1.1集合典例

合集下载

1.1.1集合的含义与表示2

1.1.1集合的含义与表示2

【解题探究】1.典例1中用列举法表示集合首先要确定什么? 提示:用列举法表示集合应首先确定集合中的元素. 2.典例2中数集和点集中的元素有什么不同? 提示:元素类别不同,点集中的元素是点,而数集中的元素是数.
【解析】1.(1)我国的直辖市有四个:北京、上海、天津、重庆,即我 国的直辖市组成的集合为: {北京,上海,天津,重庆}; (2)联合国安理会五大常任理事国有:中国、美国、俄罗斯、法国和英 国.即联合国安理会五大常任理事国组成的集合为 :{中国,美国,俄罗 斯,法国,英国}. 答案:(1){北京,上海,天津,重庆} (2){中国,美国,俄罗斯,法国,英国}
类型二
描述法表示集合
【典例】用描述法表示下列集合:
(1)被3除余2的正整数的集合.
(2)平面直角坐标系中坐标轴上的点组成的集合.
【解题探究】典例中用描述法表示集合时,解题顺序是什么? 提示:先找出代表元素,再在竖线后写出该集合中元素的公共属性.
【解析】(1)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数, 故x=3n+2,n∈N,所以被3除余2的正整数集合可表示为{x|x=3n+2,
【变式训练】已知f(x)=x2-ax+b(a,b∈R),A={x∈R|f(x)-x=0},
B={x∈R|f(x)-ax=0},若A={1,-3},试用列举法表示集合B.
【解析】因为f(x)-x=0,即x2-(a+1)x+b=0.
又因为A={1,-3}, 所以由根与系数的关系,得 1+ 3 a+1, 所以
第2课时
集合的表示
【知识提炼】
1.列举法表示集合
(1)定义:把集合的元素_________出来,并用_____________括起来表 一一列举 花括号“{}” 示集合的方法. (2)形式:A={a1,a2,a3,…,an}.

1.1.1集合的含义及表示ppt课件

1.1.1集合的含义及表示ppt课件

无序性 (3)只要构成两个集合的元素是一样的,我们 就称这两个集合是相等的。
集合中的元素有三大特性:确定性、互异性、无 序性。确定性经常作为判断一个总体能否构成集合的 依据。
4
思考:判断以下元素的全体是否组成集合, 并说明理由。
(1)大于3小于11的偶数; (2)我国的小河流。
5
补充例1 下列各组对象不能构成集合的是( ) A、所有的长方形 B、方程x2-3x-2=0的所有实数根 C、著名的数学家 D、1~20以内的所有质数
可简化为 B=﹛x|10<x<20﹜
吗?
15
至此,我们学习了表示集合的三种方法: 1、自然语言法; 2、列举法; 3、描述法。
16
补充例4 用符号 或 填空:
(1)5 _____ (2)(-1, 1) _____
x|xn2 1 ,n N
(3)(-1, 1) _____
y| yx2
(x,y)|yx2
集பைடு நூலகம்的含义及表示
1
请看下面的例子: (1)1~20 以内的所有素数; (2)我国从 2001~2008 年的 8 年内所发射的所有人造 卫星; (3)金星汽车厂 2003 年生产的所有汽车; (4)2000 年 1 月 1 日之前与我国建立外交关系的所有 国家; (5)所有的正方形; (6)到直线 l 的距离等于定长 d 的所有的点; (7)方程 x2+3x-2=0 的所有实数根; (8)光明中学 2009 年 9 月入学的所有的高一学生。
aA
8
表示元素与集合关系的符号为:
常用的数集及其记法:
非负整数集(或自然数集) N
正整数集 整数集
N*或 N+ Z
有理数集

1.1.1集 合的含义与表示

1.1.1集 合的含义与表示

1.1.1集合的含义与表示在我们日常生活和数学学习中,经常会遇到“集合”这个概念。

那什么是集合呢?集合就像是一个“大口袋”,把一些具有特定性质的对象装在一起。

比如说,咱们班所有同学就可以组成一个集合;一个书架上的所有书籍也能构成一个集合;一年中所有的月份也能形成一个集合。

从这些例子可以看出,集合是由一些确定的、互不相同的对象所组成的整体。

集合中的每个对象都被称为这个集合的元素。

元素是构成集合的基本单位。

比如在班级同学这个集合中,每一位同学就是其中的一个元素。

那怎么来表示一个集合呢?常见的方法有列举法、描述法和图示法。

列举法就是把集合中的元素一个一个地列出来。

就像咱们刚刚说的一年中所有的月份这个集合,就可以用列举法表示为{1 月,2 月,3 月,4 月,5 月,6 月,7 月,8 月,9 月,10 月,11 月,12 月}。

再比如小于 5 的自然数组成的集合,用列举法就是{0,1,2,3,4}。

描述法呢,是通过描述元素所具有的共同特征来表示集合。

比如{x | x 是小于 10 的正整数},这个集合就表示了小于 10 的所有正整数。

又比如{x | x 是方程 x² 4 = 0 的解},通过这样的描述,我们就能清楚地知道这个集合里的元素是哪些。

图示法中,我们常用的是韦恩图。

通过画一个封闭的曲线,把集合中的元素放在这个曲线内部。

比如有两个集合 A 和 B,A 是{1,2,3},B 是{2,3,4},我们就可以用韦恩图来直观地表示它们之间的关系。

集合还有一些重要的特性。

确定性是说,对于一个给定的集合,任何一个对象是不是这个集合的元素是确定的。

不能模棱两可,比如说“个子高的同学”就不能构成一个集合,因为“个子高”这个标准不明确。

互异性指的是集合中的元素不能重复。

比如{1,2,2,3}这样的表示就是错误的,应该写成{1,2,3}。

无序性则表示集合中的元素排列顺序是无所谓的。

{1,2,3}和{3,2,1}表示的是同一个集合。

高一数学集合典型例题、经典例题

高一数学集合典型例题、经典例题

高一数学集合典型例题、经典例题例1.1.给定集合A和B,其中A={x|x-2≤2},B={y|y=-x^2,-1≤x≤2},求A∩B。

解:将B中的条件用x表示出来,得到B={y|y=-(x-1)^2-1.-1≤x≤2}。

因为A和B都是关于x的条件,所以A∩B也是关于x的条件。

将A和B的条件合并,得到A∩B={x|-x^2≤x-2≤2.-1≤x≤2},即A∩B={x|1≤x≤2}。

例1.2.给定集合A和B,其中A={2,4,a^3-2a^2-a+7},B={1,a+3,a^2-2a+2,a^3+a^2+3a+7},且A∩B={2,5},求A∪B。

解:由A∩B={2,5}可得5∈A。

将5代入a^3-2a^2-a+7=5中解得a=±1或a=2.若a=-1,则B={1,2,5,4},与已知矛盾,舍去。

若a=1,则B={1,4,1,12},也与已知矛盾,舍去。

若a=2,则B={1,5,2,25}符合题意。

因此,A∪B={1,2,4,5,25}。

例2.1.给定集合A和B,其中A={x-2<x≤5},B={x-m+1≤x≤2m-1},且B⊆A,求实数m的取值范围。

解:因为XXX,所以B的最大值不大于A的最大值,即2m-1≤5,解得m≤3.又因为B的最小值不小于A的最小值,即m-1≥-2,解得m≥-1.综上所述,实数m的取值范围为-1≤m≤3.例2.2.给定集合A和B,其中A={x|x^2+x+1=0,x∈R},B={x|x≥0},且A∩B=∅,求实数a的取值范围。

解:由A∩B=∅可知,方程x^2+x+1=0没有实数解。

根据判别式Δ=b^2-4ac,得到Δ<0,即4a<1.因为a≠0,所以a<1/4.又因为当a=0时,方程x^2+x+1=0有实数解,所以a≥0.综上所述,实数a的取值范围为0≤a<1/4.例3.1.给定集合S和T,其中S={x|x>5或x<-1},T={x|a<x<a+8},且S∪T=ℝ,求实数a的取值范围。

1.1.1集合

1.1.1集合
3
• 集合的定义: 一般地,把一些能够确定的 对象看成一个整体,就说这个整体是Байду номын сангаас这 些对象的全体构成的集合(简称为集)。 构成集合的每个对象都叫做集合的元素。 • 注:集合的定义:一般地,一些能够确定的 对象的全体构成集合。
4
• 二、集合、元素及其关系的表示 • 一个集合通常用大写英文字母A,B,C,…表 示,它的元素通常用小写英文字母a,b,c,… 表示。 • 如果a是集合A的元素,就说a属于A,记作 a∈A,读作“a属于A”。 • 如果b不是集合A的元素,就说b不属于A, 记作b∉A,读作“b不属于A”。
• 集合
• 按照某种共同的特征 • 集中起来,合在一起
1
第一章 集合
1.1 集合及其表示
2
1.1.1
集合
• 一、集合的定义 • 例子: • (1)菏泽高级技工学校升学班高一年级学 生的全体; • (2)方程x2=4的所有实数根; • (3)所有的平行四边形; • (4)平面上到一条线段的两个端点距离相 等的点的全体。
8
• • • • •
课堂练习:教材第3页 练习1-1 作业: 一、教材第3页 练习1-1(做在作业本上) 二、阅读教材P2-P3 三、预习教材P4-P7,试着做学习指导与练 习P1-P4
9
5
• • • •
三、集合(元素)的性质 (1)确定性;(2)互异性; (3)无序性 含有有限个元素的集合叫做有限集,含有 无限个元素的集合叫做无限集。 • 特别地,我们把不含任何元素的集合叫做 空集,记作Φ 。
6
• • • • • •
四、常用数集及记号 自然数集 N 正整数集 N+或N* 整数集 Z 有理数集 Q 实数集 R

1.1 集合的概念及运算

1.1 集合的概念及运算

专题一集合与常用逻辑用语【真题典例】1.1集合的概念及运算挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.集合的含义与表示1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2018课标Ⅱ,2集合中元素个数的判断集合间的基本关系、集合的基本运算★☆☆2.集合间的基本关系1.理解集合之间包含与相等的含义,能识别给定集合的子集2011北京,1集合间的基本关系二次不等式的解法★☆☆2.在具体情境中,了解全集与空集的含义3.集合的基本运算1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集3.能使用韦恩(Venn)图表示集合间的关系及运算2018北京,12017北京,12016北京,12016北京文,142015北京文,12014北京,12013北京,1集合的交、并、补运算不等式和方程的解法★★★分析解读 1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握子、交、并、补集的概念,熟练掌握集合的交、并、补的运算和性质,能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.破考点【考点集训】考点一集合的含义与表示1.(2018课标Ⅱ,2,5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4答案 A2.(2012课标全国,1,5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10答案 D考点二集合间的基本关系3.已知集合A={0,a},B={x|-1<x<2},且A⊆B,则a可以是()A.-1B.0C.1D.2答案 C4.若集合A={x|0<x<1},B={x|x2-2x<0},则下列结论中正确的是()A.A∩B=⌀B.A∪B=RC.A⊆BD.B⊆A答案 C考点三集合的基本运算5.已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则(∁U A)∩B=()A.{1}B.{3,5}C.{1,6}D.{1,3,5,6}答案 B6.若集合A={x|-3<x<1},B={x|x<-1或x>2},则A∩B=()A.{x|-3<x<2}B.{x|-3<x<-1}C.{x|-1<x<1}D.{x|1<x<2}答案 B7.设全集U={x|x<5},集合A={x|x-2≤0},则∁U A=()A.{x|x≤2}B.{x|x>2}C.{x|2<x<5}D.{x|2≤x<5}答案 C8.(2016北京,1,5分)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案 C炼技法【方法集训】方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2014大纲全国,2,5分)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[-1,0)D.(-1,0]答案 B2.(2014重庆,11,5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.答案{7,9}方法2集合间的基本关系的解题方法3.已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=NB.M∩N=NC.M∪N=ND.M∩N=⌀答案 B方法3解决与集合有关的新定义问题的方法4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,则符合条件的非空集合A的个数是()A.10B.11C.12D.13答案 B过专题【五年高考】A组自主命题·北京卷题组1.(2018北京,1,5分)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}答案 A2.(2017北京,1,5分)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案 A3.(2017北京文,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案 C4.(2014北京,1,5分)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C5.(2013北京,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B6.(2011北京,1,5分)已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)答案 C7.(2016北京文,14,5分)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.答案①16②29B组统一命题、省(区、市)卷题组考点一集合的含义与表示(2016四川,1,5分)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案 C考点二集合间的基本关系(2015重庆,1,5分)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=⌀C.A⫋BD.B⫋A答案 D考点三集合的基本运算1.(2017课标Ⅰ,1,5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀答案 A2.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x 2+y 2=1},B={(x,y)|y=x},则A ∩B 中元素的个数为( ) A.3 B.2 C.1 D.0 答案 B3.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x 2-4x+m=0}.若A ∩B={1},则B=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5} 答案 C4.(2016课标Ⅰ,1,5分)设集合A={x|x 2-4x+3<0},B={x|2x-3>0},则A ∩B=( ) A.(-3,-32) B.(-3,32) C.(1,32) D.(32,3) 答案 D5.(2016课标Ⅱ,2,5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x ∈Z },则A ∪B=( ) A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3} 答案 C6.(2015课标Ⅱ,1,5分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A ∩B=( ) A.{-1,0} B.{0,1} C.{-1,0,1} D.{0,1,2} 答案 A7.(2014课标Ⅱ,1,5分)设集合M={0,1,2},N={x|x 2-3x+2≤0},则M ∩N=( ) A.{1} B.{2} C.{0,1} D.{1,2} 答案 D8.(2014课标Ⅰ,1,5分)已知集合A={x|x 2-2x-3≥0},B={x|-2≤x<2},则A ∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2) 答案 A9.(2018江苏,1,5分)已知集合A={0,1,2,8},B={-1,1,6,8},那么A ∩B= . 答案 {1,8}C 组 教师专用题组1.(2018天津,1,5分)设全集为R ,集合A={x|0<x<2},B={x|x ≥1},则A ∩(∁R B)=( ) A.{x|0<x ≤1} B.{x|0<x<1} C.{x|1≤x<2} D.{x|0<x<2} 答案 B2.(2017山东,1,5分)设函数y=√4-x 2的定义域为A,函数y=ln(1-x)的定义域为B,则A ∩B=( ) A.(1,2) B.(1,2] C.(-2,1) D.[-2,1) 答案 D3.(2017天津,1,5分)设集合A={1,2,6},B={2,4},C={x ∈R |-1≤x ≤5},则(A ∪B)∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{x ∈R |-1≤x ≤5} 答案 B4.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P ∪Q=( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 答案 A5.(2016天津,1,5分)已知集合A={1,2,3,4},B={y|y=3x-2,x ∈A},则A ∩B=( )A.{1}B.{4}C.{1,3}D.{1,4}答案 D6.(2016山东,2,5分)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案 C7.(2016浙江,1,5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)答案 B8.(2015福建,1,5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.⌀答案 C9.(2015浙江,1,5分)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]答案 C10.(2014浙江,1,5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.⌀B.{2}C.{5}D.{2,5}答案 B11.(2014陕西,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)答案 B12.(2014四川,1,5分)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1}D.{-1,0}答案 A13.(2014山东,2,5分)设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3)C.[1,3)D.(1,4)答案 C14.(2014辽宁,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D15.(2018北京,20,14分)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A 中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].M(α,β)=12(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.解析(1)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=1[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,2[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.M(α,β)=12(2)设α=(x1,x2,x3,x4)∈B,则M(α,α)=x1+x2+x3+x4.由题意知x1,x2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x2,x3,x4中1的个数为1或3.所以B⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(3)设S k={(x1,x2,…,x n)|(x1,x2,…,x n)∈A,x k=1,x1=x2=…=x k-1=0}(k=1,2,…,n),S n+1={(x1,x2,…,x n)|x1=x2=…=x n=0},所以A=S1∪S2∪…∪S n+1.对于S k(k=1,2,…,n-1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2,…,n-1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=(x1,x2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n-1).令B={e1,e2,…,e n-1}∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.16.(2014北京,20,13分,0.23)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.思路分析(1)根据题目中所给定义和已知的数对序列,直接求值;(2)利用最小值m的不同取值,对求出的结果比较大小;(3)依据数对序列的顺序对结果的影响,写出结论.评析本题考查了集合的表示、不等式、合情推理等知识;考查综合分析,归纳抽象,推理论证能力;熟练运用归纳的方法,通过特例分析理解抽象概念是解题的关键.17.(2016北京,20,13分)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”.记G(A)是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在a n使得a n>a1,则G(A)≠⌀;(3)证明:若数列A满足a n-a n-1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N-a1.解析(1)G(A)的元素为2和5.(2)证明:因为存在a n使得a n>a1,所以{i∈N*|2≤i≤N,a i>a1}≠⌀.记m=min{i∈N*|2≤i≤N,a i>a1},则m≥2,且对任意正整数k<m,a k≤a1<a m.因此m∈G(A).从而G(A)≠⌀.(3)证明:当a N≤a1时,结论成立.以下设a N>a1.由(2)知G(A)≠⌀.设G(A)={n1,n2,…,n p},n1<n2<…<n p.记n0=1,则a n0<a n1<a n2<…<a np.对i=0,1,…,p,记G i={k∈N*|n i<k≤N,a k>a ni}.如果G i≠⌀,取m i=min G i,则对任何1≤k<m i,a k≤a ni <a mi.从而m i∈G(A)且m i=n i+1.又因为n p是G(A)中的最大元素,所以G p=⌀.从而对任意n p≤k≤N,a k≤a np ,特别地,a N≤a np.对i=0,1,…,p-1,a ni+1-1≤a ni.因此a ni+1=a ni+1-1+(a ni+1-a ni+1-1)≤a ni+1.所以a N-a1≤a np -a1=∑i=1p(a ni-a ni-1)≤p.因此G(A)的元素个数p不小于a N-a1.思路分析(1)先理解G时刻的新定义,然后对(1)中具体的有穷数列直接套用定义解题,并感受解题规律;(2)根据a n>a1,研究两者之间数列的变化趋势;(3)抓住数列中相邻两项之差不超过1的特征,完成证明.18.(2015北京,20,13分)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n -36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析 (1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数. 由a n+1={2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数. 如果k>1,因为a k =2a k-1或a k =2a k-1-36, 所以2a k-1是3的倍数,于是a k-1是3的倍数. 类似可得,a k-2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数. 综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由a 1≤36,a n ={2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n,a n 是3的倍数, 因此当n ≥3时,a n ∈{12,24,36}, 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n,a n 不是3的倍数, 因此当n ≥3时,a n ∈{4,8,16,20,28,32}, 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.思路分析 (1)利用已知的递推关系写出数列的前几项,根据周期性写出集合M 的所有元素;(2)利用已知条件以及递推公式的特征进行证明;(3)根据a n 的范围,分a 1是3的倍数和a 1不是3的倍数两种情况讨论,继而得集合M 的元素个数的最大值.19.(2014天津,20,14分)已知q 和n 均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x 1+x 2q+…+x n q n-1,x i ∈M,i=1,2,…,n}. (1)当q=2,n=3时,用列举法表示集合A;(2)设s,t ∈A,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,其中a i ,b i ∈M,i=1,2,…,n.证明:若a n <b n ,则s<t. 解析 (1)当q=2,n=3时,M={0,1},A={x|x=x 1+x 2·2+x 3·22,x i ∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t ∈A,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,a i ,b i ∈M,i=1,2,…,n 及a n <b n ,可得 s-t=(a 1-b 1)+(a 2-b 2)q+…+(a n-1-b n-1)q n-2+(a n -b n )q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q -1)(1-q n -1)1-q-q n-1=-1<0. 所以,s<t.评析本题主要考查集合的含义与表示,等比数列的前n 项和公式,不等式的证明等基础知识.考查运算能力、分析问题和解决问题的能力.20.(2016江苏,20,16分)记U={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T,若T=⌀,定义S T =0;若T={t 1,t 2,…,t k },定义S T =a t 1+a t 2+…+a t k .例如:T={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T={2,4}时,S T =30. (1)求数列{a n }的通项公式;(2)对任意正整数k(1≤k ≤100),若T ⊆{1,2,…,k},求证:S T <a k+1; (3)设C ⊆U,D ⊆U,S C ≥S D ,求证:S C +S C ∩D ≥2S D . 解析 (1)由已知得a n =a 1·3n-1,n ∈N *.于是当T={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1.所以数列{a n }的通项公式为a n =3n-1,n ∈N *.(2)因为T ⊆{1,2,…,k},a n =3n-1>0,n ∈N *, 所以S T ≤a 1+a 2+…+a k =1+3+…+3k-1=12(3k-1)<3k.因此,S T <a k+1.(3)下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E=C ∩∁U D,F=D ∩∁U C,则E ≠⌀,F ≠⌀,E ∩F=⌀. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D 得S E ≥S F .设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l.由(2)知,S E <a k+1.于是3l-1=a l ≤S F ≤S E <a k+1=3k,所以l-1<k,即l ≤k.又k ≠l,故l ≤k-1.从而S F ≤a 1+a 2+…+a l =1+3+…+3l-1=3l -12≤3k -1-12=a k -12≤S E -12, 故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D .【三年模拟】一、选择题(每小题5分,共75分)1.(2019届北京顺义一中10月月考文,1)设全集U=R ,A={x ∈N *|1≤x ≤10},B={x ∈R |x 2+x-6=0},则下图中阴影部分表示的集合是( )A.{2}B.{3}C.{-3,2}D.{-2,3}答案 A2.(2018北京门头沟一模,1)设全集U={0,1,2,3,4,5},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{0,4}B.{1,5}C.{0,2,4}D.{2,0,5}答案 C3.(2019届北京潞河中学10月月考文,1)已知集合A={1,2,m2},B={1,m}.若B⊆A,则m=()A.0B.2C.0或2D.1或2答案 C4.(2019届北京潞河中学10月月考,1)已知集合A={-1,0,1},B={x|x2<1},则A∩B=()A.{-1,1}B.{0}C.{-1,0,1}D.{x|-1≤x≤1}答案 B5.(2018北京顺义二模,1)设集合A={x|x2+3x+2=0},B={-2,-1,0,1,2},则A∩B=()A.{-2,-1}B.{-2,1}C.{1,2}D.{-2,-1,0,1,2}答案 A6.(2018北京房山一模,1)若集合M={-1,0,1,2},N={y|y=2x+1,x∈M},则集合M∩N等于()A.{-1,1}B.{1,2}C.{-1,1,3,5}D.{-1,0,1,2}答案 A7.(2019届中央民大附中10月月考,1)已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)=()A.{x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}答案 A8.(2019届北京牛栏山一中期中,1)已知全集U=R,集合A={x|0<x<2},B={x|x2-1>0},那么A∩∁U B=()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1<x<2}D.{x|1≤x<2}答案 B9.(2019届北京十四中10月月考,1)设集合M={x|0≤x<3},N={x|x2-3x-4<0},则集合M∩N等于()A.{x|0≤x<3}B.{x|0≤x≤3}C.{x|0≤x≤1}D.{x|0≤x<1}答案 A10.(2019届北京一零一中学10月月考,1)已知集合A={x|-1<x<1},B={x|x2-x-2<0},则(∁R A)∩B=()A.(-1,0]B.[-1,2)C.[1,2)D.(1,2]答案 C11.(2018北京东城二模,1)若集合A={x|-1<x<2},B={x|x<-2或x>1},则A∪B=()A.{x|x<-2或x>1}B.{x|x<-2或x>-1}C.{x|-2<x<2}D.{x|1<x<2}答案 B12.(2018北京石景山一模,1)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案 A13.(2018北京朝阳二模,1)已知集合A={x|log 2x>1},B={x|x ≥1},则A ∪B=( )A.(1,2]B.(1,+∞)C.(1,2)D.[1,+∞)答案 D14.(2018北京一六一中学期中,1)已知全集U=R ,集合A={x|y=√x -1},B={x|x 2-2x<0},则A ∪B=( )A.{x|x>0}B.{x|x ≥0}C.{x|0<x<1}D.{x|1≤x<2}答案 A15.(2019届北京海淀期中,1)已知集合A={x|x-a ≤0},B={1,2,3},若A ∩B ≠⌀,则a 的取值范围为( )A.(-∞,1]B.[1,+∞)C.(-∞,3]D.[3,+∞)答案 B 二、填空题(每小题5分,共5分)16.(2019届北京潞河中学10月月考,16)若集合{a,b,c,d}={1,2,3,4},且下列四个说法:①a=2,②b≠2,③c=3,④d≠4中有且只有一个是正确的,则满足上述条件的一个有序数组(a,b,c,d)可以是 ,符合条件的全部有序数组(a,b,c,d)的个数是 .答案 (1,2,3,4)(答案不唯一,例如(1,2,4,3),(1,3,2,4),(3,1,2,4),(3,2,4,1),(4,2,1,3));6三、解答题(共20分)17.(2019届北京四中期中,15)已知集合A={x ∈R|6x+1≥1},B={x ∈R |x 2-2x-m<0}. (1)当m=3时,求A ∩(∁R B);(2)若A ∩B={x|-1<x<4},求实数m 的值.解析 由6x+1≥1,得x -5x+1≤0,∴-1<x ≤5,∴集合A={x|-1<x ≤5}.(1)当m=3时,B={x|-1<x<3},则∁R B={x|x ≤-1或x ≥3},∴A∩(∁R B)={x|3≤x ≤5}.(2)∵A={x|-1<x ≤5},A ∩B={x|-1<x<4},∴4为方程x 2-2x-m=0的一个根,即42-2×4-m=0,解得m=8.此时B={x|-2<x<4},符合题意,故实数m 的值为8.18.(2019届北京牛栏山一中期中,20)已知集合S n ={X|X=(x 1,x 2,…,x n ),x i ∈{0,1},i=1,2,…,n(n ≥2)}.若A=(a 1,a 2,…,a n )∈S n ,B=(b 1,b 2,…,b n )∈S n ,定义A 与B 的差为A-B=(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |),A 与B 之间的距离为d(A,B)=∑i=1n |a i -b i |. (1)当n=5时,试写出满足d(A,B)=3的一组A 和B;(2)∀A,B,C ∈S n ,证明:A-B ∈S n ,d(A-C,B-C)=d(A,B);(3)∀A,B,C ∈S n ,证明:d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.解析 (1)A=(1,1,1,0,0),B=(0,0,0,0,0).(2)证明:设A=(a 1,a 2,...,a n ),B=(b 1,b 2,...,b n ),C=(c 1,c 2,...,c n )∈S n ,因为a i ,b i ∈{0,1},所以|a i -b i |∈{0,1}(i=1,2,...,n),故A-B=(|a 1-b 1|,|a 2-b 2|,...,|a n -b n |)∈S n .又d(A-C,B-C)=∑i=1n||a i -c i |-|b i -c i ||, 由题意知a i ,b i ,c i ∈{0,1}(i=1,2,...,n).当c i =0时,||a i -c i |-|b i -c i ||=|a i -b i |;当c i =1时,||a i -c i |-|b i -c i ||=|(1-a i )-(1-b i )|=|a i -b i |,所以d(A-C,B-C)=∑i=1n|a i -b i |=d(A,B). (3)证明:设A=(a 1,a 2,...,a n ),B=(b 1,b 2,...,b n ),C=(c 1,c 2,...,c n )∈S n ,d(A,B)=k,d(A,C)=l,d(B,C)=h. 记O=(0,0,...,0)∈S n ,由(2)可知,d(A,B)=d(A-A,B-A)=d(O,B-A)=k,d(A,C)=d(A-A,C-A)=d(O,C-A)=l,d(B,C)=d(B-A,C-A)=h,所以|b i -a i |(i=1,2,...,n)中1的个数为k,|c i -a i |(i=1,2,...,n)中1的个数为l.设t 是当|b i -a i |=|c i -a i |=1成立时i 的个数,则h=l+k-2t,由此可知,k,l,h 三个数不可能都是奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.评析对于集合中的新定义问题,应该首先把新的概念分析透彻,然后静下心来,慢慢地从第(1)问开始,由浅入深的分析.。

一.1.1集合

一.1.1集合

例1 设A={ -2,-1,0,1,2 } ,
B={ 1, 求A∪B。 2,3, 4 ,5 } ,
解: A∪B
={-2,-1,0,1,2} ∪ {1,2,3,4,5} ={-2,-1,0,1,2,3,4,5}
例2
设A={x∣-2<x<3},
B={x∣1≤x≤ 5} 求A∪B 解:A∪B= {x∣-2<x<3}∪ {x∣1≤x≤ 5} = {x∣-2<x≤ 5}
3、设A={x∣-2≤x<3},B={x∣x≥ 1} 4、设A={x∣x≥ 2},B={x∣x<-2 }
课堂练习答案 1、设A={x∣x<-2},B={x∣x≤ 2 }
B A A∩B -3 -2 -1 0 1 2 x
{x∣x<-2}
2、设A={x∣x>-2},B={x∣x≤ 2 }
B
A
A∩B -3 -2 -1 0 1 2 x
A∩B的元素实质是A与B的公共元素 A∩B读作“A交B”
交集运算一:列举法
例1 设A={ 12的正约数 } ,B={ 18的正约数 }
用列举法写出12与18的正公约数集。 解:A={ 1, 2,3, 4,6, 12 }
B={ 1, 2,3, 6,9, 18 }
A∩B = { 1, 2,3, 4,6, 12 } ∩ { 1, 2, 3, 6, 9, 18 } = { 1, 2, 3 , 6 }
A∪B B
A
-2 -1 0 1 2 3 4 5
X
真题演练
F
E
解: 点A表示-2; 点D表示-1;
点B表示2;
点E表示2.5;
点F表示-0.5。
点C表示0;
3.若a,b,c三个数在数轴上的点如图所示, b<a<c . 则a,b,c的大小关系为____

高一数学必修一1.1《集合的概念》典型例题分析(人教版)

高一数学必修一1.1《集合的概念》典型例题分析(人教版)

16
4.已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A, 试求实数 a 的值.
[解] ∵-3∈A,∴-3=a-3 或-3=2a-1, 若-3=a-3,则 a=0, 此时集合 A 中含有两个元素-3,-1,符合题意; 若-3=2a-1,则 a=-1, 此时集合 A 中含有两个元素-4,-3,符合题意. 综上所述,a=0 或 a=-1.
解析:0,1,2 ∵3-6 x∈N,∴3-x=1 或 2 或 3 或 6, 即 x=2 或 1 或 0 或-3. 又 x∈N,故 x=0 或 1 或 2. 即集合 A 中的元素为 0,1,2.
集合中元素的特性及应用 1.已知集合 A 含有两个元素 1 和 a2,若 a∈A,求实数 a 的值. [思路点拨] A 中含有元素:1 和 a2 ―a∈―A→ a=1 或 a2=a 求―a―的→值 检验集合中元素的互异性
(3)CBA 中得分前五位的球员;
(4)CBA 中比较高的球员.
解:(1)CBA的所有队伍是确定的,所以可以构成一个集合. (2)“比较著名”没有衡量的标准,对象不确定,所以不能构成一个集合. (3)“得分前五位”是确定的,所以可以构成一个集合. (4)“比较高”没有衡量的标准,对象不确定,所以不能构成一个集合.
2.元素与集合的关系 关系 属于 不属于
语言描述 a 是集合 A 中的元素 a 不是集合 A 中的元素
记法
读法
a∈A
a 属于集合 A
aA
a 不属于集合 A
对元素和集合之间关系的两点说明 (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素 a 与一个集合 A 而言,只有“a∈A”与“a∉A”这两种结果. (2)∈和∉具有方向性,左边是元素,右边是集合,形如 R∈0 是错误的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三----------集合练习
1、如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( )
A .{}5
B . {}8,7,6,5,4,3,1
C . {}8,2
D . {}7,3,1
2、已知全集,集合,,则为( )
A .{1,2,4}
B .{2,3,4}
C .{0,2,4}
D .{0,2,3,4}
3、设集合A ={2,3},B ={2,3,4},C ={3,4,5}则A B C = ()( )
A .{2,3,4}
B .{2,3,5}
C .{3,4,5}
D .{2,3,4,5}
4、若全集U ={0,2,4,6,8,10},集合A ={2,4,6},B={1},则(U C A )∪B =( )
A .{0,1,8,10}
B .{1,2,4,6}
C .{0,8,10}
D .φ
5、2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B = ,则a 的值是 ( )
A .3a =
B . 3a =-
C .3a =±
D .53a a ==±或
6、已知{}23,2,25,12A A a a a -∈=-+ ,则a =__________
7、若{}|1P x x =<,{}|1Q x x =>,则( )
A P Q ⊆.
B Q P ⊆. R
C C P Q ⊆. R
D Q C P ⊆.
8、设全集U =R ,A =,则上图中阴影部分表示的集合为( )
A .
B .
C .
D .
9、已知集合}1,1{-=M ,},4221
|{1Z ∈<<=+x x N x ,则M N = ( )
A .}1,1{-
B .∅
C .)1,1(-
D .}1{-
10、已知全集为R ,集合⎭⎬⎫⎩⎨⎧≤-+=021
|x x x M ,{}1)2(ln |1<=-x x N ,则集合=)(N C M R ()
A .[]1,1-
B .[)1,1-
C .[]2,1
D .[)2,1
11、.设全集U R =,集合21
{|230},{|ln 0}1M x x x N x x =+-≤=>-,则M N 等于( )
A .M
B .∅
C .N
D .{|12}x x -≤<
12、已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( )
A .3,1x y ==-
B .(3,1)-
C .{3,1}-
D .{(3,1)}-
{0,1,2,3,4}U ={1,2,3}A ={2,4}B =()U A B ð(2){|21},{|ln(1)}x x x B x y x -<==-{|1}x x ≥{|12}x x ≤<{|01}x x <≤{|1}x x ≤
13、已知集合}045|{2>+-=x x x A ,}4|3||{<-=x x B ,则B A =( )
A .)7,4()1,1( -
B .Φ
C .),7()1,(+∞--∞
D .)7,1(-
14、若集合2{|02},{|1}A x x B x x =≤≤=>,则A B = ( )
A .{|01}x x ≤≤
B .{|0x x >或1}x <-
C .{|12}x x <≤
D .{|02}x x <≤
15、已知R 是实数集,2
1x x ⎧
⎫M =<⎨⎬⎩⎭

{y y N ==,则R N M = ð( )
A .()1,2
B .[]0,2
C .∅
D .[]1,2
16、已知全集则( )
A .
B .
C .
D .
17、已知集合{},3M m =-,{}22730,N x x x x =++<∈Z ,如果M N ≠∅ ,则m 等于( )
A .1-
B .2-
C .2-或1-
D .3
2-
18、已知集合4
{|}3A x N Z x =∈∈-,则用列举法表示集合A=
19、已知集合{}*,,A B x x a b a M b N ==-∈∈ ,其中{}{}4,5,6,1,2,3M N == , 则*A B 的元素之和为________________.
20、设{}{}(),1,05,U U R A x x B x x C A B ==≥=<< 求和()U A C B .
20、设集合{}03102≥-+=x x x A ,{}121-≤≤+=m x m x B ,若A B ⊆,求实数m 的取值范围.
,{|21},{|ln 0}x U R A y y B x x ===+=<U A B = ð∅1
{|1}2x x <≤{|1}x x <{|01}x x <<。

相关文档
最新文档