椭圆的标准方程及其几何性质

合集下载

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。

本文将介绍椭圆的标准方程以及其相应的性质。

一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。

设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。

二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。

2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。

焦点是椭圆的重要特点,用于定义椭圆的几何性质。

3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。

长轴是椭圆的最长直径,短轴是椭圆的最短直径。

4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。

离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。

5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。

6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。

7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。

8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。

三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。

以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。

2. 光学器件:抛物面镜、椭圆面镜等。

3. 固定时间下的最短路径问题。

4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。

4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。

5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。

总结:本文介绍了椭圆的标准方程及其性质。

椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。

椭圆的几何性质(解析版)

 椭圆的几何性质(解析版)

第52讲椭圆的几何性质一、课程标准1、掌握椭圆的性质,能够正确求出椭圆的性质2、掌握求椭圆的离心率的值以及离心率的范围3、掌握直线与椭圆的位置关系二、基础知识回顾1、椭圆的标准方程和几何性质2、焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|.(1)x2a2+y2b2=1(a>b>0),r1=a+ex0,r2=a-ex0;(2)y2a2+x2b2=1(a>b>0),r1=a+ey0,r2=a-ey0;(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).3、焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆x2a2+y2b2=1(a>b>0)中(1)当P为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ).4、.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|;(2)直线AB 的斜率k AB =-b 2x 0a 2y 0.5、直线与椭圆的关系将直线方程与椭圆方程联立,消去一个变量得到关于x(或y)的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0).再求一元二次方程的判别式Δ,当: ①Δ>0⇔直线与椭圆相交; ②Δ=0⇔直线与椭圆相切; ③Δ<0⇔直线与椭圆相离.6、设直线l 与椭圆的交点坐标为A(x 1,y 1),B(x 2,y 2),k 为直线l 斜率,则AB =(1+k 2)|x 1-x 2|.三、自主热身、归纳总结1、直线y =kx -k +1(k 为实数)与椭圆x 29+y 24=1的位置关系为( )A . 相交B . 相切C . 相离D . 相交、相切、相离都有可能 【答案】A【解析】 直线y =kx -k +1=k(x -1)+1恒过定点(1,1).∵点(1,1)在椭圆内部,∴直线与椭圆相交.故选A .第2题图2、如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右、下、上顶点,F是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是____. 【答案】5-12【解析】 ∵kB 2F ·kAB 1=-1,-b c ·b a =-1,b 2=ac ,即a 2-c 2=ac ,∴e =ca =5-12.3、中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________. 【答案】:x 225+y 275=1【解析】:由题设知c =52,设椭圆方程为x 2a 2-50+y 2a2=1,联立方程⎩⎨⎧x 2a 2-50+y 2a2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1. 4、已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B.423C. 2 D .2【答案】B【解析】由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝⎛⎭⎫43,-13,所以|AB |=423. 5、(一题两空)已知点F 1,F 2分别是椭圆x 225+y 29=1的左、右焦点,点P 在此椭圆上,则椭圆离心率为________,△PF 1F 2的周长为________. 【答案】4518【解析】由椭圆方程知a =5,b =3,c =4,所以其离心率e =c a =45.△PF 1F 2的周长为2a +2c =10+8=18.四、例题选讲考点一 椭圆的离心率的值例1 (1)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左焦点为F ,第(1)题图上顶点为B ,若∠BAO +∠BFO =90°,则椭圆的离心率是____.(2)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左焦点,A ,B 分别为椭圆C 的左、右顶点.P为椭圆C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为____. 【答案】(1) 5-12 (2)13【解析】 (1)由∠BAO +∠BFO =90°,∠BAO +∠ABO =90°,得∠BFO =∠ABO.又∠AOB =∠AOB ,∴△ABO ∽△BFO ,∴OB OF =AO BO ,即b c =a b,得ac =b 2=a 2-c 2,变形得e 2+e -1=0,解得e =5-12或-5-12(舍),∴椭圆的离心率为5-12. (2)设M(-c ,m),则E(0,am a -c ),OE 的中点为D ,则D(0,am 2(a -c )),又B ,D ,M 三点共线,∴m2(a -c )=m a +c,解得a =3c ,∴e =13.变式1、(1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12 C.13 D.14【答案】 D变式2、(四川省乐山一中2019届质检)设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点,P 是椭圆C 上的点,圆x 2+y 2=a 29与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为( ) A.33B.53C.104D.175 【答案】D【解析】如图,取线段PF 的中点H ,连接OH ,OA .设椭圆另一个焦点为E ,连接PE .∵A ,B 三等分线段PF ,∴H 也是线段AB 的中点,即OH ⊥AB .设|OH |=d ,则|PE |=2d ,|PF |=2a -2d ,|AH |=a -d3.在Rt △OHA 中,|OA |2=|OH |2+|AH |2,解得a =5d . 在Rt △OHF 中,|FH |=45a ,|OH |=a5,|OF |=c . 由|OF |2=|OH |2+|FH |2, 化简得17a 2=25c 2,c a =175. 即椭圆C 的离心率为175.故选D.变式3、焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.23 【答案】C【解析】由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ×b =12(2a +2c )×b3,得a =2c ,即e =c a =12,故选C.变式4、(2017苏北四市一模) 如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.【答案】5-12【解析】因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为FB 2⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).方法总结:求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。

椭圆总结(全)

椭圆总结(全)

椭圆总结一、椭圆的定义:(隐含条件)平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

二、 方程1、标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=2、 一般方程:)0,0(122>>=+B A By Ax Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

要求能熟练的把一般方程转化成标准方程,并找出a,b,c.三、性质:对于焦点在x 轴上,中心在原点:12222=+b y a x (a >b >0)有以下性质:1、范围:|x|≤a ,|y|≤b ;[][]22121212,*,0PF a c a c PF PF b a F PF F BF ∈-+⎡⎤∈⎣⎦∈角,2、对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);3、顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);4、通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,通径最短=ab 225、离心率:e=ca==(焦距与长轴长之比)()1,0∈;e 越大越扁,0=e 是圆。

3.2.2 椭圆的简单几何性质

3.2.2 椭圆的简单几何性质
度吗?

椭圆的离心率 e= .

范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.




典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲

椭圆标准方程及几何性质

椭圆标准方程及几何性质

解:设动圆 M 的半径为 r,圆心 M(x,y),两定圆 -3),半径 r1=8,r2=2. 圆心 C1(0,3),C2(0, 则|MC1|=8-r,|MC2|=r+2. ∴|MC1|+|MC2|=(8-r)+(r+2)=10. 又|C1C2|=6,∴动圆圆心 M 的轨迹是椭圆,且焦 点为 C1(0,3),C2(0, -3),且 2a=10, ∴ a=5,c=3, 2 2 2 ∴b =a -c =25-9=16. y2 x2 ∴动圆圆心 M 的轨迹方程是25+16=1.
2.写出适合下列条件的椭圆的标准方程
已知两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到
2 2 x y 两焦点距离的和等于10; + =1 25 9 变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?
y2 x2 + =1 25 9 变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两
知识总结
探究定义 P={ M| |MF1 |+|MF2|=2a(2a>2c)}.
y M
y F2
M x
不 同 点


F1
O
F2
x
O
F1
标准方程 焦点坐标 相 a、b、c 的关系 同 点 焦点位置的判断
x2 y2 + 2 = 1 a > b > 0 2 a b
F1 -c , 0,F2 c , 0
y
M F 1
o
y
F2
F2 x
F1(-c,0)、F2(c,0)
焦点在y轴:
y 2 x2 + 2 = 1(a b 0) 2 a b
M
o
F1
x
F1(0,-c )、F2(0,c)

椭圆的几何性质(简单性质)

椭圆的几何性质(简单性质)

3
则 C 的离心率为 3
.
y
BF 2FD
B
(c, b) 2( x c, y)
x
3 2
c,
y
b 2
.
OF
x
D
(
3 2
c
a2
)2
(
b 2
)2
b2
1,
c2 a2
1 3
,
e
3 3
.
主页
【4】(09·江苏)如图,在平面直角坐标系
xOy中, A1, A2, B1, B2为椭圆
x2 a2
y2 b2
1 (a>b>0)的四
PF1 PF2 ,求离心率的取值范围.
y
P
解:当点 P 在椭圆短轴端点时, F1PF2 最大.
F1
o
F2
x
≥ 45 sin ≥
2 2
c a
sin

2 2
又0e1
2 2

e
1
主页
例 3.已知 P 是椭圆上一点, F1, F2 分别是椭圆的左右焦点,且 PF1 PF2 ,求离心率的取值范围.
(Ⅱ)设 PF1 m, PF2 n , 构造方程、不等式
解解解解:::易:易易易知知知知aaa=a解===2:22,易,2,,b知bb===ba1=1=1,,,12cc,=c,==cb==333,,,1,3,c= 3, 所所所所以以以以FFFF11(1(1-(-(-所-3以33,,3,F0,00)1),(),0-,)FF,F22(23(F(,3233,(,0,)03,00),).).F.02().3,0). 设设设设PPP((x((xx,x,,,yy)y设)y,),,),P(x,y),

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

第1节 椭圆标准方程和几何性质ppt课件

第1节 椭圆标准方程和几何性质ppt课件

2.椭圆的标准方程和几何性质
标准方程 焦点位置
x2 a2
y2 b2
1(a
b
0)
焦点在x轴上
y2 a2
x2 b2
1(a
b
0)
焦点在y轴上
图形
标准方程
范围 对称性
顶点 性质 轴长
焦距 离心率 a,b,c的
关系
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
-a≤x≤a -b≤y≤b
a5 两个焦点分别为F1(3, 0)和F2 (3, 0), 四个顶点的坐标分别为A1(5, 0), A2 (5, 0), B1(0, 4)和B2 (0, 4).
【变式1-1】(2019新课标II卷,文)若抛物线y2=2px(p>0)的焦点是
椭圆 x2 y2 1的一个焦点,则p=( ) 3p p
A.2
B.3
C.4
D.8
【答案】 D 【解析】 由题意可得:3 p p ( p )2,解得p 8.故选D.
2
【变式1-2】 (2018新课标Ⅰ卷,文)已知椭圆C:
x2 a2
y2 4
1的一
个焦点为(2,0),则C的离心率为 ( )
A. 1
B. 1
C. 2
D. 2 2
3
2
2
3
【答案】 C 【解析】 根据题意,可知c 2,因为b2 4, 所以a2 b2 c2 8, 即a 2 2,所以椭圆C的离心率为e 2 2 ,故选C.
-b≤x≤b -a≤y≤a
对称轴:x轴、y轴; 对称中心:(0,0)
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 已知圆可化为:
圆心Q(3,0), ,所以P在定圆内 设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,
即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 , ,故动圆圆心M的轨迹方程是:
题7。△ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边AB、AC的斜率的乘积是- ,求顶点A的轨迹方程.
[解析] 的周长为 , =8
2.如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是____________.
解析:椭圆方程化为 + =1.
焦点在y轴上,则 >2,即k<1.
又k>0,∴0<k<1.
答案:0<k<1
3.椭圆 + =1的离心率是____________,准线方程是____________.
所以,以线段 为直径的圆与此椭圆长轴为直径的圆内切
题11。已知椭圆的焦点是 ,P为椭圆上一点,且| |是| |和| |的等差中项.
(1)求椭圆的方程;
(2)若点P在第三象限,且∠ =120°,求 .选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |+| |=2| |=4
∴ , 2c=2, ∴b=
∴椭圆的方程为 .
(2)设∠ ,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
题12.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆相交于点P和点Q,且OP⊥OQ,|PQ|= ,求椭圆方程.
解:设椭圆方程为mx2+ny2=1(m>0,n>0),
(2)过点(0,3)作直线l与曲线C交于A、B两点,设 = + ,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.
(1)解法一:∵a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8,
∴点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8.
题16。选择题
1.已知F1、F2是椭圆 + =1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为
A.8 B.16 C.25 D.32
解析:利用椭圆的定义易知B正确.
答案:B
2.椭圆 +y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则| |等于
A. B. C. D.4
m+n=2.①
由弦长公式得2· =( )2,将m+n=2代入,得m·n= .②
m= ,m= ,
n= n= .
∴椭圆方程为 + y2=1或 x2+ =1..
题13.直线l过点M(1,1),与椭圆 + =1相交于A、B两点,若AB的中点为M,试求直线l的方程.
解:设A(x1,y1)、B(x2,y2),
则 + =1,①
得(k2+2)x2+2kmx+(m2-1)=0
Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0(*)
x1+x2= ,x1x2=
∵ =3 ∴-x1=3x2∴
消去x2,得3(x1+x2)2+4x1x2=0,∴3( )2+4 =0
整理得4k2m2+2m2-k2-2=0
m2= 时,上式不成立;m2≠ 时,k2= ,


所以所求标准方程为
另法:∵
∴可设所求方程 ,后将点( , )的坐标代入可求出 ,从而求出椭圆方程
(3)∵椭圆的焦点在x轴上,所以设它的标准方程为:
∵ ,2c=6.


∴所求椭圆的方程为: .
(4)∵椭圆的焦点在y轴上,所以设它的标准方程为
.

∴所求椭圆方程为:
(5)∵椭圆的焦点在 轴上,所以可设它的标准方程为:
+ =1.②
①-②,得
+ =0.
∴ =- · .
又∵M为AB中点,
∴x1+x2=2,y1+y2=2.
∴直线l的斜率为- .
∴直线l的方程为y-1=- (x-1),
即3x+4y-7=0.
题14。已知椭圆 的中心为坐标原点 ,一个长轴端点为 ,短轴端点和焦点所组成的四边形为正方形,直线 与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且 .
∵ =(x1,y1), =(x2,y2),
∴ · =x1x2+y1y2=0,
即(1+k2)x1x2+3k(x1+x2)+9=0,
即(1+k2)·(- )+3k·(- )+9=0,即k2= ,得k=± .
∴存在直线l:y=± x+3,使得四边形OAPB是矩形.
椭圆作业
班级:______________姓名:____________
根据椭圆定义可知,点M的轨迹是以B、C为焦点的椭圆,故所求椭圆方程为 ( ≠0)
题4。已知 轴上的一定点A(1,0),Q为椭圆 上的动点,求AQ中点M的轨迹方程
解:设动点 的坐标为 ,则 的坐标为
因为点 为椭圆 上的点,
所以有 ,即
所以点 的轨迹方程是
题5。长度为2的线段AB的两个端点A、B分别在 轴、 轴上滑动,点M分AB的比为 ,求点M的轨迹方程
解:设动点 的坐标为 ,则 的坐标为 的坐标为
因为 ,
所以有 ,即
所以点 的轨迹方程是
题6。已知定圆 ,动圆M和已知圆内切且过点P(-3,0),求圆心M的轨迹及其方程
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用数学符号表示此结论:
上式可以变形为 ,又因为 ,所以圆心M的轨迹是以P,Q为焦点的椭圆
A.5B.7C.13D.15
[解析]B.两圆心C、D恰为椭圆的焦点, , 的最小值为10-1-2=7
5.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是
3.设F1、F2为椭圆的两个焦点,以F2为圆心作圆F2,已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为
A. -1B.2- C. D.
解析:易知圆F2的半径为c,(2a-c)2+c2=4c2,( )2+2( )-2=0, = -1.
答案:A
4.已知 为椭圆 上的一点, 分别为圆 和圆 上的点,则 的最小值为()
再根据椭圆定义得
所以顶点A的轨迹方程为
( ≠0)(特别强调检验)
因为A为△ABC的顶点,故点A不在 轴上,所以方程中要注明 ≠0的条件
题3。在△ABC中,BC=24,AC、AB的两条中线之和为39,求△ABC的重心轨迹方程.
分析:以BC所在直线为 轴,BC的中垂线为 轴建立如图所示的平面直角坐标系,M为重心,则|MB|+|MC|= ×39=26.
因λ=3∴k≠0∴k2= >0,∴-1<m<- 或 <m<1
容易验证k2>2m2-2成立,所以(*)成立
即所求m的取值范围为(-1,- )∪( ,1)
题15。设x、y∈R,i、j为直角坐标平面内x、y轴正方向上的单位向量,若向量a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8.
(1)求点M(x,y)的轨迹C的方程.
若直线l是y轴,则A、B两点是椭圆的顶点.
∵ = + =0,
∴P与O重合,与四边形OAPB是矩形矛盾.
∴直线l的斜率存在.设l方程为y=kx+3,A(x1,y1),B(x2,y2),
y=kx+3,
+ =1,
(-21)>0恒成立,且x1+x2=- ,x1x2=- .
∵ = + ,∴四边形OAPB是平行四边形.若存在直线l,使得四边形OAPB是矩形,则OA⊥OB,即 · =0.
A.4aB.2(a-c)C.2(a+c)D.以上答案均有可能
[解析]按小球的运行路径分三种情况:
(1) ,此时小球经过的路程为2(a-c);
(2) ,此时小球经过的路程为2(a+c);
(3) 此时小球经过的路程为4a,故选D
题17、填空题
1.已知 为椭圆 的两个焦点,过 的直线交椭圆于A、B两点若 ,则 =______________。
设P(x1,y1),Q(x2,y2),解方程组
y=x+1,
mx2+ny2=1.
消去y,整理得(m+n)x2+2nx+n-1=0.
Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0,OP⊥OQ x1x2+y1y2=0,
即x1x2+(x1+1)(x2+1)=0,2x1x2+(x1+x2)+1=0,∴ - +1=0.
∵P(0,-10)在椭圆上,∴ =10.
又∵P到它较近的一焦点的距离等于2,
∴-c-(-10)=2,故c=8.
∴ .
∴所求椭圆的标准方程是 .
题2。已知B,C是两个定点,|BC|=6,且 的周长等于16,求顶点A的轨迹方程
解:以BC所在直线为 轴,BC中垂线为 轴建立直角坐标系,设顶点 ,根据已知条件得|AB|+|AC|=10
解析:由椭圆方程可得a=5,b=3,c=4,e= ,准线方程为x=± =± .
相关文档
最新文档