2011年高考(陕西卷)文科数学
2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(MN )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U MN MN =∴=(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数(0)y x x =≥的反函数为2(0)4x y x =≥.(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A 2 (B 3 (C 5(D 7【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b +=(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系. 【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离23OM =,在Rt OMN∆中,30OMN ︒∠=, ∴132ON OM ==,故圆N 的半径2213r R ON =-=,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年全国统一高考真题数学试卷(文科)(大纲版)(含答案解析版)

2011年全国统一高考数学试卷(文科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.35.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b36.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.57.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.98.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.19.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:.14.(5分)已知a∈(π,),tanα=2,则cosα=.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.2011年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】先根据交集的定义求出M∩N,再依据补集的定义求出∁U(M∩N).【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3},则∁U(M∩N)={1,4},故选:D.【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】11:计算题.【分析】由|+2|==,代入已知可求【解答】解:∵||=||=1,•=﹣,|+2|===故选:B.【点评】本题主要考查了向量的数量积性质的基本应用,属于基础试题4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.3【考点】7C:简单线性规划.【专题】31:数形结合.【分析】我们先画出满足约束条件的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值.【解答】解:约束条件的平面区域如图所示:由图可知,当x=1,y=1时,目标函数z=2x+3y有最小值为5故选:C.【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b 推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.,S k,将S k+2﹣S k=24转化为关于k 【分析】先由等差数列前n项和公式求得S k+2的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k﹣S k=24转化为:+2(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题.【分析】根据线面垂直的判定与性质,可得AC⊥CB,△ACB为直角三角形,利用勾股定理可得BC的值;进而在Rt△BCD中,由勾股定理可得CD的值,即可得答案.【解答】解:根据题意,直二面角α﹣l﹣β,点A∈α,AC⊥l,可得AC⊥面β,则AC⊥CB,△ACB为Rt△,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=;故选:C.【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有C42种结果,余下的两个人各有两种选法,共有2×2种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,∵恰有2人选修课程甲,共有C42=6种结果,∴余下的两个人各有两种选法,共有2×2=4种结果,根据分步计数原理知共有6×4=24种结果故选:B.【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】圆在第一象限内,设圆心的坐标为(a,a),(b,b),利用条件可得a 和b分别为x2﹣10x+17=0 的两个实数根,再利用韦达定理求得两圆心的距离|C1C2|=•的值.【解答】解:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设两个圆的圆心的坐标分别为(a,a),(b,b),由于两圆都过点(4,1),则有=|a|,|=|b|,故a和b分别为(x﹣4)2+(x﹣1)2=x2的两个实数根,即a和b分别为x2﹣10x+17=0 的两个实数根,∴a+b=10,ab=17,∴(a﹣b)2=(a+b)2﹣4ab=32,∴两圆心的距离|C1C2|=•=8,故选:C.【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:0.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数分别取1;9求出展开式的x的系数与x9的系数;求出两个系数的差.=(﹣1)r C10r x r【解答】解:展开式的通项为T r+1所以展开式的x的系数﹣10x9的系数﹣10x的系数与x9的系数之差为(﹣10)﹣(﹣10)=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知a∈(π,),tanα=2,则cosα=﹣.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】先利用α的范围确定cosα的范围,进而利用同脚三角函数的基本关系,求得cosα的值.【解答】解:∵a∈(π,),∴cosα<0∴cosα=﹣=﹣故答案为:﹣【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想.【分析】根据题意知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,解三角形即可求得结果.【解答】解:连接DE,设AD=2易知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,在△RtADE中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.【考点】88:等比数列的通项公式;89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】设出等比数列的公比为q,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n项和的公式即可.【解答】解:设{a n}的公比为q,由题意得:,解得:或,当a1=3,q=2时:a n=3×2n﹣1,S n=3×(2n﹣1);当a1=2,q=3时:a n=2×3n﹣1,S n=3n﹣1.【点评】此题考查学生灵活运用等比数列的通项公式及前n项和的公式化简求值,是一道基础题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cosB的值,进而求得B.(Ⅱ)利用两角和公式先求得sinA的值,进而利用正弦定理分别求得a和c.【解答】解:(Ⅰ)由正弦定理得a2+c2﹣ac=b2,由余弦定理可得b2=a2+c2﹣2accosB,故cosB=,B=45°(Ⅱ)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=故a=b×==1+∴c=b×=2×=【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】C5:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型.【专题】5I:概率与统计.【分析】(I)设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得P(1﹣0.5)=0.3,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.(II)该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:(I)设该车主购买乙种保险的概率为p,根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S(,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)求出函数f(x)在x=0处的导数和f(0)的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)f(x)在x=x0处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a的大致取值范围,然后通过极小值对应的x0∈(1,3),解关于a的不等式,从而得出取值范围【解答】解:(Ⅰ)f′(x)=3x2+6ax+3﹣6a由f(0)=12a﹣4,f′(0)=3﹣6a,可得曲线y=f(x)在x=0处的切线方程为y=(3﹣6a)x+12a﹣4,当x=2时,y=2(3﹣6a)+12a﹣4=2,可得点(2,2)在切线上∴曲线y=f(x)在x=0的切线过点(2,2)(Ⅱ)由f′(x)=0得x2+2ax+1﹣2a=0 (1)方程(1)的根的判别式①当时,函数f(x)没有极小值②当或时,由f′(x)=0得故x0=x2,由题设可知(i)当时,不等式没有实数解;(ii)当时,不等式化为a+1<<a+3,解得综合①②,得a的取值范围是【点评】将字母a看成常数,讨论关于x的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。
da2011年高考数学陕西文

【参考答案】 【1】.D提示:结合命题与逆命题的结构特点,即知选项(D )正确. 【2】.C提示:依题意可设抛物线的方程为()220y px p =>,又22p-=-,所以224p =⨯=,故所求抛物线的方程为28y x =.【3】.B提示:方法一:因为0a b <<,a <,22a b b bb ++<=,2a b +>2a ba b +<<<.方法二:取1,4a b ==,则由52,,422a b a b +====,即得2a ba b +<<<. 【4】.B提示:因为幂函数的图像必经过点()1,1,所以选项(A )(D )错误.又13111828⎛⎫=> ⎪⎝⎭,故由此判断即知选项(C )错误,选项(B )正确. 【5】.A提示:由三视图知,对应几何体是这样的:在棱长为2的正方体中挖去一个倒放的圆锥(高为2,底面圆半径为1).故所求体积为()3212212833V ππ=-⨯⨯⨯=-. 【6】.C提示:通过在同一坐标系内,分别作出函数y x =和cos y x =的图像(注意:它们都是偶函数),观察即知图像有且仅有两个交点.故方程cos x x =在(),-∞+∞内有且仅有两个根.【7】.B 提示:若3699x -<-成立,则698.52p +==,这显然不可能.若3699x -<-不成立,则3398.582x p x +==⇒=,满足3699x -<-不成立.综上,所求38x =. 【8】.C 提示:因为222cos sin cos 2,1i 11ixx x x x x -=<⇒-<⇒<, 所以集合{|0M y =≤y ≤1},{}11N x x =-<<,故[)0,1M N ⋂=.【9】.A提示:因为线性回归直线必经过样本中心点(),x y ,所以选项(A )正确.注意:由图知,直线l 的斜率小于零,所以x 和y 的相关系数必小于零,但x 和y 的相关系数并不是直线l 的斜率,故选项(B )(C )错误.因为无论n 为奇数或偶数,所有样本点都基本集中在直线l 的附近,至于直线l 两侧的样本点的个数是否相同显然是不确定的,故选项(D )错误. 【10】.D提示:设开始时树苗集中在第x 个树坑旁边,则路程总和为()()2102010110201020x x +++-++++-⎡⎤⎣⎦()()201211220x x =+++-++++-⎡⎤⎣⎦()()()()21202120202121022x x x x x x ---⎡⎤=+=-+⎢⎥⎣⎦.又1,2,3,,20x =,从而易知当10x =或11x =时路程总和最小.故两个最佳坑位的编号为10◯和11◯. 【11】.2- 提示:因为()22100f --=>,所以()()()22210lg102f f f ---===-.【12】.1提示:方法一:设2z x y =-,又注意到1,1AB CD k k <<,于是平移直线l :2y x z =-,分析即知当A l ∈时,z 取得最小值,故所求()min 22111x y -=⨯-=.方法二:将,,,A B C D 的坐标分别代入2x y -得11,2,显然其中1最小,故所求2x y -的最小值为1.【13】.567891011121381++++++++=提示:由所给等式可知:第五个等式左边第一个加项为5,然后依次增加1,且加项个数为9(注意:加项个数的规律为1,3,5,7,);右边是29,即81(注意:右边的规律为22221,3,5,7,).【14】.3或4提示:一元二次方程240x x n -+=有整数根,首先要满足164n ∆=-≥0,又n +∈N ,所以1,2,3,4n =.又由240x x n -+=变形得()224x n -=-,从而经检验即知3n =或4时方程根x 为整数.故所求充要条件是3n =或4. 【15】.(],3-∞提示:由题设得a ≤()min123x x ++-=,故所求a 的取值范围是(],3-∞.【16】.2提示:由题设知△ABE ∽△ADC ,所以AB AD AE AC =,所以64212AB AC AE AD ⨯===•.【17】.1提示:因为曲线1C 的方程为()2231x y -+=,曲线2C 的方程为221x y +=,所以它们均表示圆,圆心和半径分别是()3,0,1和()0,0,1.又易知两圆相离,故所求min 3111AB =--=.【18】.(1)证明:∵折起前AD 是BC 边上的高, ∴ 当△ABD 折起后,,AD DC AD DB ⊥⊥. 又DB DC D ⋂=, ∴AD ⊥平面BDC . ∵AD ⊂平面ABD , ∴平面ABD ⊥平面BDC .(2)解:由(1)知,,,DA DB DB DC DC DA ⊥⊥⊥,1DB DA DC ===,∴AB BC CA ===从而111122DAB DBC DCA S S S ===⨯⨯=△△△, 1sin 602ABC S =︒=△∴表面积133222S=⨯+=. 【19】.解:(1)将(0,4)代入C 的方程得2161b=, ∴4b =. 又35c e a ==,∴222925a b a -=,即2169125a -=, ∴5a =. ∴C 的方程为2212516x y +=. (2)过点(3,0)且斜率为45的直线方程为()435y x =-, 设直线与C 的交点为()11,Ax y ,()22,B x y ,将直线方程()435y x =-代入C 的方程,得()22312525x x -+=,即2380x x --=,解得132x =232x =, ∴AB 的中点坐标12322x x x +==,()1212266255y y y x x +==+-=-,即中点坐标为36,25⎛⎫- ⎪⎝⎭. 注:用根与系数的关系正确求得结果,同样给分.【20】.解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.或:在△ABC 中,,,a b c 分别为内角,,A B C 的对边,有2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-.证法一:如图1,2aBC BC =•()()AC AB AC AB =--• 222AC AC AB AB =-+•222cos AC AC AB A AB =-+• 图1 222cos b bc A c =-+,即2222cos a b c bc A =+-.同理可证2222cos b c a ca B =+-,2222cos c a b ab C =+-. 证法二:已知△ABC 中,,,A B C 所对边分别为,,a b c ,以A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,如图2,则(cos ,sin ),(,0)C b A b A B c . ∴2222(cos )(sin )a BCb Ac b A ==-+22222cos 2cos sin b A bc A c b A =-++222cos b c bc A =+-. 图2同理可证2222222cos ,2cos .b c a ca B c a b ab C =+-=+-【21】.解:(1)设11(,0)k k P x --,由e xy '=,得111(,e )k x k k Q x ---点处切线方程为111e e ()k k x x k y x x ----=-.由0y =,得11(2k k x x -=-≤k ≤)n .(2)由110,1k k x x x -=-=-得,得(1)k x k =--,所以(1)ee kx k k k PQ --==. 于是,112233...n n n S PQ PQ PQ PQ =++++112(1)11e e e 1e e...e 1e e 1n nn ---------=++++==--. 【22】.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人, 则用频率估计相应的概率为0.44.(2)选择1L 的有60人,选择2L 的有40人, 故由调查结果得频率为:(3)1A ,2A 分别表示甲选择1L 和2L 时,在40分钟内赶到火车站;1B ,2B 分别表示乙选择1L 和2L 时,在50分钟内赶到火车站.由(2)知12()0.10.20.30.6,()0.10.40.5P A P A =++==+=,因为12()()P A P A >,所以甲应选择1L; 12()0.10.20.30.20.8,()0.10.40.40.9P B P B =+++==++=,因为21()()P B P B >,所以乙应选择2L . 【23】.解:(1)由题设知1()ln g x x x=+, ∴21(),x g x x -'=令()g x '=0,得x =1. 当(0,1)x ∈时,()0g x '<,故(0,1)是()g x 的单调递减区间. 当(1,)x ∈+∞时,()0g x '>,故(1,)+∞是()g x 的单调递增区间,因此,x =1是()g x 的唯一极值点,且为极小值点,从而是最小值点,所以最小值为(1)1g =.(2)1ln g x x x ⎛⎫=-+⎪⎝⎭, 设11()()2ln h x g x g x x x x ⎛⎫=-=-+ ⎪⎝⎭,则22(1)()x h x x -'=-.当1x =时,(1)0h =,即1()g x g x ⎛⎫=⎪⎝⎭. 当(0,1)(1,)x ∈⋃+∞时,()0,(1)0h x h ''<=, 因此,()h x 在(0,)+∞内单调递减.当01x <<时,()(1)0h x h >=,即1()g x g x ⎛⎫>⎪⎝⎭, 当1,()(1)0x h x h ><=时,1()g x g x ⎛⎫<⎪⎝⎭即. (3)由(1)知()g x 的最小值为1,所以1()()g a g x a -<对任意0x >成立1()1,g a a⇔-< 即ln 1,a <从而得0e a <<,即a 的取值范围为(0,e). 【End 】。
【免费下载】高考陕西省数学试卷 文科含详细答案

(D)[0,1]
10.植树节某班 20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距 10 米, 开始时需将树苗集中放置在某一树坑旁边,现将树坑从 1 到 20 依次编号,为使各位同学 从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )
(A)①和
(B)⑨和⑩ (C) ⑨和
V 23 1 22 2 8 8 .
3
6.方程 x cos x 在 , 内
(A)没有根
(C) 有且仅有两个根
3
(B)有且仅有一个根
(D)有无穷多个根
()
【分析】数形结合法,构造函数并画出函数的图象,观察直观判断.
【解】选 C 构造两个函数 y | x | 和 y cos x ,在同一个坐标系内画出它们的图像,如图
【分析】根据选项分别计算四种情形的路程和;或根据路程和的变化规律直接得出结论.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2011年陕西高考数学试题及答案(文科)

南京市教学研究室(通知)宁教研教务[2011]12号-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------关于2011届高三年级第二、三次模拟考试工作安排的通知各区县教育局教研室(教师进修学校)、市直属中学:根据江苏省教育厅苏教基[2009]34号文件精神,经市教育局同意,市教研室将在2011年3月23日~25日及2011年5月4日~6日组织2011届高三年级进行第二、三次高考模拟考试。
现将第二、三次模拟考试的具体安排通知如下,请遵照执行:一、科目、分值及测试时间二、命题范围及要求这两次模拟考试的命题要求与高考相近。
三、日程安排第二次模拟考试第三次模拟考试四、考试组织与管理1.浦口区、六合区、江宁区、溧水县、高淳县、沿江开发区等六区县教研室须于2011年3月2日前将本区县学校这两次模拟考试试卷征订回执汇总后(附学校细目)报送市教研室教务中心;其它区县学校及市直属中学将这两次模拟考试试卷征订回执于2011年3月2日前直接报送市教研室教务中心(邮箱:njsjysjgk@)。
2.浦口区、六合区、江宁区、溧水县、高淳县、沿江开发区等六区县学校两次模拟考试的试卷由市教研室送至各区县教研室,六区县的学校分别于2011年3月22日(第二次模拟考试)、2011年4月30日(第三次模拟考试)到所属区县教研室领取试卷(两次试卷款于2011年3月22日一次性结清),六区县教研室须于2011年4月2日前将这两次模拟考试的试卷款与市教研室结清。
其它区县学校及市直属中学于2011年3月22日(第二次模拟考试)、2011年4月30日(第三次模拟考试)直接到市教研室领取试卷(两次试卷款于2011年3月22日一次性结清)。
2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年陕西文解析

2011年普通高等学校招生全国统一考试(陕西卷)文科数学一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. (2011·陕西·文,1,5分)设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是 ( ) (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a =—b ,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则a ≠—b (D )若∣a ∣=∣b ∣,则a = -b 2. (2011·陕西·文,2,5分)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x =3. (2011·陕西·文,3,5分)设0a b <<,则下列不等式中正确的是(A ) 2ab a b <<<(B )2a ba b +<<<(c )2a b a b +<<<2a ba b +<<< 4. (2011·陕西·文,4,5分)函数13y x =的图像是5. (2011·陕西·文,5,5分)某几何体的三视图如图所示,则它的体积是(A)283π-(B)83π-(C)8-2π (D)23π6. (2011·陕西·文,6,5分)方程cos x x =在(),-∞+∞内 (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根7. (2011·陕西·文,7,5分)如右框图,当126,9,x x ==8.5p =时,3x 等于 (A) 7 (B) 8 (C)10 (D )118. (2011·陕西·文,8,5分)设集合M={y|y=|2cos x —2sin x|,x ∈R}, N={x||x i|<1,i 为虚数单位,x ∈R},则M ∩N 为 ( )(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]9、(2011·陕西·文,9,5分).设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( ) (A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同10、(2011·陕西·文,10,5分).植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳....坑位的编号为( (A )(1)和(20) (B )(9)和(10) (C) (9)和(11) (D) (10)和(11)11.(2011·陕西·文,11,5分)设f(x)= lg ,010,0xx x x ⎧⎨≤⎩ ,则f(f(-2))=___ __.EDBCA12.(2011·陕西·文,12,5分)如图,点(x,y)在四边形 ABCD 内部和边界上运动,那么2x-y 的最小值为_______. 13.(2011·陕西·文,13,5分)观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第五个等式应为_ .14.(2011·陕西·文,14,5分)设n ∈N +,一元二次方程x 2-4x+n=0有整数根的充要条件是n=___15、(不等式选做题15)(2011·陕西·文,15,5分)若不等式12x x a++-≥对任意x R∈恒成立,则a 的取值范围是_ _。
2011年高考陕西省数学试卷-文科(含详细答案)

2011年普通高等学校招生全国统一考试陕西卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1.设a ,b 是向量,命题“若a b =-,则||||a b =”的逆命题是 ( )(A )若ab ≠-,则||||a b ≠ (B )若a b =-,则||||a b ≠(C )若||||a b ≠,则a b ≠- (D )若||||a b =,则a b =-【分析】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题。
【解】选 D 原命题的条件是a b =-,作为逆命题的结论;原命题的结论是||||a b =,作为逆命题的条件,即得逆命题“若||||a b =,则a b =-”,故选D .2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( ) (A )28y x =- (B )24y x =- (C )28y x = (D )24y x = 【分析】由准线确定抛物线的位置和开口方向是判断的关键. 【解】选 C 由准线方程2x =-得22p-=-,且抛物线的开口向右(或焦点在x 轴的正半轴),所以228y px x ==.0a b <<,则下列不等式中正确的是 ( )(A ) 2a b a b +<<(B )2a ba b +<<<(c )2a b a b +<<<2a ba b +<<<【分析】根据不等式的性质,结合作差法,放缩法,基本不等式或特殊值法等进行比较.【解】选B (方法一)已知a b <2a b +<,比较a ,因为22()0a a a b -=-<,所以a <22()0b b b a -=->b <;作差法:022a b b a b +--=>,所以2a b b +<,综上可得2a b a b +<<<;故选B .(方法二)取2a =,8b =,4=,52a b+=,所以2a ba b +<<.4. 函数13y x =的图像是 ( )【分析】已知函数解析式和图像,可以用取点验证的方法判断. 【解】选B 取18x =,18-,则12y =,12-,选项B ,D 符合;取1x =,则1y =,选项B 符合题意.5. 某几何体的三视图如图所示,则它的体积是( ) (A)283π- (B)83π-(C)8-2π (D)23π 【分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 【解】选A 由几何体的三视图可知几何体为一个组合体, 即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.cos x x =在(),-∞+∞内 ( )(A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根【分析】数形结合法,构造函数并画出函数的图象,观察直观判断.【解】选C 构造两个函数||y x =和cos y x =,在同一个坐标系内画出它们的图像,如图所示,观察知图像有两个公共点,所以已知方程有且仅有两个根.7.如右框图,当126,9,x x ==8.5p =时,3x 等于( ) (A) 7 (B) 8 (C)10 (D )11 【分析】按照程序框图的逻辑顺序进行计算. 【解】选B ∵126,9,x x ==∴3|9|3x ->;又8.5p =,127.52x x +=,显然3|9|3x ->不成立,即为“否”, ∴有3|9|3x -,即3612x ,此时有398.52x +=,解得38x =,符合题意,故选B .22{||cos sin |,}M y y x x x R ==-∈,{|||1xN x i=<,i 为虚数单位,x ∈R },则M N 为( )(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]【分析】确定出集合的元素是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(陕西卷)
文科数学
一.
选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本
大题共10小题,每小题5分,共50分)
1. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是【 】 (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a b =,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则∣a ∣≠∣b ∣ (D )若∣a ∣=∣b ∣,则a = -b
2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 【 】 (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x =
3.设0a b <<,则下列不等式中正确的是 【 】
(A ) 2ab a b ab <<<
(B )2a b
a a
b b +<<
< (c )2a b a ab b +<<< (D) 2
a b
ab a b +<<
< 4. 函数1
3
y x =的图像是 【 】
5. 某几何体的三视图如图所示,则它的体积
是【 】 (A)283
π
- (B)83
π
-
(C)8-2π (D)
23
π 6.方程cos x x =在(),-∞+∞内【 】
(A)没有根 (B)有且仅有一个根
(C) 有且仅有两个根 (D )有无穷多个根
7.如右框图,当126,9,x x ==8.5p =时,3x 等于 【 】 (A) 7 (B) 8 (C)10 (D )11
8.设集合M={y|2cos x —2sin x|,x ∈R},
N={x||x —1
i |<2,i 为虚数单位,x ∈R},则
M ∩N 为【 】 (A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]
9.设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )
(A) 直线l 过点(,)x y
(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间
(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同
10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放
学大教育
置的两个最佳....
坑位的编号为( )
(A )(1)和(20) (B )(9)和(10) (C) (9)
和(11) (D) (10)和(11)
二.填空题。
( 共5道小题,每小题5分,共25分) 11. 设f(x)= lgx,x>0, 则f(f(-2))=______.
10x ,x ≤0,
12. 如图,点(x,y)在四边形ABCD 内部和边界上运动, 那么2x-y 的最小值为________. 13. 观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
照此规律,第五个等式应为__________________.
14. 设n ∈N ,一元二次方程2
40x x n 有整数根的充要条件是n=_____.
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式12x x a
++-≥对任意x R ∈恒成立,则a 的取
值范围是__________。
B.(几何证明选做题)如图,
0,,90B D A E B C A C D ∠=∠⊥∠=
且AB=6,AC+4,AD+12,则AE=_______.
C. (坐标系与参数方程选做题)直角坐标系xoy
中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线
13cos :sin x C y θ
θ=+⎧⎨
=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为________.
三.解答题:接答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
16.(本小题满分12分)
如图,在△ABC 中,∠ABC=45°,∠BAC=90°,AD 高,沿AD 把是BC 上的△ABD 折起,使∠BDC=90°。
(Ⅰ)证明:平面ADB ⊥平面BDC; (Ⅱ )设BD=1,求三棱锥D —ABC的表面积。
17.(本小题满分12分)
设椭圆C: ()22
2210x y a b a b
+=>>过点(0,4),离心率为35
(Ⅰ)求C 的方程;
(Ⅱ)求过点(3,0)且斜率为4
5
的直线被C 所截线段的中点坐标
18.(本小题满分12分)
叙述并证明余弦定理。
19.(本小题满分12分)
如图,从点1(0,0)P 做x 轴的垂线交曲线x
y e =于点1(0,1),Q 曲线在1Q 点处的切线
与x 轴交于点2P ,再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1122,;,......;,,n n P Q P Q P Q 记k P 点的坐标为(,0)(1,2,...,)k x k n =. (Ⅰ)试求1x 与1k x -的关系(2)k n ≤≤
( Ⅱ)求112233...n n PQ PQ PQ PQ ++++
20.(本小题满分13分)
如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到火车站的人进行调查,调查结果如下:
(Ⅰ)试估计40分钟内不能..
赶到火车站的概率;
(Ⅱ )分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率; (Ⅲ )现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径。
21.(本小题满分14分) 设()ln .()()()f x x g x f x f x '==+。
(Ⅰ)求()g x 的单调区间和最小值;
(Ⅱ)讨论()g x 与1
()g x
的大小关系;
(Ⅲ)求a 的取值范围,使得()()g a g x -<1
a
对任意x >0成立。