高中数学椭圆的标准方程--利用定义求最值问题
高中数学椭圆中的最值问题与定点、定值问题

椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a acPF -=+-⋅=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。
联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。
高二上册数学选修一《2.5 椭圆及其方程》知识点梳理

高二上数学选修一第二章《平面解析几何》知识点梳理2.5.1椭圆的标准方程学习目标:1.掌握椭圆的定义,会用椭圆的定义解决实际问题.(重点)2.掌握用定义法和待定系数法求椭圆的标准方程.(重点)3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.(难点)“嫦娥二号”卫星是探月二期工程的技术先导星,实现月球软着陆进行部分关键技术试验,入太空轨道绕月球运转时,1.椭圆的定义(1)定义:如果F 1,F 2是平面内的两个定点,a 是一个常数,且2a >|F 1F 2|,则平面内满足|PF 1|+|PF 2|=2a 的动点P 的轨迹称为椭圆.(2)相关概念:两个定点F 1,F 2称为椭圆的焦点,两个焦点之间的距离|F 1F 2|称为椭圆的焦距.思考1:椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”的常数,其他条件不变,点的轨迹是什么?[提示]2a 与|F 1F 2|的大小关系所确定的点的轨迹如下表:条件结论2a >|F 1F 2|动点的轨迹是椭圆2a =|F 1F 2|动点的轨迹是线段F 1F 22a <|F 1F 2|动点不存在,因此轨迹不存在2.椭圆的标准方程焦点位置在x 轴上在y 轴上标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)(±c,0)(0,±c ):确定椭圆标准方程需要知道哪些量?[提示]a ,b 的值及焦点所在的位置.思考3:根据椭圆方程,如何确定焦点位置?[提示]把方程化为标准形式,x 2,y 2的分母哪个大,焦点就在相应的轴上.1.思考辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆x 216+y 225=1的焦点坐标是(±3,0).()(3)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.()[答案](1)×(2)×(3)×[提示](1)×需2a >|F 1F 2|.(2)×(0,±3).(3)×a >b >0时表示焦点在y 轴上的椭圆.2.以下方程表示椭圆的是()A .x 2+y 2=1B .2x 2+3y 2=6C .x 2-y 2=1D .2x 2-3y 2=6B[只有B 可化为x 23+y 22=]3.以坐标轴为对称轴,两焦点的距离是2,且过点(0,2)的椭圆的标准方程是()A .x 25+y 24=1B .x 23+y 24=1C .x 25+y 24=1或x 23+y 24=1D .x 29+y 24=1或x 23+y 24=1C [若椭圆的焦点在x 轴上,则c =1,b =2,得a 2=5,此时椭圆方程是x 25+y 24=1;若焦点在y轴上,则a =2,c =1,则b 2=3,此时椭圆方程是x 23+y 24=1.]4.椭圆x 29+y 24=1的左、右焦点F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=.2[由椭圆的定义知|PF 1|+|PF 2|=6,所以|PF 2|=6-|PF 1|=6-4=2.]求椭圆的标准方程【例1】根据下列条件,求椭圆的标准方程.(1)两个焦点坐标分别是(0,5)、(0,-5),椭圆上一点P 到两焦点的距离和为26.(2)经过点2,焦点在x 轴上.(3)过(-3,2)且与x 29+y 24=1有相同的焦点.[解](1)∵椭圆的焦点在y 轴上,所以设它的标准方程为:y 2a 2+x 2b 2=1(a >b >0).∵2a =26,2c =10,∴a =13,c =5.∴b 2=a 2-c 2=144.∴所求椭圆的标准方程为:y 2169+x 2144=1.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵焦点在x 轴上,2c =2,∴a 2=b 2+1,又椭圆经过点∴1b 2+1+94b 2=1,解之得b 2=3,∴a 2=4.∴椭圆的标准方程为x 24+y 23=1.(3)由方程x 29+y 24=1可知,其焦点的坐标为(±5,0),即c =5.设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+5,因为过点(-3,2),代入方程为9a 2+4a 2-5=1(a >b >0),解得a 2=15(a 2=3舍去),b 2=10,故椭圆的标准方程为x 215+y 210=1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.提醒:若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).[跟进训练]1.求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且a =4,c =2;(2)经过点[解](1)∵a 2=16,c 2=4,∴b 2=16-4=12,且焦点在x 轴上,故椭圆的标准方程为x 216+y 212=1.(2)法一:①当椭圆的焦点在x 轴上时,设标准方程为x 2a 2+y 2b 2=1(a >b >0),依题意,有1,1,2=15,2=14,因为a >b >0,所以方程组无解.②当椭圆的焦点在y 轴上时,设标准方程为y 2a 2+x 2b2=1(a >b >0),所以所求方程为y 214+x 215=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n>0,且m ≠n ),+19n =1,=1,=5,=4,故所求方程为5x 2+4y 2=1,即y 214+x 215=1.椭圆的定义及其应用[探究问题]1.如何用集合语言描述椭圆的定义?[提示]P ={M ||MF 1|+|MF 2|=2a,2a >|F 1F 2|}.2.如何判断椭圆的焦点位置?[提示]判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x 2项和y 2项的分母哪个更大一些,即“谁大在谁上”.3.椭圆标准方程中,a ,b ,c 三个量的关系是什么?[提示]椭圆的标准方程中,a 表示椭圆上的点M 到两焦点间距离的和的一半,可借助图形帮助记忆.a ,b ,c (都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2(如图所示).【例2】设P 是椭圆x 225+y2754=1上一点,F 1,F 2是椭圆的焦点,若∠F 1PF 2=60°,求△F 1PF 2的面积.[解]由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,即25=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.①由椭圆的定义,得10=|PF 1|+|PF 2|,即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.②②-①,得3|PF 1|·|PF 2|=75,所以|PF 1|·|PF 2|=25,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2534.1.将本例中的“∠F 1PF 2=60°”改为“∠F 1PF 2=30°”其余条件不变,求△F 1PF 2的面积.[解]由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30°,即25=|PF 1|2+|PF 2|2-3|PF 1|·|PF 2|.①由椭圆的定义得10=|PF 1|+|PF 2|,即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.②②-①,得(2+3)|PF 1|·|PF 2|=75,所以|PF 1|·|PF 2|=75(2-3),所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 30°=754(2-3).2.将椭圆的方程改为“x 2100+y 264=1”其余条件不变,求△F 1PF 2的面积.[解]|PF 1|+|PF 2|=2a =20,又|F 1F 2|=2c =12.由余弦定理知:(2c )2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°,即:144=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|.所以|PF 1|·|PF 2|=2563,椭圆定义的应用技巧(1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.拓展延伸:椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解.与椭圆有关的轨迹问题【例3】如图,圆C :(x +1)2+y 2=25及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于M ,求点M 的轨迹方程.[解]由垂直平分线性质可知|MQ |=|MA |,|CM |+|MA |=|CM |+|MQ |=|CQ |.∴|CM |+|MA |=5.∴M 点的轨迹为椭圆,其中2a =5,焦点为C (-1,0),A (1,0),∴a =52,c =1,∴b 2=a 2-c 2=254-1=214.∴所求轨迹方程为:x 2254+y 2214=1.求解与椭圆相关的轨迹问题的方法[跟进训练]2.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,求动圆圆心的轨迹方程.[解]如图所示,设动圆圆心为M (x ,y ),半径为r ,由题意动圆M 内切于圆C 1,∴|MC 1|=13-r .圆M 外切于圆C 2,∴|MC 2|=3+r .∴|MC 1|+|MC 2|=16>|C 1C 2|=8,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,b 2=a 2-c 2=64-16=48,故所求轨迹方程为x 264+y 248=1.(1)平面内到两定点F 1、F 2的距离之和为常数,即|MF 1|+|MF 2|=2a >|F 1F 2|,轨迹为椭圆a =|F 1F 2|,线段F 1F 2a <|F 1F 2|,不存在.(2)求椭圆的方程,可以利用定义求出参数a ,b ,c 其中的两个量;也可以用待定系数法构造三者之间的关系,但是要注意先确定焦点所在的位置,其主要步骤可归纳为“先定位,后定量”.(3)当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而达到了简化运算的目的.1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为()A .5B .6C .7D .8D [由椭圆定义知点P 到另一个焦点的距离是10-2=8.]2.到两定点F 1(-2,0)和F 2(2,0)的距离之和为4的点的轨迹是()A .椭圆B .线段C .圆D .以上都不对B[|MF 1|+|MF 2|=|F 1F 2|=4,∴点M 的轨迹为线段F 1F 2.]3.椭圆x 216+y 232=1的焦距为.8[由方程得a 2=32,b 2=16,∴c 2=a 2-b 2=16.∴c =4,2c =8.]4.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,过点F 1的直线l 交椭圆于A 、B 两点,则△ABF 2的周长是.16[由椭圆定义知,|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =8,又△ABF 2的周长等于|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=16.]5.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A F 1,F 2两点的距离之和为4,求椭圆C 的方程是.x 24+y 23=1[|AF 1|+|AF 2|=2a =4得a =2,∴原方程化为x 24+y 2b 2=1,将A b 2=3,∴椭圆方程为x 24+y 23=1.]2.5.2椭圆的几何性质学习目标1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.(重点、难点)奥地利维也纳金色大厅的顶棚设计为椭圆面,演奏时,椭圆面顶棚会把声音反射到椭圆面的另一个焦点处汇聚,有另外一个乐队存在(其实什么都没有椭圆的简单几何性质焦点的位置焦点在x 轴上焦点在y 轴上标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形对称性对称轴x 轴和y 轴,对称中心(0,0)范围x ∈[-a ,a ],y ∈[-b ,b ]x ∈[-b ,b ],y ∈[-a ,a ]顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)轴长短轴|B 1B 2|=2b ,长轴|A 1A 2|=2a焦点F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距|F 1F 2|=2c[提示]最大距离:a +c ;最小距离:a -c .思考2:椭圆方程x 2a 2+y 2b 2=1(a >b >0)中a ,b ,c 的几何意义是什么?[提示]在方程x 2a 2+y 2b2=1(a >b >0)中,a ,b ,c 的几何意义如图所示.即a ,b ,c 正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.1.思考辨析(正确的打“√”,错误的打“×”)(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长等于a .()(2)椭圆上的点到焦点的距离的最小值a -c .()(3)椭圆上的离心率e 越小,椭圆越圆.()[答案](1)×(2)√(3)√[提示](1)×椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长等于2a .(2)√椭圆上的点到焦点的距离的最大值为a +c ,最小值为a -c .(3)√离心率e =ca越小,c 就越小,这时b 就越接近于a ,椭圆就越圆.2.椭圆6x 2+y 2=6的长轴端点坐标为()A .(-1,0),(1,0)B .(-6,0),(6,0)C .(-6,0),(6,0)D .(0,-6),(0,6)D [x 2+y 26=1焦点在y 轴上,长轴端点坐标为(0,-6),(0,6).]3.椭圆x 2+4y 2=4的离心率为()A .32B .34C .22D .23A [化椭圆方程为标准形式得x 24+y 2=1,所以a 2=4,b 2=1,所以c 2=a 2-b 2=3.所以e =c a =32.]4.椭圆x 29+y 216=1的焦点坐标是,顶点坐标是.(0,±7)(±3,0),(0,±4)[由方程x 29+y 216=1知焦点在y 轴上,所以a 2=16,b 2=9,c 2=a 2-b 2=7.因此焦点坐标为(0,±7),顶点坐标为(±3,0),(0,±4).]椭圆的几何性质【例1】求椭圆16x 2+25y 2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.[思路探究]化为标准方程,确定焦点位置及a ,b ,c 的值,再研究相应的几何性质.[解]把已知方程化成标准方程x 252+y 242=1,可知a =5,b =4,所以c =3.因此,椭圆的长轴和短轴的长分别是2a =10和2b =8,离心率e =c a =35,两个焦点分别是F 1(-3,0)和F 2(3,0),椭圆的四个顶点是A 1(-5,0),A 2(5,0),B 1(0,-4)和B 2(0,4).1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.提醒:长轴长、短轴长、焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.[跟进训练]1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.[解]将椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c =a 2-b 2=9-4=5.∴椭圆的长轴长和焦距分别为2a =6,2c =25,焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.利用几何性质求椭圆的标准方程【例2】求适合下列条件的椭圆的标准方程:(1)与椭圆4x2+9y2=36有相同的焦距,且离心率为55;(2)长轴长是短轴长的2倍,且过点(2,-4).[解](1)将方程4x2+9y2=36化为x29+y24=1,可得椭圆焦距为2c=25.又因为离心率e=5 5,即55=5a,所以a=5,从而b2=a2-c2=25-5=20.若椭圆焦点在x轴上,则其标准方程为x225+y220=1;若椭圆焦点在y轴上,则其标准方程为y225+x220=1.(2)依题意2a=2×2b,即a=2b.若椭圆焦点在x轴上,设其方程为x2a2+y2b2=1(a>b>0),2b,+16b2=1.2=68,2=17,所以标准方程为x268+y217=1.若椭圆焦点在y轴上,设其方程为y2a2+x2b2=1(a>b>0),2b,+4b2=1,2=32,2=8.所以标准方程为x28+y232=1.利用待定系数法求椭圆标准方程的基本步骤及注意事项1 用几何性质求椭圆的标准方程通常采用的方法是待定系数法.2 根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a2,b2的值;②确定焦点所在的坐标轴;③写出标准方程.3 在求解a 2、b 2时常用方程 组 思想,通常由已知条件与关系式a 2=b 2+c 2,e =ca 等构造方程 组加以求解.提醒:解答本例时容易忽视焦点的位置而漏解.[跟进训练]2.求适合下列条件的椭圆的标准方程:(1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.[解](1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0).由已知得2a =10,a =5,e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆方程为x 225+y 29=1或x 29+y 225=1.(2)依题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1FA 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b,2c =6,∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的方程为x 218+y 29=1.求椭圆的离心率[探究问题]1.求椭圆离心率的关键是什么?[提示]根据e =ca ,a 2-b 2=c 2,可知要求e ,关键是找出a ,b ,c 的等量关系.2.a ,b ,c 对椭圆形状有何影响?[提示]【例3】已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,求该椭圆的离心率.[思路探究]由题设求得A 、B 点坐标,根据△ABF 2是正三角形得出a ,b ,c 的关系,从而求出离心率.[解]设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),焦点坐标为F 1(-c,0),F 2(c,0).依题意设A c则B c ∴|AB |=2b 2a.由△ABF 2是正三角形得2c =32×2b 2a ,即3b 2=2ac ,又∵b 2=a 2-c 2,∴3a 2-3c 2-2ac =0,两边同除以a 2+2ca -3=0,解得e =c a =33.1.(变换条件)本例中将条件“过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形”改为“A 为y 轴上一点,且AF 1的中点B 恰好在椭圆上,若△AF 1F 2为正三角形”.如何求椭圆的离心率?[解]设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦点坐标为F 1(-c,0),F 2(c,0),设A点坐标为(0,y0)(y0>0),则B -c 2,∵B点在椭圆上,∴c24a2+y204b2=1,解得y20=4b2-b2c2 a2,由△AF1F2为正三角形得4b2-b2c2a2=3c2,即c4-8a2c2+4a4=0,两边同除以a4得e4-8e2+4=0,解得e=3-1.2.(变换条件)“若△ABF2是正三角形”换成“椭圆的焦点在x轴上,且A点的纵坐标等于短半轴长的23”,求椭圆的离心率.[解]设椭圆方程为x2a2+y2b2=1(a>b>0),F1(-c,0),F2(c,0),由题意知A c,23b∴c2a2+49=1,解得e=53.求椭圆离心率的方法(1)直接求出a和c,再求e=ca,也可利用e=1-b2a2求解.(2)若a和c不能直接求出,则看是否可利用条件得到a和c的齐次等式关系,然后整理成ca的形式,并将其视为整体,就变成了关于离心率e的方程,进而求解.1.已知椭圆的方程讨论性质时,若不是标准形式要先化成标准形式,再确定焦点的位置,找准a、b.2.利用椭圆的几何性质求标准方程通常采用待定系数法.3.求离心率e 时,注意方程思想的运用.1.椭圆x 29+y 216=1的离心率()A .74B .916C .13D .14A [a 2=16,b 2=9,c 2=7,从而e =c a =74.]2.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A .x 281+y 272=1B .x 281+y 29=1C .x 281+y 245=1D .x 281+y 236=1A [由已知得a =9,2c =13×2a ,∴c =13a =3,b 2=a 2-c 2=72.又焦点在x 轴上,∴椭圆方程为x 281+y 272=1.]3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为()A .12B .2C .14D .4C [椭圆x 2+my 2=1的标准形式为:x 2+y 21m=1.因为焦点在y 轴上,且长轴长是短轴长的2倍,所以1m =4,所以m =14.]4.若一个椭圆长轴的长度,短轴的长度和焦距成等差数列,则该椭圆的离心率是.35[由题意有2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).]5.已知椭圆的标准方程为x24+y29=1.(1)求椭圆的长轴长和短轴长;(2)求椭圆的离心率;(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.[解](1)椭圆的长轴长为2a=6,短轴长为2b=4.(2)c=a2-b2=5,所以椭圆的离心率e=ca=53.(3)若以椭圆的长轴端点为短轴端点,则b′=3,可设椭圆方程为x2a′2+y29=1,又椭圆过点P(-4,1),将点P(-4,1)代入得16a′2+19=1,解得a′2=18.故所求椭圆方程为x218+y29=1.。
与椭圆有关的最值问题

角度类问题典型例题
例题2
已知椭圆C的中心在原点,焦点在x轴上,离心率为$frac{sqrt{3}}{2}$,它的一个顶点恰好是抛物线$x^2 = 8sqrt{2}y$的焦点,过点P(4,0)且不垂直于x轴的直线l与C相交于A、B两点,若直线PA与直线PB的斜率 之积为$- frac{5}{16}$,则直线l的方程为____。
距离类问题典型例题
例题1
已知椭圆$frac{x^2}{4} + frac{y^2}{3} = 1$,点P是椭圆上一点,F₁、F₂是椭圆的 两个焦点,则|PF₁|·|PF₂|的最大值为____。
例题2
过椭圆$frac{x^2}{5} + y^2 = 1$的右焦点作一条斜率为2的直线与椭圆交于A、 B两点,O为坐标原点,则弦AB的长为____。
通过解析几个与椭圆有关的最值问题的典型例题,我们掌握了这类问情况
通过本次课程的学习,我深刻理解了椭圆的标准方程和性质,掌握了在约束条件下求解最值问题的方法,对于典型例 题的解析也有了更深入的认识。
学习方法与效率
在学习过程中,我采用了课前预习、课后复习的方法,同时结合了大量的练习来巩固所学知识。这种学习方法使我能 够高效地吸收和掌握知识。
利用平面几何知识,如相似、勾股定 理等,求出最值;
03
与椭圆相关的最值问题类 型
面积类问题
1 2
椭圆内接矩形面积的最大值
给定椭圆,求其内接矩形面积的最大值。
椭圆内接三角形面积的最大值
给定椭圆,求其内接三角形面积的最大值。
3
椭圆与直线围成的图形面积
给定椭圆和直线,求它们围成的图形面积。
距离类问题
需要注意定义域的限 制。
利用一元二次函数的 性质,如顶点、对称 轴等,求出最值;
怎样利用定义求解与椭圆有关的最值问题

椭圆是一种重要的圆锥曲线,与椭圆有关的最值问题在高中数学试卷中比较常见,定义法是解答此类问题的重要方法.椭圆的定义除了第一定义,还有第二定义、第三定义.下面,我们重点谈一谈如何运用椭圆的这三个定义来解答与椭圆有关的最值问题.一、利用椭圆的第一定义求解椭圆的第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.在运用椭圆的第一定义解题时,要先确定两个定点的位置,然后建立关于动点M的关系式:MF1+MF2=2a.这样便可根据该关系式来寻找取得最小值的点M的位置,进而求得最值.例1.已知P()-2,3,F2为椭圆x225+y216=1的右焦点,点M在椭圆上移动.求MP+MF2的最大值和最小值.分析:所求的最值与MF2有关,可利用椭圆的第一定义建立关系式MF1+MF2=2a,将求MP+MF2的最值转化为求MP-MF1的最值,根据三角形三边之间的关系和性质便可求得问题的答案.解:如图1所示,连接PF1,延长PF1交椭圆于点M1,延长F1P交椭圆于点M2.由椭圆的第一定义知MF1+MF2=2a,所以MP+MF2=MP+2a-MF1,由三角形三边之间的关系知-PF1≤MP-MF1≤PF1,当且仅当M与图中M1合时取右边的等号,M与图中M2重合时取左边的等号.因为2a=10,PF1=2,所以MP+MF2的最大值为12,所以MP+MF2的最小值为8.图1一般地,若椭圆的方程为x2a2+y2b2=1(a>b>0),F1,F2分别是椭圆的左右焦点,P()x0,y0为平面内的一个定点,M为椭圆上的任意一点,当定点在椭圆的内部时,2a-PF1≤MF2+MP≤2a+PF1;当定点在椭圆的外部时,PF2≤MF2+MP≤2a+PF1.二、利用椭圆的第二定义求解圆锥曲线的第二定义:到定点的距离与到定直线的距离的比是e的点的轨迹.在运用椭圆的第二定义解题时,我们先要明确定点(即焦点F)和定直线(准线x=a2c)的位置,然后建立关于动点P(x0,y0)的关系式MP=e||||||x0-a2c,利用其关系或关系式来解题.例2.已知F1是椭圆5x2+9y2=45的左焦点,P是椭圆上动点,点A(1,1)是一个定点,求PA+32PF1的最小值.分析:明确题目中的数量关系后可以发现,所求目标中的32是椭圆离心率的倒数,联系第二定义:椭圆上的点到左焦点和到左准线的距离d之比为离心率e,可得PF1d=23,即d=32PF1,不难得到PA+32PF1=PA+d,所以PA+32PF1的最小值为椭圆上的P点到A点和到左准线的距离和的最小值,只需过点A,D作左准线的垂线即可.解:由题意可知,椭圆5x2+9y2=45的长半轴a=3,短半轴b=5,半焦距c=2,离心率e=23,右焦点F2()2,0,左准线x=-92.如图2所示,过点A,D作左准线的垂线,垂足为D1、D2.设P点到左准线的距离为d.由椭圆的第二定义可知PF1=ed,所以PA+32PF1=PA+32ed=PA+d,则PA+d的最小值就是点A到左准线x=-92的距离AD1=1+92=112,当且仅当点P在P1处PA+d取最小值,故PA+d的最小值为112.图2探索与研究颜琴55当与椭圆有关的最值问题涉及定点、定直线时,就要利用椭圆的第二定义,把与动点有关的最值问题转化为与定点、定直线之间的距离来求解.三、利用椭圆的第三定义求解椭圆的第三定义是指平面内动点到两定点A (a ,0)和B (-a ,0)的斜率的乘积等于常数e 2-1的点的轨迹.这也就是说,A ,B 是椭圆C :x 2a 2+y 2b2=1()a >b >0上的两个顶点,P 是椭圆上异于A ,B 的一个动点,若k PA ,k PB 的斜率都存在,则k PA ∙k PB =e 2-1=-b 2a2.运用椭圆的第三定义,可以快速找到过椭圆上两个顶点的直线的斜率之间的关系.例3.已知椭圆C :x 2a 2+y2b2=1()a >b >0的长轴长,短轴长和焦距成等差数列,若A ,B 是椭圆长轴的两个端点,M ,N 是关于x 轴对称的两点,直线AM ,BN 的斜率分别是k 1,k 2(k 1∙k 2≠0),则||k 1+||k 2的最小值为_______.分析:由长轴长、短轴长和焦距成之间的关系得到椭圆的离心率,由A ,B ,M ,N 的位置可联想到椭圆的第三定义,求得k 1∙k 2的值,再利用基本不等式就可以使问题得解.解:由椭圆的长轴长,短轴长和焦距成等差数列,得2a +2c =4b ,又b 2=a 2-c 2,可得e =c a =35,由椭圆的第三定义可得k 1∙k 2=e 2-1=-1625,而M ,N 是关于x 轴对称的两点,则k 1=-k 2,可得k 1∙k 2=1625,所以||k 1+||k 2≥2k 1k 2=85,当且仅当k 1=k 2时取等号.由以上几个题目可以看出,与椭圆有关的最值问题一般都会涉及椭圆上的定点、定直线.如果问题中的定点为焦点,就要考虑利用椭圆的第一定义来解题;如果问题中涉及的定点、定直线分别为焦点、准线,就要考虑用椭圆的第二定义来解题;如果问题中涉及了椭圆的顶点以及过顶点的直线的斜率,就要考虑采用椭圆的第三定义解题.(作者单位:江西省余干第一中学)探索与研究在学习中,我们经常会遇到抽象函数问题,此类问题一般侧重于考查同学们的直观想象能力和抽象思维能力.抽象函数一般没有具体的函数解析式,与x a 、sin x ()cos x 、ln x 、e x 的乘积构成的函数解析式也不明确,我们很难快速解出.而运用构造法,借助构造的新函数的性质、图象,则能快速破解此类问题.例1.已知定义在R 上的函数f ()x 为奇函数,当x ≤0时,恒有xf ′(x )≥3f ()-x ,则不等式8xf ()2x >()1-3x 3x 2f ()1-3x 的解集为_____.解:∵f ()x 是定义在R 上的奇函数,∴f ()-x =-f ()x ,当x ≤0时,由xf ′()x ≥3f ()-x 可得x 3f ′()x +f ()x ≥0,令g ()x =x 3f ()x ,∴当x ≤0时,g '()x =2x 2f ()x +x 3f ′()x =3x 2éëùûf ()x +x 3f '()x ≥0,∴g ()x 在(]-∞,0上单调递增,∵g ()-x =-x 3f ()-x =x 3f ()x =g ()x ,g ()x 是偶函数,∴g ()x 在[)0,+∞上单调递减,不等式8xf ()2x >()1-3x 3x2f ()1-3x 等价于8x 3f ()2x >()1-3x 3f ()1-3x ,即g ()2x >g ()1-3x ,等价于||2x <||1-3x ,解得x <15或x >1,∴不等式的解集为æèöø-∞,15⋃()1,+∞.56。
如何利用定义法解答圆锥曲线最值问题

定义法是用圆锥曲线的定义解题的方法.圆锥曲线的定义是解题的重要依据.在解答圆锥曲线最值问题时,灵活运用椭圆、双曲线、抛物线的定义,可简化运算,有效提升解题的效率.下面结合实例,谈一谈运用圆锥曲线定义解答最值问题的一些技巧.一、利用椭圆的定义求最值若平面内一个动点M 与两个定点F 1、F 2的距离的和等于常数2a (大于|F 1F 2|),则该点的轨迹叫做椭圆,这两个焦点之间的距离叫做椭圆的焦距,常用|F 1F 2|或2c 表示.由椭圆的定义可得:|MF 1|+|MF 2|=2a ,|F 1F 2|=2c ,其中c 2=a 2-b 2,a >0,c >0,且a 、c 为常数.运用椭圆的定义求最值,需先确定两个定点的位置;然后根据椭圆的定义,建立关于动点到定点的距离的关系式.例1.已知椭圆x 24+y 23=1上有一动点P ,圆()x -12+y 2=19上有一动点Q ,圆()x +12+y 2=49上有一动点R ,则||PQ +||PR 的最大值为().A.3 B.5C.8D.9解:由椭圆的方程x 24+y 23=1得a =2,b =3,c =1,所以其焦点为F 1()-1,0,F 2()1,0,由圆的方程()x -12+y 2=19可得其圆心为F 2()1,0,半径为r 1=13,由圆的方程()x +12+y 2=49可得其圆心为F 1()-1,0,半径为r 2=23,则P 点到圆F 1上动点R 的最大值为||PR max =||PF 1+r 2=||PF 1+23,P 点到圆F 2上动点Q 的最大值为||PQ max =||PF 2+r 1=||PF 2+13,所以()||PQ +||PR max=||PQ max +||PR max =||PF 1+||PF 2+1,由椭圆的定义知||PF 1+||PF 2=2a =4,得()||PQ +||PR max=5.故选B 项.此题中涉及了三个动点,需根据圆的性质:圆外一点M 到圆上一点的最大距离为圆心到M 的距离加上半径,求得P 点到圆F 1上动点R 的最大值||PR max =||PF 1+r 2,以及P 点到圆F 2上动点Q 的最大值||PQ max =||PF 2+r 1,进而得到()||PQ +||PR max =||PF 1+||PF 2+1.而F 1、F 2是两个定点,P 为动点,即可根据椭圆的定义,求得||PF 1+||PF 2的值,从而求得最值.解答本题的关键在于结合图形,明确两圆、椭圆、动点的位置关系,以根据圆的性质、椭圆的定义求得最值.例2.已知椭圆C :x 24+y 23=1的左右焦点分别为F 1,F 2,M 为椭圆C 上任意一点,N 为圆E :()x -42+()y -32=1上任意一点,则||MN -||MF 1的最小值为______.解:因为N 为圆E :()x -42+()y -32=1上的任意一点,所以||MN min =||ME -r ,由圆E :()x -42+()y -32=1,得其圆心为E ()4,3,半径为r =1,所以()||MN -||MF 1min=()||MN min-||MF 1min =()||ME -r -||MF 1min=()||ME -||MF 1-1min,根据椭圆的定义知||MF 1+||MF 2=2a =4,由三角形的三边关系知()||ME -||MF 1-1min=()||ME +||MF 2-5min=||EF 2-5,由椭圆C :x 24+y 23=1得其焦点为F 2()1,0,则||EF 2=()4-12+()3-02=32,所以||MN -||MF 1的最小值为32-5.此最值问题中涉及了两个动点和一个定点,需根据圆的性质:圆外一点P 到圆上一点的最小距离为圆心到P 的距离减去半径,求得M 点到圆E 上的动点N 的最小值||MN min =||ME -r .然后根据椭圆的定义和三角形三边之间的关系,将求||MN -||MF 1的最小值转化为求焦半径||EF 2的值.解答此类题,需灵活运用数形结合思想和转化思想.二、利用双曲线的定义求最值平面内与两个定点F 1,F 2的距离的差的绝对值等于常数2a (小于|F 1F 2|)的点M 的轨迹叫做双曲线.这两个定46点之间的距离|F 1F 2|叫做双曲线的焦距.由双曲线的定义可得||MF 1|-|MF 2||=2a ,|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0.在运用双曲线的定义求最值时,要注意:(1)明确动点与两定点距离之间的关系;(2)确保a <c .例3.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:()x +52+y 2=1上,点R 在曲线C 3:()x -52+y 2=1上,则||PQ -||PR 的最大值是().A.6B.8C.10D.12解:画出如图1所示的图形.由曲线C 2:()x +52+y 2=1,得其圆心为C 2()-5,0,半径为1,由曲线C 3:()x -52+y 2=1,得其圆心为C 3()5,0,半径为1,则||PQ max =||PC 2+1,||PR min =||PC 3-1,则()||PQ -||PR max =||PC 2-||PC 3+2,由曲线C 1:x 216-y 29=1可知其左右焦点分别为F 1()-5,0,F 2()5,0,根据双曲线的定义得||PF 1-||PF 2=2a =8,所以()||PQ -||PR max=||PC 2-||PC 3+2=||PF 1-||PF 2+2=8+2=10.故答案选C 项.此问题中的三个动点分别在两个圆和双曲线上,需先根据圆的性质确定||PQ max =||PC 2+1,||PR min =||PC 3-1,将求||PQ -||PR 的最大值转化为求||PC 2-||PC 3的值.而C 2()-5,0、C 3()5,0为定点,于是根据双曲线的定义建立关系式,求得||PC 2-||PC 3的值,即可求得最值.例4.已知A ()-4,0,B 是圆()x -12+()y -42=1上的一点,点P 在双曲线x 29-y27=1的右支上,则||PA +||PB 的最小值为().A.9B.25+6C.10D.12解:由题意画出如图2所示的图形,由圆()x -12+()y -42=1,得其圆心为C ()1,4,半径为1,所以||PB min =||PC -r =||PC -1,因此()||PA +||PB min =||PA +||PC -1,由双曲线x 29-y 27=1得其左右焦点为F 1()-4,0,F 2()4,0,根据双曲线定义可知||PF 1-||PF 2=2a =6,因为A ()-4,0,所以||PA -||PF 2=6,所以()||PA +||PB min =()||PA +||PC -1min=()6+||PF 2+||PC -1min=()5+||PF 2+||PC min,根据三角形三边之间的关系,()||PF 2+||PC min=||CF 2=()1-42+()4-02=5,所以()||PA +||PB min =10.故答案选C 项.我们根据题意画出图形,即可明确问题中两个动点和一个定点的位置,于是根据圆的性质,将求||PA +||PB 转化为求()5+||PF 2+||PC min.而F 1()-4,0、F 2()4,0为定点,便联想到双曲线的定义,得到||PF 1-||PF 2=2a =6,将问题转化为求焦半径||CF 2的值.为了确定最值,往往需根据P 、A 、B 三点的位置关系,利用圆的性质和三角形三边关系确定取得最值的临界情形.三、利用抛物线的定义求最值平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.直线l 叫作抛物线的准线.利用抛物线的定义解题时,应将抛物线上的点到焦点的距离与其到准线距离进行等价转化,以确定取得最值时的临界情形.例5.已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点.若点B ()3,2,则||PB +||PF 的最小值为_____.解:由抛物线C 2:y 2=4x 知其焦点为F ()1,0,准线为x =-1,由抛物线定义可知,||PF =||PA ,则()||PB +||PF min =()||PB +||PA min =||AB ,而B ()3,2,则||AB =3+1=4,所以()||PB +||PF min =4.故答案为4.本题中P 为动点,B 、F 为定点,要求||PB +||PF 的最小值,需先确定其临界的情形.因为F 为抛物线的焦点,由抛物线的定义,得||PF =||PA ,于是将||PB +||PF 转化为||PB +||PA .显然当P 、B 、F 三点共线时,||PB +||PA 最小,此时||PB +||PA =||AB ,求得||AB 的值,即可求得最值.总之,运用圆锥曲线的定义解题,需先确定动点与定点之间距离的关系:相等、和为定值、差为定值;然后根据椭圆、双曲线、抛物线的定义建立焦半径之间的关系式;再结合图形将最值问题进行转化,以快速确定取得最值的情形,求得最值.(作者单位:江苏省淮北中学)图1xy图247。
椭圆知识梳理和应用和解题方法步骤

圆锥曲线圆锥曲线分三大部分:椭圆,双曲线和抛物线 (一)椭圆椭圆分三大部分:基本量的应用、利用椭圆的基本量解决焦点三角形问题、直线和椭圆的相交问题一、椭圆的知识梳理二、椭圆的标准方程和统一方程三、椭圆的离心率 e= c/a ( 0<e<1)说明:1、同学们要牢记椭圆的定义,这是同学们经常想不到要用的,要记住。
对于求焦点三角形的面积,或者给了焦点弦之差、之积这些情况,第一想到的要用椭圆的定义。
例题:(1)已知△ABC 的三边长|CB|,|AB|,|CA|成等差数列,若点A ,B 的坐标分别为(-1,0),(1,0).求顶点C 的轨迹W 的方程解析:1、等差数列 得到,线段之和为定值,为椭圆方程、利用椭圆的定义来求解方程,确定a 2 、确定焦点在哪个轴3、列出椭圆标准方程,带值整理2、若椭圆两个焦点为12(40)(40)F F -,,,,椭圆的弦的AB 过点1F ,且2ABF △的周长为20,那么该椭圆的方程为 . 出现周长,想到定义。
2、求椭圆的方程,1.、确定焦点在哪个轴,用标准方程、不确定焦点在哪个轴,用统一方程。
2.一.设方程、二、带点、三、解法方程得解得结论、{}无轨迹时点的轨迹是线段时点得轨迹是椭圆是点椭圆的定义:P a P a a )22(2|)1(212121c F F c P c a c F F a MF MFM P <=><==+=22222222222c b a c 2 b 2 a 2c -0c ,0y )0(10c -0,c x )0(1+====>>=+>>=+焦距短轴长轴),)和(轴上(焦点坐标在),)和(轴上(焦点坐标在椭圆的方程:b a b x a y b a b y a x 轴上时焦点在轴上时焦点在x y ),0,0(122B A B A B A B A By Ax <>≠>>=+1、求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点(- 32,52).(3) 焦点在y 轴且经过两个点(0、2)(1、0)(4) 经过p (-23、1)q (3、2)(5) 方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )(A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29(6) 与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 _______________(7) 椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的( )(A)3倍 (B)2倍 (C)2倍 (D)32倍9)、对于求离心率问题,重要的应用abc 三者的平方关系,导出a 与c 的关系。
新人教版高中数学选择性必修第一册椭圆及其标准方程

(2)已知 A(1,1),F1 是椭圆 5x2+9y2=45 的左焦点,点 P 是椭圆上的动点,求|PA| + |PF1| 的最大值和最小值分别为( )
A.6+ 2 ,6- 2
B.4+ 2 ,4- 2
C.6+2 2 ,6-2 2
D.4+2 2 ,4-2 2
【解析】选 A.由已知可得x92 +y52 =1,得 a=3,c=2,
所以|AF2| = 12+12 = 2 .
根据椭圆定义:|PA| +|PF1| =|PA| +2a-|PF2| ,
所以|PA| +|PF1| 取得最大值时,即|PA| -|PF2| 最大,
|PA| +|PF1| 取得最小值时,即|PA| -|PF2| 最小,
根据三角形的两边之差小于第三边有||PA|-|PF2||<|AF2|= 2 ,
所以|AF1| =2a-|AF2| =2n.
4n2+9n2-9n2 在△ AF1B 中,由余弦定理推论得 cos ∠F1AB= 2·2n·3n
=13
.
在△ AF1F2 中,由余弦定理得 4n2+4n2-2·2n·2n·31
=4,解得 n=
3 2
.
所以 2a=4n=2 3 ,所以 a= 3 ,
所以 b2=a2-c2=3-1=2, 所以所求椭圆 C 的方程为x32 +y22 =1.
所以椭圆的标准方程为1x62 +1y22 =1.
【补偿训练】 已知1x62 +my22 =1 表示焦点在 x 轴上的椭圆,则 m 的取值范围为__________.
【解析】由题意知 0<m2<16,即 0<m<4 或-4<m<0.
答案:(-4,0)∪(0,4)
核心互动探究
探究点一 椭圆的定义 【典例 1】(1)若椭圆 C:x92 +y22 =1 的焦点为 F1,F2,点 P 在椭圆 C 上,且|PF1|=4,
高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲

高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的标准方程:利用椭圆的定义求最值
一、教学目标:
1、知识与技能:掌握利用定义求椭圆中的最值方法;
2、过程与方法:由椭圆的定义与标准方程出发,培养学生分析探索能力,熟练掌握利用定义求椭圆中的最值方法;
3、情感、态度与价值观:通过求椭圆标准方程的学习,渗透概念与数形结合的思想,启发学生研究问题时,抓住问题本质,严谨思考,规范得出解答;培养学生自主学习能力;
4、高考导向:①《普通高中数学课程标准(2017年版)》第44页:经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质;②《普通高中数学课程标准(2017年版)》第45页:【学业要求】:能够掌握平面解析几何解决问题的基本过程:根据具体问题情境的特点,建立平面直角坐标系;根据几何问题和图形特点,用代数语言把几何问题转化成为代数问题;根据对几何问题(图形)的分析,探索解决问题的思路;运用代数方法得到结论;给出代数结论合理的几何解释,解决几何问题。
二、重点与难点:
1、重点:利用定义求最值;
2、难点:掌握方法并灵活应用。
三、教学过程
(一)课前热身:
1、(原创)已知点P 是椭圆136
1002
2=+y x 上任意一点,21,F F 是该椭圆的左、右焦点。
则21PF PF ⋅的最大值是 。
2825
1664),,8(),,8(,25936),0,8(),0,8(),,(122221212221-=+-=⋅--=---=-=-x y x PF PF y x PF y x PF x y F F y x P 则:设任意点解析:法 .
36.361028010
102121故:最大值是有最大值是
时,;当有最小值是时,当PF PF x PF PF x x ⋅±=⋅=∴≤≤- .
3636
28cos 64281cos 01cos 128
cos 6464sin 36cos 100sin 36)8cos 10)(8cos 10().
sin 6,8cos 10(),sin 6,8cos 10)
0,8(),0,8(),)(sin 6,cos 10((22122222221212121的最大值是(则三角代换法):设点法PF PF P F P F PF PF P F P F F F R P ⋅∴≤-≤-∴≤≤⇒≤≤--=-+=+-+=⋅=⋅∴-=+=-∈θθθθθθθθθθθθθθθθ
(二)利用椭圆的定义求最值 类型一: 的最大值。
为椭圆上一点,求的两个焦点,是椭圆,(原创)、已知例||||11962251212
221PF PF P y x F F ⋅=+.
225||||||||,2254)(||||,30||||,1521212212121的最大值是所以时等号成立,当且仅当所以,由椭圆的定义知:解析:依题意知:PF PF PF PF PF PF PF PF PF PF a ⋅==+≤⋅=+=
类型一探究与总结:
.
||||)0(122122
2221a PF PF P b a b y a x F F 的最大值是为椭圆上一点,则的两个焦点,是椭圆,已知方法总结:
⋅>>=+.
||||||||,4
)2(4)(||||,
2||||22121222212121a PF PF PF PF a a PF PF PF PF a PF PF 的最大值是:所以时等号成立,当且仅当所以,义知:依题意知:由椭圆的定探究:
⋅===+≤⋅=+
类型二:
的取值范围。
上的点,求和分别是圆上一点,为椭圆、已知例||||1)3(4)3(,116225222222PN PM y x y x N M y x P +=+-=++=+ (图一)
[].
13,7||||,7
2||||min |)||(|;
132||||max |)||(|,12)0,3(),0,3(212121∈+=--=-+-=+=++=+++=+==-PN PM r R a r PF R PF PN PM r R a r PF R PF PN PM r R F F 所以,圆的半径分别为是椭圆的左右焦点,两解析:两圆心
的最大值与最小值。
)(的最大值与最小值;
)(上一点,求:
为椭圆,分别为椭圆的左右焦点内有一点:、已知椭圆例||||2||||1,),3,2(11625311212
2PF PM PF PM C P F F M y x C +-=+(图二)
.34|)|||(.
34|||)||(||)
||(|||||;34|||)|||(||||,).
0,3(),0,3(,51min 11max 121111max 1111121-=-==---=-==---=PF PM M F PM PF P M F PM PF PF PM MF PF PM PF PM P P MF F F a 所以,,则交椭圆于点延长的最大值点,所以,
是使则并延长交椭圆于点于第三边,如图,连接由三角形的两边之差小)有椭圆方程知:解析:( .1010||||1010110||||||||102||||)2(12121+≤+≤-+-=+==+PF PM PF PM PF PM a PF PF 所以,)
以下做法同(,所以,由椭圆的定义知
.
||2||||||2|;
|||||||,).0(11111112122
22MF a PF PM MF a MF PF PM MF P M F F b a b
y a x +≤+≤-≤-≤->>=+②①是椭圆上任意点,则:
内一定点,是椭圆为椭圆的左右焦点,为方法总结:设椭圆方程
(三)解决椭圆最值问题的常见思路总结:
①与焦半径乘积有关的最值问题,一般利用椭圆的定义,根据基本不等式求解,
注意等号成立的条件;
②与|||,|21PF PF 的和、差有关的最值问题,一般利用平面几何的知识,转化为三点共线问题求解。
当堂检测与作业:
1、(原创)已知点P 是椭圆164
1002
2=+y x 上任意一点,21,F F 是该椭圆的左、右焦点。
则21PF PF ⋅的最大值是 。
的最大值。
为椭圆上一点,求的两个焦点,是椭圆,、(原创)已知||||12963612212
221PF PF P y x F F ⋅=+3、(2018.湘潭四模)已知F 是椭圆15922=+y x C :的左焦点,P 为C 上一点,),3
4,1(A 则|PA|+|PF|的最小值为( )
A 310
B 311
C 4
D 3
13。