最新椭圆标准方程及其性质知识点大全
椭圆的相关知识点

椭圆的相关知识点椭圆是数学中一个非常重要的几何形状。
它在各个领域中都有广泛的应用,如天文学、物理学、工程学等。
本文将详细介绍椭圆的相关知识点,包括椭圆的定义、性质、方程和应用。
一、定义与性质椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
这两个固定点分别称为椭圆的焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。
在椭圆上任取一点P,连接P到两个焦点的距离之和等于常数,记为PF1 + PF2 = 2a(a为常数)。
椭圆的性质如下:1. 所有点到两个焦点的距离之和等于常数。
2. 主轴是椭圆上最长的一段线。
3. 所有点到椭圆中心的距离之和等于椭圆的长轴长度。
4. 与椭圆的长轴垂直的线段称为短轴,长轴和短轴的长度之比称为椭圆的离心率。
离心率小于1的椭圆称为椭圆,等于1的椭圆称为抛物线,大于1的椭圆称为双曲线。
二、椭圆的方程椭圆的方程有两种形式:标准方程和一般方程。
1. 标准方程以椭圆的中心为原点,椭圆的长轴与x轴平行。
设椭圆的长轴长度为2a,短轴长度为2b,椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 12. 一般方程一般方程是对标准方程进行平移和旋转得到的。
设椭圆的中心为(h, k),椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1其中,a和b分别为椭圆的半长轴和半短轴的长度。
三、椭圆的应用椭圆在众多领域中有广泛的应用。
1. 天文学在天文学中,行星和卫星的轨道往往是椭圆。
开普勒定律描述了行星运动的规律,其中第一定律指出行星和太阳之间的轨道是一个椭圆。
2. 物理学在牛顿力学中,椭圆是一种机械能守恒的轨迹。
当质点在万有引力下运动时,其轨迹为椭圆。
3. 工程学在建筑工程中,椭圆的形状经常被利用于设计桥梁、隧道以及建筑物的拱形结构。
椭圆形的结构能够提供更好的均匀分布重量的能力,提高结构的稳定性和承载能力。
4. 地理学椭圆也常常用于地理学中,用来表示地球的形状。
椭圆及标准方程

椭圆及标准方程椭圆是平面上到定点F1、F2的距离之和等于常数2a的点P的轨迹。
设F1(-c,0),F2(c,0),点P(x,y),则PF1+PF2=2a。
椭圆的标准方程为,x^2/a^2+y^2/b^2=1(a>b>0)。
椭圆的性质:1.椭圆的离心率0<e<1,焦点到中心的距离为ae。
2.椭圆的长轴2a,短轴2b,焦距2ae。
3.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
4.椭圆的面积为πab。
5.椭圆的焦点到直径的距离等于直径的一半。
6.椭圆的焦点到切线的距离等于焦点到法线的距离。
7.椭圆的切线与法线的交点坐标分别为(x1,y1)和(x1,-y1)。
8.椭圆的渐近线方程为y=±b/ax。
9.椭圆的参数方程为x=acosθ,y=bsinθ。
10.椭圆的极坐标方程为r=a(1-e^2)/(1+ecosθ)。
椭圆的标准方程推导:设椭圆的长轴为2a,短轴为2b,焦点为F1(-c,0),F2(c,0),中心为O(0,0),点P(x,y)。
则有PF1+PF2=2a,根据两点之间的距离公式可得。
√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。
整理得到。
(√((x+c)^2+y^2))^2+(√((x-c)^2+y^2))^2=4a^2。
化简得到。
x^2/a^2+y^2/b^2=1。
从而得到椭圆的标准方程。
椭圆的标准方程性质:1.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
2.椭圆的中心在原点O(0,0)。
3.椭圆的长轴在x轴上,短轴在y轴上。
4.椭圆的焦点为F1(-c,0),F2(c,0),离心率e=c/a。
5.椭圆的长轴长为2a,短轴长为2b,焦距2ae。
6.椭圆的面积为πab。
7.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
8.椭圆的参数方程为x=acosθ,y=bsinθ。
椭圆的标准方程及性质

椭圆的标准方程及性质(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--椭圆的标准方程及性质1. 椭圆的两种定义:(1)平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹).其中两定点F 1,F 2叫焦点,定点间的距离叫焦距.(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e dPF =,0<e <1的常数}.2. 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0).其中22b a c -=(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c ).其中22b a c -= 3.椭圆一般方程两种标准方程可用统一形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B 当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),已知椭圆上的两个点这种形式用起来更方便. 4.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。
与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。
5.共离心率椭圆方程的椭圆标准方程共离心率,则e 相同。
与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为 ,6:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2x y O F F PA AB 11121222M M K K离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=7.性质:对于椭圆12222=+by a x (a >b >0)如下性质必须熟练掌握:1.范围;②对称轴、对称中心;③顶点;④焦点、焦距;⑤准线方程;⑥离心率. 焦半径c a PF c a PF -=+=min max,. 2.焦准距c b p 2=;两准线间的距离c a 22=;通径长22b a⨯.半通径.3.最大角()12122max FPF FB F ∠=∠4.8.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:当12222>+by a x 时,点P在椭圆外; 当12222>+by a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;9.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔10.弦长公式11.对椭圆方程22221x ya b +=作三角换元可得椭圆的参数方程:⎩⎨⎧θ=θ=sin cos b y a x ,θ为参数. 12.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:13对椭圆:12222=+b x a y ,则k AB =2020a xb y -.第三章:直线与方程的知识点倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题. 两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l 12k k =;(2)12l l ⊥121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=. 3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x BB=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A BA B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==。
椭圆知识点笔记

椭圆知识点笔记一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用集合语言表示为:$P =\{ M ||MF_1| +|MF_2| = 2a,2a >|F_1F_2| \}$,其中$|F_1F_2| = 2c$。
当$2a = 2c$时,动点的轨迹是线段$F_1F_2$;当$2a < 2c$时,动点无轨迹。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$表示椭圆的长半轴长,$b$表示椭圆的短半轴长,$c$满足$c^2 = a^2 b^2$,焦点坐标为$F_1(c, 0)$,$F_2(c, 0)$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$F_1(0, c)$,$F_2(0, c)$。
三、椭圆的几何性质1、范围对于焦点在$x$轴上的椭圆$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$,有$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$,有$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆,顶点坐标为$A_1(a, 0)$,$A_2(a, 0)$,$B_1(0, b)$,$B_2(0, b)$;焦点在$y$轴上的椭圆,顶点坐标为$A_1(0, a)$,$A_2(0, a)$,$B_1(b, 0)$,$B_2(b, 0)$。
椭圆的标准方程及性质

一.椭圆曲线的介绍1.域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:y2=x3+ax+b,(x,y)∈k2,a,b为k中常数,并且右边判别式Δ=−16(4a3+27b2)不等于0(即为了光滑性要求无重根)。
其上的点可以自然地有一个群结构(实数域为例,图自wiki):具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。
不难看出曲线y2=x3+ax+b,(x,y)∈k2关于x轴对称,R 的对称点就记为P+Q。
这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。
定义保证如下性质:随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),那么P+Q+R=0.这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):P,Q不重合时:P,Q重合时:总之在椭圆曲线上有一个交换群结构,因此我们可以从y2=x3+ax+b,(x,y)∈k2的一个有理解生成新的有理解,从而得到许多有理解。
椭圆曲线在复数域的图像可以看成复平面模掉一格C/Λ,也就是一个环面:Q上图像可直观想象是实数域的椭圆曲线上的有理点:(图自《数论1 FERMAT的梦想和类域-加藤和也》)而Qp等非阿局部域及Z/pZ等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。
此时不妨就把它看成代数几何意义上的一条曲线。
为了理解为什么椭圆曲线定义成y^2=三次多项式,我们简单讨论一番。
上面已经说过,我们希望找一些好的f,使得f=0即解全体带群结构。
而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。
椭圆知识点总结

椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。
椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。
二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。
2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。
3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。
4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。
5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。
7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。
三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。
2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。
因此,椭圆和圆可以看作是同一种几何图形的不同特例。
四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。
2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。
3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。
4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。
五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。
2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。
3. 椭圆的面积可以通过积分求解,面积公式为S = πab。
4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。
六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。
椭圆知识点与性质大全

椭圆与方程【知识梳理】 1、椭圆的定义平面内,到两定点1F 、2F 的距离之和为定长()1222,0a F F a a <>的点的轨迹称为椭圆,其中两定点1F 、2F 称为椭圆的焦点,定长2a 称为椭圆的长轴长,线段12F F 的长称为椭圆的焦距。
此定义为椭圆的第一定义。
2、椭圆的简单性质3、焦半径椭圆上任意一点P 到椭圆焦点F 的距离称为焦半径,且[],PF a c a c ∈-+,特别地,若00(,)P x y 为椭圆()222210x y a b a b +=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,则10||PF a ex =+,20||PF a ex =-,其中c e a =.4、通径过椭圆()222210x y a b a b+=>>焦点F 作垂直于长轴的直线,交椭圆于A 、B 两点,称线段AB 为椭圆的通径,且22b AB a =。
P 为椭圆()222210x y a b a b+=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,称12PF F ∆为椭圆的焦点三角形,其周长为:1222F PF C a c ∆=+,若12F PF θ∠=,则焦点三角形的面积为:122tan 2F PF S b θ∆=.6、过焦点三角形直线l 过椭圆()222210x y a b a b +=>>的左焦点1F ,与椭圆交于11(,)A x y 、22(,)B x y 两点,称2ABF ∆为椭圆的过焦点三角形,其周长为:24ABF C a ∆=,面积为212y y c S ABF -=∆.7、点与椭圆的位置关系()00,P x y 为平面内的任意一点,椭圆方程为22221(0)x y a b a b+=>>:若2200221x y a b +=,则P 在椭圆上;若2200221x y a b +>,则P 在椭圆外;若2200221x y a b+<,则P 在椭圆内。
椭圆标准方程及其性质知识点大全精编版

【专题七】椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2离心率①(01)c e e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【专题七】椭圆标准方程及其性质知识点大
(一)椭圆的定义及椭圆的标准方程:
•椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数
(二)椭圆的简单几何性:
•标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
2 2
x 2 y
2 =1 (a b O) a b
(PF 1
+ PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆•这两个定点叫椭圆的 焦
点,两焦点的距离叫作椭圆的 焦距.
注意:①若(PF 1
+ |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ;
②若(PF 1
+ PF ^<|F 1F 2 ),则动点P 的轨迹无图形
2
2
y 2
X
2 =1 (a ■ b ■ O)
a b
图形
性质
焦占 八焦距
范围
F i (-c,O),F 2(C ,0)
F I (O,-C ),F 2(0,C )
F 1F 2
=2C
F 1 F 2 = 2c
x^b, | y|
对称性
关于x 轴、y 轴和原点对称
标准方程
(_a,0) , (0,-b)
(0,-a), (_b,0)
顶点
•椭圆标准方程为
=1 (a b - 0),椭圆焦点三角形:
设P 为椭圆上任意一点,
F i ,F 2为焦点且/ F 1PF 2 »,则△ F i PF 2为焦点三角形,其面积为
轴长
长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b
离心率
① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a
(离心率越大,椭圆越扁)
【说明】:
1•方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c
都大于零,其中
a 最大且 a 2 =
b 2+
c 2.
2
2
2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A
2 2
S PF I F 2 = b 2
tan 。
2
(四)通径:如图:通径长
2 2
•椭圆标准方程:笃• — =1
a 2
b 2 (五)点与椭圆的位置关系:
C 1) 点
P(x o ,y o )在椭圆外=
a b a b
x
=1;
2 2
(3)点P( X0, y°)在椭圆内 2 2"
a b
(六)直线与椭圆的位置关系:
2 •设直线I的方程为:Ax+By+C=0,椭圆笃
a 组,消去y(或x)利用判别式△的符号来确定: (1)相交:厶・0:=直线与椭圆相交;(2)(3)相离:・「::0二直线与椭圆相离;
(七)弦长公式:
2
+爲=1(a > b > 0),联立组成方程
b
相切:厶=0=直线与椭圆相切;
•若直线 AB: y =kx ・b 与椭圆标准方程:
2 X
~2
a
2
•笃=1 (a . b 0)相交于两点 b
A(x i ,yj 、Bgy 2),
把AB 所在直线方程
2
y=kx+b ,代入椭圆方程笃
a 2
b 2
=1 整理得:A X 2+B X +C=0。
•弦长公式:① AB
=+ k 2 x 1 -
X 2
二 1k 2 . (x 「 X 2)2 _4恥2 (含
x 的方程)
②AB
y i
1 k
,2
\ (y 1 y 2)2 -4y 』2 =、1
的方程)
(八)圆锥曲线的中点弦问题: 遇到中点弦问题常用 “韦达定理”或“点差法”
求解。
设 A x 1, y 1 , B x 2, y 2 是椭圆
2 2
X y
2
牙=1(a b 0)上不重合的两点,
a
b
X o
直线AB 的斜率k AB , M X 0,y 。
是线段 AB 的中点坐标,
y o
x 「x 2 2 y 「y 2
2
2 2
红与=1 1
b
,
—1 2 b
2
a 2 X 2
2 a
两式相减得
X1
X2
X1
土 •
yi y2
丿
1 —y2
=0
一 y 1 一 y ?
■
X 1 _X 2
2
a
X 2
b 2
a y 1
y 2
所以1式可以解决与椭圆弦 此法称为点差法
(设而不求
AB 的斜率及中点有关的问题, )
圆内不含端点的线段)
【考点指要】
在历年的高考数学试题中,有关圆锥曲线的试题所占的比重约占试卷的 15%左右,且
题型,数量,难度保持相对稳定:选择题和填空题共 2道题,解答题1道,选择题和填空题
主要考查圆锥曲线的标准方程,
几何性质等;解答题往往是以椭圆,双曲线或抛物线为载体
的有一定难度的综合题,问题涉及函数,方程,不等式,三角函数,平面向量等诸多方面的 知识,并蕴含着数学结合,等价转化,分类讨论等数学思想方法,
对考生的数学学科能力及
思维能力的考查要求较高。
主要考查:圆锥曲线的概念和性质;直线与圆锥曲线的位置关系; 求曲线的方程;与圆锥曲线有关的定值问题,最值问题,对称问题,范围问题等。
曲线的应 用问题,探索问题以及圆锥曲线与其它数学内容的交汇问题也将是高考命题的热点。
椭圆标准方程:
2
x — a
2
y
b 2
=1 (a . b .0),以M(x o ,y °
)为中点的弦所在直线的斜率 kLK oM
b 2
~~2
;
a
椭圆标准方程
2 2
y x
2
2
= 1
(a b 0),以M (x o , y o )为中点的弦所在直线的斜率
a b
k _
k
OM
③斜率为k 的弦的中点轨迹方程:
设弦PQ 的端点为P(x 1
, y 1),Q(x 2,y 2),中点为M(x 0,
y 0),把P, Q 的坐标代入椭圆方程后作差相减用中点公式和斜率公式可得
x ky 小
/存
(椭。