2x )x ,(0<V<24) =4x 3-276x 2+4320x ∵V′=12 x 2-552x +4320由V′=12 x 2-552x +4320=0得x 1=10,x 2=36 ∵x<10 时,V′>0, 10<x <36时,V′<0,x >36时,V′>0,所以,当x=10,V 有极大值V(10)=1960 又V(0)=0,V(24)=0,所以当x=10,V 有最大值V(10)=1960 三、经典例题1. 设函数d cx bx ax x f 42)(23++-=(a 、b 、c 、d ∈R )图象关于原点对称,且x =1时,)(x f 取极小值.32-(1)求a 、b 、c 、d 的值;(2)当]1,1[-∈x 时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论;(3)若]1,1[,21-∈x x 时,求证:34|)()(|21≤-x f x f .解(1)∵函数)(x f 图象关于原点对称,∴对任意实数)()(x f x f x -=-有,d cx bx ax d cx bx ax 42422323--+-=+---∴,即022=-d bx 恒成立 0,0==∴d b c ax x f cx ax x f +='+=∴233)(,)(,1=x 时,)(x f 取极小值3203,32-=+=+∴-c a c a 且,解得1,31-==c a(2)当]1,1[-∈x 时,图象上不存在这样的两点使结论成立.假设图象上存在两点),(11y x A 、),(22y x B ,使得过此两点处的切线互相垂直,则由,1)(2-='x x f 知两点处的切线斜率分别为1,1222211-=-=x k x k , 且1)1()1(2221-=-⋅-x x 1x 、]1,1[2-∈x ,0)1()1(,01,0122212221≥-⋅-∴≤-≤-∴x x x x 此与(*)相矛盾,故假设不成立.证明(3))1,(,1,0)(,1)(2--∞∈±=='-='x x x f x x f 得令, 或0)(,)1,1(;0)(,),1(<'-∈>'+∞∈x f x x f x 时时,]1,1[)(-∴在x f 上是减函数,且32)1()(,32)1()(min max -===-=f x f f x f∴在[-1,1]上,]1,1[,,32|)(|21-∈≤x x x f 于是时,343232|)(||)(||)()(|2121=+≤+≤-x f x f x f x f .2. 已知函数g (x )=(2-x )3-a (2-x ),函数f (x )的图象与g (x )的图象关于直线x -1=0对称.(1)求f (x )的表达式;(2)若f (x )在区间[1,+∞)上是单调增函数,某某数a 的取值X 围;(3)记h (x )=f (x )+g (x ),求证:当x 1,x 2∈(0,2)时,|h (x 1)-h (x 2)|<12|x 1-x 2|.解:(1)设P (x ,y )为函数f (x )图象上任一点,其关于x =1的对称点P ′(x ′,y ′)应在g (x )图象上.∴⎪⎩⎪⎨⎧='='+.,12y y x x ∴⎩⎨⎧='-='.,2y y x x 代入g (x )表达式得f (x )= x 3-ax .(2)∵f ′(x )=3x 2-a ,且f (x )在[1,+∞)上是增函数,∴3x 2-a ≥0在[1,+∞)上恒成立,∴a ≤3x 2∈[3,+∞)恒成立. ∴a ≤3.(3)∵h (x )=f (x )+g (x )=(2-x )3-a (2-x )+x 3-ax =6x 2-12x +8-2a , |h (x 1)-h (x 2)|=|(6x 12-12x 1+8-2a )-(6x 22-12x 2+8-2a )| =|6(x 12-x 22)-12(x 1-x 2)|=6|x 1-x 2|·|x 1+x 2-2|. ∵x 1,x 2∈(0,2)∴0<x 1+x 2<4,∴-2<x 1+x 2-2<2,即|x 1+x 2-2|<2,∴6|x 1-x 2|·|x 1+x 2-2|<12|x 1-x 2|,即|h (x 1)-h (x 2)|<12|x 1-x 2|.3. 已知函数x x f ln )(=,求证:当2)()(,0ax a f x f a x a x +<-->>时.分析:2ln ln 2)()(ax a x a x a x a f x f a x +<--⇔+<--,0>>a x ,)(2ln ln 2ln ln a x a x a x a x a x a x +->-⇒+>--∴1)1(2ln +->∴a x axa x,令t a x =,则),1(,1)1(2ln +∞∈+->∴t t t t ,此时令1)1(2ln )(+--=t t t t g ,只需证明该函数是单调递增函数即可。
(天津专版)2018年高考数学母题题源系列专题20应用导数研究函数的性质文

母题二十 应用导数研究函数的性质【母题原题1】【2018天津,文20】设函数()()()123=()f x x t x t x t ---,其中123,,t t t R ∈,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点()()0,0f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线()2y x t =---d 的取值范围.【考点分析】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.【答案】(Ⅰ)0x y +=;(Ⅱ)极大值为-;(Ⅲ) ((),10,-∞-+∞【解析】试题分析:(Ⅰ)由题意可得()()3231,f x x x f x x '=-=-,结合()()0010,f f '=-=,究()g x 的性质可得d 的取值范围是((),10,-∞+∞.试题解析:(Ⅰ)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x '=-,因此()()0010,f f '=-=,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()00?0f y f x '-=-,故所求切线方程为0x y +=.(Ⅱ)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()2222 3639x t x t f x '=-+-.令()0f x '=,解得2x t =2x t =当x 变化时,()f x ',()f x 的变化如下表:∴函数()f x 的极大值为(((329f t =-⨯=;函数()f x 的极小值为(32f t =-=-.(Ⅲ)曲线()y f x =与直线()2y x t =---有三个互异的公共点等价于关于x 的方程()()()()2222 0x t d x t x t d x t -+---+-=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+=.设函数()()321gx x d x =+-+()y f x =与直线()2y x t =---价于函数()y f x =有三个零点.()()3231x x g d '=+-.()g x 的极小值())322219g x d g ⎛==--+ 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意. 若()20,g x <即()322127d ->,也就是d >,此时2d x >,()0,g d d =+>且()312||,26|20d x g d d d --=--+<-,从而由()g x 的单调性,可知函数()y g x =在区间()()()11222,,,,,d x x x x d -内各有一个零点,符合题意.d ∴的取值范围是((),10,-∞-+∞.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【母题原题2】【2017天津,文19】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -.(2)(ⅰ)()f x 在0x x =处的导数等于0.(ⅱ)b 的取值范围是[7],1-.试题解析:(I )由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =,或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,由(I )知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减,故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出0x a =,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能. 【母题原题3】【2016天津,文20】设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间[]02,上的最大值不小于...41. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)详见解析. 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论;(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1),,f f f f ⎛⎫- ⎪⎝⎭⎝⎭,的大小即可,分三种情况研究①当3a ≥时,33120331a a +≤<≤-,②当334a ≤<时,3321233133103321aa a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<a a .当x 变化时,)('x f ,)(x f 的变化情况如下表:所以)(x f 的单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a . (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20a x =-,进而b a x a b ax x x f ---=---=332)1()(00300.又 b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300)(33200x f b ax a =---=,且|}1||,21max{||})0(||,)2(max{|b b a f f M ----==|})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当343<≤a 时,3321233133103321a a a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-≥,)331()3321()2(af a f f -=+≤,所以)(x f 在区间]2,0[上的取值范围为)]331(),331([af a f -+,因此|}392||,392max{||})331(||,)331(max{|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--=414334392||392=⨯⨯⨯≥++=b a a a .|}21||,1max{||})2(||,)0(max{|b a b f f M ----==|})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 证法2:欲证()g x 在区间[02],上的最大值不小于14,只需证在区间[02],上存在12,x x ,使得③若304a <≤时,()()102222f f a -=-≥,成立;④当34a >时,411132f f ⎛⎛-= ⎝⎝,成立. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到. 【母题原题4】【2015天津,文20】已知函数4()4,,f x x x x R =-? (I )求()f x 的单调性;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '>,即1x < 时,函数()f x 单调递增;当()0f x '<,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x =,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=-,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x =-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤=,对于任意的正实数x ,都有()()f x g x £.【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【命题规律】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【答题模板】解答本类题目,以2017年第10题高考题为例,一般考虑如下三步:第一步:求解导函数、因式分解、分类讨论,写出单调性 (1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.第二步:依据单调性判断零点情况 (ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点;②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 第三步: 赋值判断零点 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【方法总结】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先); (2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8.函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9.导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用. 10.函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数. (2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论; (3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集.11.函数的极值与导数 (1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极值点; ②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x -∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在.(3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12.最值问题 (1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值.(2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.【2018(1)若曲线(2【答案】(1)1;(2详解:(1(2【名师点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点(2) 己知斜率求切点(3) 巳知切线过不是切点)2.【2018(1)求曲线处的切线方程;(2)若函数2(3试问:正整数否存在最大值?若存在,求出这个最大值;若不存在,说明理由.【答案】【解析】分析:(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(2p(x)a的范围即可;(3)求出h(x)的导数,根据函数的单调性求出h(x)的最值,从而求出m的范围即可.详解:(1(3)由题意因此,而是正整数,故,所以时,存在,时,对所有【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.3.【2018(1(2)求函数的单调区间;(3存在实数恒成立,求【答案】(12)见解析(3代入函数解析式,之后应用求导公式求得其导数,将其函数值和导函数值,之后应用点斜式将切线方程写出,在化为一般式即可;第二问对函数求导,对导数等于零的根的大小进行比较,分类讨论求得其单调区间;第三问从函数解析式可以发现,将问题转化为最值来处理即可求得结果.(3时,,,由(2)最大值即【名师点睛】该题考查的是有关应用导数研究函数的性质的问题,该题涉及到的知识点有函数在某个点处的切线的方程的问题,应用导数的几何意义求得其斜率,之后应用点斜式完成任务,函数的单调性,即为求其导数,大于零时单调增,小于零时单调减,需要分类讨论,关于恒成立问题需要将其向最值转化.4.【2018 a >2.(I)讨论函数f(x)的单调性;(II a的取值范围.【答案】(Ⅰ)见解析(Ⅱ)(2,5]【解析】分析:(Ⅱ)原不上恒成立,解不等式可得所求范围.g(x)在x∈(0,+∞)上为增函数.在,∵,∴实数【名师点睛】(1)注意函数的单调区间不能并在一起,若相同的单调区间有多个,中间应用“和”或“,”.(2)函数在某一区间上单调递增(减)的问题,可转化为导函数在该区间上大于等于零(或小于等于零)处理,解题时注意不要忘了等号.5.【2018(Ⅲ)【答案】在(3)不存在.两个不相等的实根,进而可得结果.详解:(1),解得时,(2)的定义域为,使得函数问题转化为关于的方程即方程,使得函数【名师点睛】本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在 处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.6.【2018天津滨海新区七模拟】已知函数()1ln xf x x ax-=+(其中0a >,e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++.【答案】(1)0y =;(2)1,2⎡⎫+∞⎪⎢⎣⎭;(3)见解析【解析】试题分析:(1)()21x f x x='-,()10f '=,()10f =,可求得切线方程.(2)即()f x '在区间[)2,+∞上()0f x '≥恒成立.(3)由(1)得()1ln x f x x x -=+ 0≥在[)1,+∞上恒成立,即1ln x x x -≥.令1nx n =-,得()1ln ln 1n n n--≥,2,3,....n =,不等式同向相加可得.试题解析:(1)()1ln x f x x x -=+,()21.x f x x-∴=' ()10f ∴'=. ()10f =,()()11f x f ∴在点(,)处的切线方程为0y =.(2)()1ln x f x x ax -=+,()21(0).ax f x a ax -∴=>' 函数()f x 在[)2,+∞上为增函数,()0f x ∴'≥对任意[)2,x ∈+∞恒成立. 10ax ∴-≥对任意[)2,x ∈+∞恒成立,即1a x≥对任意[)2,x ∈+∞恒成立. [)2,x ∈+∞时,max 112x ⎛⎫= ⎪⎝⎭,∴ 12a ≥,即所求正实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)当1a =时,()1ln x f x x x -=+,()21x f x x='-,所以23111lnln ln 12123n n n +++>+++-,即23111ln()12123n n n ⨯⨯⨯>+++-, 所以111ln 23n n >+++,即对于任意大于1的正整数n ,都有111ln 23n n>+++.【名师点睛】(1)若可导函数f (x )在(a ,b )上单调递增,则()f x '≥0在区间(a ,b )上恒成立;要检验()f x '=0.(2)若可导函数f (x )在(a ,b )上单调递减,则()f x '≤0在区间(a ,b )上恒成立;要检验()f x '=0.离散型不等式证明关键要找到恒成立不等函数,再x 用离散点列代换,利用不等式同向相加可证,恒成立不等函数一般需要在题中寻找.7.【2018天津模拟】已知函数()()32+1,0{,ln ,0xx x x f x g x x ax m e ax x -+<==-+-≥.(1)当3a =时,求函数()f x 的单调区间;(2)若不等式()()f x g x >对任意的正实数x 都成立,求实数m 的最大整数;(3)当0a >时,若存在实数[],0,2m n ∈且1m n -≥,使得()()f m f n =,求证: 21e a e e -≤≤-. 【答案】(1)单调减区间为(),ln3-∞,单调增区间为()ln3,+∞;(2)2;(3)证明见解析. 【解析】试题分析:(1)当3a =时,()321,0{3,0xx x x f x e x x -++<=-≥,通过求导得出函数的单调性;(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,等价于ln x e x m ->对任意的正实数都成立,设()ln (0)x h x e x x =->,求出()min h x ,即可求出实数m 的最大整数;(3)由题意()x f x e a '=-,( 0x ≥),得出()f x 在()0,ln a 上为减函数,在()ln ,a +∞上为增函数,若存在实数[],0,2m n ∈,()()f m f n =,则ln a 介于,m n 之间,根据函数单调性列出不等式组,即可求证.∴函数()f x 在区间()0,ln3上为减函数,在区间()ln3,+∞上为增函数.且()01f =,综上,()f x 的单调减区间为(),ln3-∞,单调增区间为()ln3,+∞.(2)由()()f x g x >可得ln x e ax x ax m ->-+对任意的正实数都成立,即ln xe x m ->对任意的正实数都成立.记()ln (0)xh x e x x =->,则()min m h x <,可得()1x h x e x'=-, 令()()()211,0,x x x h x e x e x xφφ==-=+'>'则 ∴()x φ在()0,+∞上为增函数,即()h x '在()0,+∞上为增函数又∵()120,1102h h e ⎛⎫=''=-⎪⎝⎭, ∴()h x '存在唯一零点,记为000011,,102x x x e x ⎛⎫∈-=⎪⎝⎭则且,当()00,x x ∈时,()0h x '<,当()0,x x ∈+∞时,()0h x '>,∴()h x 在区间()00,x 上为减函数,在区间()0,x +∞上为增函数.∴()h x 的最小值为()000ln xh x e x =-.∵000000110,,ln xx e e x x x x -=∴==-,∴()000011,,12h x x x x ⎛⎫=+∈ ⎪⎝⎭,可得()052,2h x ⎛⎫∈ ⎪⎝⎭. 又∵()min m h x <,∴实数m 的最大整数为2.(3)由题意()xf x e a '=-,( 0x ≥),令()0,ln f x x a '==解得,由题意可得,1a >,当0ln x a <<时,()0f x '<;当ln x a >时,()0f x '>又∵()f x 在(),ln m a 上单调递减,且0ln m a ≤<,∴()()0f m f ≤,∴()()10f f ≤, 同理()()21f f ≥,则21{2e a e a e a-≤-≤-,解得21e a e e -≤≤-,∴21e a e e -≤≤-.【名师点睛】本题主要考查利用函数导数研究函数的单调性,最值,考查利用函数的导数求解不等式恒成问题.要通过求解不等式恒成立问题来求得参数的取值范围,可将不等式变形成一为零的形式,然后将另一边构造为函数,利用函数的导数求得这个函数的最值,根据最值的情况来求得参数的取值范围.8.【2018(1;(2(3的最大值.【答案】(1内单调递减;(2(3【解析】试题分析:(1)求出(2内单调递减,则有再证明当(3,的最大值,利用导数可得在单调递增,当(2解法一:时,综上实数解法二:时,内单调递减,则有当时,,有,则, 因此,即.综上实数(3有2个不相等的实数根,9.【2108天津部分区期末考】已知函数()()ln 1f x x a x =+-,a R ∈. (1)讨论()f x 的单调性;(2)当12a =-时,令()()212g x x f x =--,其导函数为()'g x ,设12,x x 是函数()g x 的两个零点,判断122x x +是否为()'g x 的零点?并说明理由. 【答案】(1)见解析;(2)见解析【解析】试题分析:(Ⅰ)先求导,再分类讨论,根据导数和函数单调性的关系即可求出,(Ⅱ)由(Ⅰ)知,g (x )=x 2﹣2lnx ﹣x ,x 1,x 2是函数g (x )的两个零点,不妨设0<x 1<x 2,可得x 12﹣2lnx 1﹣x 1=0,x 22﹣2lnx 2﹣x 2=0,两式相减化简可得x 1+x 2﹣1=()1212122ln ln 1x x x x x x -+-=-,再对g (x )求导,判断122x x g +⎛'⎫⎪⎝⎭的符号即可证明 试题解析:(1)依题意知函数()f x 的定义域为()0+∞,,且()1f x a x'=-. ①当0a ≤时,()0f x '>,所以()f x 在()0+∞,上单调递增. ②当0a >时,由()0f x '=得1x a =,则当10x a ⎛⎫∈ ⎪⎝⎭,时()0f x '>;当1x a ⎛⎫∈+∞ ⎪⎝⎭,时()0f x '<. 所以()f x 在10a ⎛⎫⎪⎝⎭,单调递增,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递减. (2)122x x +不是导函数()g x '的零点.证明如下:由(Ⅰ)知函数()22ln g x x x x =--. ∵1x ,2x 是函数()g x 的两个零点,不妨设120x x <<,∴22111111222222222ln 02ln { { 2ln 02ln x x x x x x x x x x x x --=-=⇒--=-=,两式相减得: ()()()12121212ln ln x x x x x x -+-=-又01t <<,∴()0t ϕ'>,∴()t ϕ在()0,1上是増函数, 则()()10t ϕϕ<=,即当01t <<时,()21ln 01t t t --<+,从而()()1212122ln ln 0x x x x x x ---<+,又121200x x x x <<⇒-<所以()()1212121222ln ln 0x x x x x x x x ⎡⎤--->⎢⎥-+⎣⎦, 故1202x x g +⎛⎫>⎪⎝⎭',所以122x x +不是导函数()g x '的零点. 10.【2018天津河西期中考试】已知函数()()223e xf x x ax a =+--.(1)若2x =是函数()f x 的一个极值点,求实数a 的值.(2)设0a <,当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =的上方,求实数a 的取值范围.【答案】(1)5a =-;(2)[)2,0e --. 【解析】试题分析:(1)由()'20f =解得a ,注意要检验此时2是极值点;(2)题意说明()f x 在区间[]1,2上的最大值2e ≤,因此只要求出导数()'f x ,确定()f x 在区间[]1,2上的单调性及最大值,解相应的不等式可得所求范围.当2x >时,()0f x '>,∴2x =是()f x 的极值.∴5a =-. (2)当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =上方,等价于[]1,2x ∈,()2e f x ≤恒成立,即[]1,2x ∈,()2max e f x ≤恒成立,由(1)知,()()()31e x f x x a x =++-',令()0f x '=,得13x a =--,21x =,当5a ≤-时,32a --≥,∴()f x 在[]1,2x ∈单调减,()()()2max 12e e f x f a ==--≤,e 2a ≥--与5a ≤-矛盾,舍去.当54a -<<-时,132a <--<,()f x 在()1,3x a ∈--上单调递减,在()3,2x a ∈--上单调递增,∴()maxf x 在()1f 或()2f 处取到,()()12f a e =--,()22f e =,∴只要()()212e f a e =--≤,计算得出e 24a --≤<-.当40a -≤<时,31a --≤,()f x 在[]1,2x ∈上单调增,()()max 2xf x f e ==,符合题意,∴实数a 的取值范围是[)e 2,0--.【名师点睛】利用导数研究函数的极值与最值是中学学习导数的主要内容,解题时要注意导数与极值的关系,()0'0f x =是0x 为可导函数()f x 的极值的必要条件,还必要满足在0x 两侧()'f x 的符号是异号,因此在由极值点求参数值时,必须检验,否则可能出错. 11.【2018天津滨海新区模拟】已知函数()()32ln ,ln .2f x x g x x x⎛⎫=++= ⎪⎝⎭ (1)求函数f (x )是单调区间;(2)如果关于x 的方程()12g x x m =+有实数根,求实数m 的取值集合; (3)是否存在正数k ,使得关于x 的方程()()f x kg x =有两个不相等的实数根?如果存在,求k 满足的条件;如果不存在,说明理由.【答案】(1) ()3,1,3,2⎛⎫--+∞ ⎪⎝⎭是函数的增区间;(-1,0)和(0,3)是函数的减区间; (2) 实数m 的取值范围是(],ln21-∞-;(3) 满足条件的正数k 不存在.由 ,由因此是函数的增区间; (-1,0)和(0,3)是函数的减区间(2)因为所以实数m 的取值范围就是函数的值域对令∴当x =2时取得最大值,且又当x 无限趋近于0时,无限趋近于无限趋近于0,进而有无限趋近于-∞.因此函数的值域是即实数m 的取值范围是(],ln21-∞-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题命题区间(二)函数与导数第一课时构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.[典例] a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解] (1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f(x)≤g(x).证明:函数f(x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f(x0).令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e 0x =-xx --x 0xe+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x,则φ′(x )=-ex -(1-x 0)e x,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ).[典例] 设函数f (x )=a e xln x +x,曲线y =f (x )在点(1,f (1))处的切线为y =e(x-1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=a e x⎝⎛⎭⎪⎫ln x +1x +b e x -1x -x 2(x >0),由于直线y =e(x -1)+2的斜率为e ,图象过点(1,2),所以⎩⎪⎨⎪⎧f =2,f =e ,即⎩⎪⎨⎪⎧b =2,a e =e ,解得⎩⎪⎨⎪⎧a =1,b =2.(2)证明:由(1)知f (x )=e xln x +2ex -1x(x >0),从而f (x )>1等价于x ln x >x e -x-2e .构造函数g (x )=x ln x ,则g ′(x )=1+ln x , 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0, 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0, 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=x e -x-2e ,则h ′(x )=e -x(1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“a e xln x +b e x -1x >1”的证明,若直接构造函数h (x )=a e xln x +b e x -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“a e xln x +b e x -1x>1”合理拆分为“x ln x >x e -x-2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.[对点演练] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. (1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.解:(1)f ′(x )=a ⎝⎛⎭⎪⎫x +1x -ln x x +2-bx2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧f =1,f =-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎪⎨⎪⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0),所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x(x >0),则h ′(x )=2x -2x 2-x 2-x2=-x -2x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0;当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln xx -1>0,即f (x )>ln xx -1.[典例] 已知函数f (x )=ax 2+x ln x (a ∈R)的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -n m. [解] (1)因为f (x )=ax 2+x ln x , 所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3, 所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -n m, 即证ln n m >m n -n m ,只需证ln n m -m n +n m>0.令n m=x ,构造函数g (x )=ln x -1x+x (x ≥1), 则g ′(x )=1x +1x2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x2+1>0,故g (x )在(1,+∞)上单调递增.由已知n >m >0,得n m>1, 所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0,即证得ln n m -m n +n m>0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +n m >0”后,观察可知,对“n m”进行换元,变为“ln x -1x +x >0”,构造函数“g (x )=ln x -1x+x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g t ln t <12. 解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)证明:当0<x ≤1时,f (x )≤0,∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增.h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g t ln t =ln s ln f s =ln ss 2ln s=ln s 2ln s +s =u2u +ln u, 其中u =ln s .要使25<ln g t ln t <12成立,只需0<ln u <u2.当t >e 2时,若s =g (t )≤e,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12,令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0; 当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0, 因此ln u <u2成立.综上,当t >e 2时,有25<ln g t ln t <12.[典例] (2017·广州综合测试)已知函数f (x )=ex +m-x 3,g (x )=ln(x +1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m-x 3,所以f ′(x )=ex +m-3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m=1,解得m =0. (2)证明:因为f (x )=ex +m-x 3,g (x )=ln(x +1)+2,所以f (x )>g (x )-x 3等价于e x +m-ln(x +1)-2>0.当m ≥1时,e x +m-ln(x +1)-2≥e x +1-ln(x +1)-2.要证ex +m-ln(x +1)-2>0,只需证明e x +1-ln(x +1)-2>0. 设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=ex +1-1x +1,则p ′(x )=e x +1+1x +2>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增. 因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0. 因为h ′(x 0)=0,所以e x 0+1=1x 0+1, 即ln(x 0+1)=-(x 0+1).当x ∈(-1,x 0)时,h ′(x )<0, 当x ∈(x 0,+∞)时,h ′(x )>0, 所以当x =x 0时,h (x )取得最小值h (x 0), 所以h (x )≥h (x 0)=e x 0+1-ln(x 0+1)-2 =1x 0+1+(x 0+1)-2>0. 综上可知,当m ≥1时,f (x )>g (x )-x 3. [方法点拨]本题可先进行适当放缩,m ≥1时,e x +m≥ex +1,再两次构造函数h (x ),p (x ).[对点演练](2016·合肥一模)已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. 解:(1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1, 而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x-tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x+x -e x +x ln x x2对任意的x ∈(0,+∞)恒成立. 令F (x )=e x+x -e x +x ln x x2, 则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝ ⎛⎭⎪⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2exx-ln x ,则G ′(x )=e x-x e x -e x x 2-1x =e x x -2+e x-xx 2>0对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2exx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0, 即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1, ∴t ≤1,即t 的取值范围是(-∞,1].1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a ,b 的值; (2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小.解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=x ex -1(x +2)+x (3ax +2b ),又x =-2和x =1为f (x )的极值点, 所以f ′(-2)=f ′(1)=0,因此⎩⎪⎨⎪⎧-6a +2b =0,3+3a +2b =0,解得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1,所以f ′(x )=x (x +2)(e x -1-1),令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0. 所以f (x )在(-2,0)和(1,+∞)上是单调递增的; 在(-∞,-2)和(0,1)上是单调递减的. (3)由(1)可知f (x )=x 2e x -1-13x 3-x 2. 故f (x )-g (x )=x 2e x -1-x 3=x 2(ex -1-x ),令h (x )=ex -1-x ,则h ′(x )=ex -1-1.令h ′(x )=0,得x =1,因为当x ∈(-∞,1]时,h ′(x )≤0, 所以h (x )在(-∞,1]上单调递减; 故当x ∈(-∞,1]时,h (x )≥h (1)=0; 因为当x ∈[1,+∞)时,h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增; 故x ∈[1,+∞)时,h (x )≥h (1)=0. 所以对任意x ∈(-∞,+∞),恒有h (x )≥0; 又x 2≥0,因此f (x )-g (x )≥0.故对任意x ∈(-∞,+∞),恒有f (x )≥g (x ). 2.(2015·北京高考)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 解:(1)因为f (x )=ln(1+x )-ln(1-x )(-1<x <1), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33. (3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x2. 所以当0<x < 4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减.故当0<x < 4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.3.(2016·广州综合测试)已知函数f (x )=m e x-ln x -1. (1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1. 解:(1)当m =1时,f (x )=e x-ln x -1, 所以f ′(x )=e x-1x.所以f (1)=e -1,f ′(1)=e -1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:当m ≥1时,f (x )=m e x -ln x -1≥e x -ln x -1(x >0).要证明f (x )>1,只需证明e x-ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x-1x.设h (x )=e x -1x ,则h ′(x )=e x+1x2>0,所以函数h (x )=g ′(x )=e x-1x在(0,+∞)上单调递增.因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x-1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以e x 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0. 所以当x =x 0时,g (x )取得最小值g (x 0). 故g (x )≥g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2>0.综上可知,当m ≥1时,f (x )>1.4.(2017·石家庄质检)已知函数f (x )=a x -x 2e x (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2x 1,证明:x 1+x 2随着t 的增大而增大. 解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x--x2xx 2=x x -ex,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增, 所以x =2是函数的一个极小值点,无极大值点, 即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=a e x,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=a e x 1,x 322=a e x 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2. 故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln t t -1.所以x 1+x 2=32·t +tt -1.①令h (x )=x +xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1xx -2. 令u (x )=-2ln x +x -1x,得u ′(x )=⎝ ⎛⎭⎪⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.第二课时 利用导数探究含参数函数的性质[典例] (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. [解] (1)依题意得g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.(2)由(1)得 g ′(x )=2ax 2-a +x +1x=ax -x -x.∵函数g (x )的定义域为(0,+∞),∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,若12a =1,即a =12在(0,+∞)上恒有g ′(x )≥0. 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增,当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. [方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a =0或a >0两种情况,再比较12a 和1的大小.[对点演练](2016·太原一模)已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)设函数h (x )=f (x )+1+ax,求函数h (x )的单调区间.解:(1)当a =2时,f (x )=x -2ln x ,f (1)=1, 即切点为(1,1),∵f ′(x )=1-2x,∴f ′(1)=1-2=-1,∴曲线y =f (x )在点(1,1)处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由题意知,h (x )=x -a ln x +1+ax(x >0),则h ′(x )=1-a x -1+a x 2=x 2-ax -+a x 2=x +x -+ax 2,①当a +1>0,即a >-1时, 令h ′(x )>0,∵x >0,∴x >1+a , 令h ′(x )<0,∵x >0,∴0<x <1+a . ②当a +1≤0,即a ≤-1时,h ′(x )>0恒成立,综上,当a >-1时,h (x )的单调递减区间是(0,a +1),单调递增区间是(a +1,+∞);当a ≤-1时,h (x )的单调递增区间是(0,+∞),无单调递减区间.[典例] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程. (2)求函数f (x )的极值.[解] (1)由已知,得f ′(x )=x -(a +1)+a x(x >0), 又由题意可知y =f (x )在(2,f (2))处切线的斜率为1, 所以f ′(2)=1,即2-(a +1)+a2=1,解得a =0,此时f (2)=2-2=0,故所求的切线方程为y =x -2.(2)f ′(x )=x -(a +1)+a x =x 2-a +x +ax=x -x -ax(x >0).①当0<a <1时,若x ∈(0,a ),则f ′(x )>0,函数f (x )单调递增; 若x ∈(a,1),则f ′(x )<0,函数f (x )单调递减; 若x ∈(1,+∞),则f ′(x )>0,函数f (x )单调递增. 此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点,函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12.②当a =1时,f ′(x )=x -2x≥0,所以函数f (x )在定义域(0,+∞)内单调递增, 此时f (x )没有极值点,故无极值. ③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点,函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a . 综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a .[方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )零点的存在;(2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小; (3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论). [对点演练](2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2axx.当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a>1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增, 所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a=1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.[典例] 已知函数f (x )=ln x -ax (a ∈R). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. [解] (1)由题意,f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调递增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.(2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ;当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点. [对点演练] 1.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A .33B . 3C .3+1D .3-1解析:选D f ′(x )=x 2+a -2x 2x 2+a 2=a -x 2x 2+a2.令f ′(x )=0,得x =a 或x =-a (舍去),若a ≤1,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a =33.解得a =3-1,符合题意.若a >1,即a >1时,在[1,a )上f ′(x )>0,在(a ,+∞)上f ′(x )<0,所以f (x )max =f (a )=a 2a =33, 解得a =34<1,不符合题意,综上知,a =3-1.2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x(a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[]t ,t +2(t >0)上的最小值. 解:(1)当a =5时,g (x )=(-x 2+5x -3)e x,g (1)=e . 又g ′(x )=(-x 2+3x +2)e x, 故切线的斜率为g ′(1)=4e . 所以切线方程为y -e =4e(x -1), 即y =4e x -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥e 时,在区间[]t ,t +2上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数, 所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上,f (x )min=⎩⎪⎨⎪⎧t ln t ,t ≥1e ,-1e ,0<t <1e.1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0).(1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间. 解:f ′(x )=x-a -axx +1,x ∈(-1,+∞).(1)依题意,得f ′(2)=0,即-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13.(2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝⎛⎭⎪⎫0,a-1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫a -1,+∞.②当a =1时,f (x )的单调减区间是(-1,+∞).③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫a -1,0,单调减区间是⎝⎛⎭⎪⎫-1,a-1和(0,+∞).综上,当0<a <1时,f (x )的单调增区间是⎝⎛⎭⎪⎫0,1a-1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a-1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝⎛⎭⎪⎫-1,1a-1和(0,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0; 当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a .综上所述,当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2. 3.已知函数f (x )=ax -1-ln x (a ∈R). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x(x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a,由f ′(x )>0,得x >1a,∴f (x )在⎝⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln x x ,则g ′(x )=ln x -2x2, 令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎥⎤-∞,1-1e 2.4.已知方程f (x )·x 2-2ax +f (x )-a 2+1=0,其中a ∈R ,x ∈R . (1)求函数f (x )的单调区间;(2)若函数f (x )在[0,+∞)上存在最大值和最小值,求实数a 的取值范围. 解:(1)由f (x )·x 2-2ax +f (x )-a 2+1=0得f (x )=2ax +a 2-1x 2+1,则f ′(x )=-x +a ax -x 2+2.①当a =0时,f ′(x )=2x x 2+2,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a,当x 变化时,f ′(x )与f (x )的变化情况如下:故f (x )的单调递减区间是(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间是⎝ ⎛⎭⎪⎫-a ,1a .③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a,当x 变化时,f ′(x )与f (x )的变化情况如下:所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,-a .(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以f (x )在[0,+∞)上存在最大值f ⎝ ⎛⎭⎪⎫1a =a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a .从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0. 若f (x )在[0,+∞)上存在最小值,必有f (0)≤0, 解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a <0时,由(1)得,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,所以f (x )在[0,+∞)上存在最小值f (-a )=-1.易知当x ≥-a 时,-1≤f (x )<0,所以若f (x )在[0,+∞)上存在最大值,必有f (0)≥0,解得a ≥1或a ≤-1.所以当a <0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(-∞,-1].综上所述,实数a 的取值范围是(-∞,-1]∪(0,1]. 5.设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足条件D ≤1时的最大值.解:(1)由题意,f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,则f ′(sin x )=(2sin x -a )cos x ,因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值; ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值;③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b -a 24. (2)当-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b-b 0|,当(a 0-a )(b -b 0)≥0,x =π2时等号成立,当(a 0-a )(b -b 0)<0时,x =-π2时等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|. (3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1.由此可知,z =b -a 24满足条件D ≤1的最大值为1.6.已知函数f (x )=x -1x,g (x )=a ln x (a ∈R).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.解:(1)由题意得F (x )=x -1x-a ln x (x >0),则F ′(x )=x 2-ax +1x2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0, 所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,所以F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42.综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42.(2)对h (x )=x -1x+a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a ,所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x -x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,即H ′(x )=2⎝⎛⎭⎪⎫1x2-1ln x =-x +x xx2(x >0).当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0,所以H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减, 又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x1=h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln 2-3. 第三课时 导数的综合应用(一)[典例] (2016·北京高考)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [解] (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以当c >0且c -27<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0, 使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时, 函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0.当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增.所以f (x )不可能有三个不同零点. 综上所述,若函数f (x )有三个不同零点, 则必有Δ=4a 2-12b >0.故a 2-3b >0是f (x )有三个不同零点的必要条件. 当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. [对点演练]已知函数f (x )=(2-a )x -2(1+ln x )+a . (1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解:(1)当a =1时,f (x )=x -1-2ln x , 则f ′(x )=1-2x,其中x ∈(0,+∞).由f ′(x )>0,得x >2, 由f ′(x )<0,得0<x <2, 故f (x )的单调递减区间为(0,2), 单调递增区间为(2,+∞). (2)f (x )=(2-a )x -2(1+ln x )+a =(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0, 则f (x )=m (x )-h (x ).①当a <2时,m (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,h (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 结合图象知,若f (x )在⎝ ⎛⎭⎪⎫0,12上无零点, 则m ⎝ ⎛⎭⎪⎫12≥h ⎝ ⎛⎭⎪⎫12, 即(2-a )⎝ ⎛⎭⎪⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝ ⎛⎭⎪⎫0,12上m (x )≥0,h (x )<0, 所以f (x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,12上无零点. 由①②得a ≥2-4ln 2, 所以a min =2-4ln 2.[典例] 设f (x )=e x-1.(1)当x >-1时,证明:f (x )>2x 2+x -1x +1;(2)当a >ln 2-1且x >0时,证明:f (x )>x 2-2ax .[证明] (1)当x >-1时,f (x )>2x 2+x -1x +1,即e x-1>2x 2+x -1x +1=2x -1,当且仅当e x>2x ,即e x-2x >0恒成立时原不等式成立. 令g (x )=e x-2x ,则g ′(x )=e x-2. 令g ′(x )=0,即e x-2=0,解得x =ln 2.当x ∈(-∞,ln 2)时,g ′(x )=e x-2<0, 故函数g (x )在(-1,ln 2)上单调递减; 当x ∈[ln 2,+∞)时,g ′(x )=e x -2≥0, 故函数g (x )在[ln 2,+∞)上单调递增. 所以g (x )在(-1,+∞)上的最小值为g (ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以在(-1,+∞)上有g (x )≥g (ln 2)>0, 即e x>2x .故当x ∈(-1,+∞)时,f (x )>2x 2+x -1x +1.(2)f (x )>x 2-2ax , 即e x -1>x 2-2ax , 则e x -x 2+2ax -1>0. 令p (x )=e x-x 2+2ax -1, 则p ′(x )=e x -2x +2a ,令h (x )=e x-2x +2a ,则h ′(x )=e x-2. 由(1)可知,当x ∈(-∞,ln 2)时,h ′(x )<0,函数h (x )单调递减;当x ∈[ln 2,+∞)时,h ′(x )≥0,函数h (x )单调递增. 所以h (x )的最小值为h (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .因为a >ln 2-1,所以h (ln 2)>2-2ln 2+2(ln 2-1)=0, 即h (x )≥h (ln 2)>0, 所以p ′(x )=h (x )>0, 即p (x )在R 上为增函数, 故p (x )在(0,+∞)上为增函数,而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln 2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln 2.所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)证明:设x>ln 2,所以2ln 2-x<ln 2,f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1=4e x+2x-4ln 2-1.令g(x)=f(x)-f(2ln 2-x)=e x-4e x-4x+4ln 2(x≥ln 2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln 2时,等号成立,所以g(x)=f(x)-f(2ln 2-x)在(ln 2,+∞)上单调递增.又g(ln 2)=0,g(x)=f(x)-f(2ln 2-x)>g(ln 2)=0,即f(x)>f(2ln 2-x),所以f(x2)>f(2ln 2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln 2-x2),由于x2>ln 2,所以2ln 2-x2<ln 2,因为x1<ln 2,由(1)知函数y=f(x)在区间(-∞,ln 2)上单调递减,所以x1<2ln 2-x2,即x1+x2<2ln 2.[典例] 设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+ae x,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解] (1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x 1,x 2是任意的两个实数,且x 1<x 2. 则直线AB 的斜率为k =g x 2-g x 1x 2-x 1,由已知k >m , 即g x 2-g x 1x 2-x 1>m .因为x 2-x 1>0,所以g (x 2)-g (x 1)>m (x 2-x 1), 即g (x 2)-mx 2>g (x 1)-mx 1. 因为x 1<x 2,所以函数h (x )=g (x )-mx 在R 上为增函数, 故有h ′(x )=g ′(x )-m ≥0恒成立, 所以m ≤g ′(x ). 而g ′(x )=e x-a -ae x ,又a ≤-1<0, 故g ′(x )=e x+-ae-a ≥2e x·-aex-a =2-a -a .而2-a -a =2-a +(-a )2=(-a +1)2-1≥3,所以m 的取值范围为(-∞,3]. [方法点拨]解决该类问题的关键是根据已知不等式的结构特征灵活选用相应的方法,由不等式恒成立求解参数的取值范围问题一般采用分离参数的方法.而第(2)问则巧妙地把直线的斜率与导数问题结合在一起,命题思路比较新颖,解决此类问题需将已知不等式变形为两个函数值的大小问题,进而构造相应的函数,通过导函数研究其单调性解决.[对点演练]已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. (2)证明:对一切x ∈(0,+∞),ln x >1e -2e x恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x,。