第三章栈、队列和递归B

合集下载

数据结构(C语言)第3章 栈和队列

数据结构(C语言)第3章 栈和队列

Data Structure
2013-8-6
Page 13
栈的顺序存储(顺序栈)
利用一组地址连续的存储单元依次存放自栈底到栈顶的数 据元素。 结构定义: #define STACK_INIT_SIZE 100; // 存储空间初始分配量 #define STACKINCREMENT 10; // 存储空间分配增量 typedef struct { SElemType *base; // 存储空间基址 SElemType *top; // 栈顶指针 int stacksize; // 当前已分配的存储空间,以元素位单位 } SqStack;
解决方案2:
顺序栈单向延伸——使用一个数组来存储两个栈
Data Structure 2013-8-6 Page 21
两栈共享空间 两栈共享空间:使用一个数组来存储两个栈,让一个 栈的栈底为该数组的始端,另一个栈的栈底为该数组 的末端,两个栈从各自的端点向中间延伸。
Data Structure
2013-8-6
链栈需要加头结点吗? 链栈不需要附设头结点。
Data Structure
2013-8-6
Page 27
栈的链接存储结构及实现
Data Structure
2013-8-6
Page 11
GetTop(S, &e) 初始条件:栈 S 已存在且非空。 操作结果:用 e 返回S的栈顶元素。 Push(&S, e) 初始条件:栈 S 已存在。 操作结果:插入元素 e 为新的栈顶元素。 Pop(&S, &e) 初始条件:栈 S 已存在且非空。 操作结果:删除 S 的栈顶元素,并用 e 返回其值。
Data Structure

数据结构课件第3章

数据结构课件第3章

0
1
2
3
4
5
6
7
a1
a2
a3
a4
a5
a6
a7
队头 F=0
队尾 R=7
a3 2 1 3 0 4 7 a3 5 6 3 a2 2 1 a1 0 F=0 a4 4 a5 5 6 a6 7 a7 R=0 R=7 3 a2 2 1 a1 0
a4 4 a5 5 6 a6 7
a8
F=0
a7
R=0
F=0
删除所有元素
top X W … B top
top=0 空栈
top
W

B A
top=m-1 元素X出栈
top
A
A
top=m 满栈
top=1 元素A入栈
例:堆栈的插入、删除操作。 出栈操作程序如下: # define m 1000; /*最大栈空间*/ 出栈操作算法: 1)栈顶指针top是否为0: typedef struct stack_stru 若是,则返回;若不是, { int s[m]; int top; }; 则执行2。 void pop (stack, y) 2)将栈顶元素送给y, struct stack_stru stack; 栈顶指针减1。 int *y; { if (stack.top = = 0) printf (“The stack is empty ! \n”); top Y Y else { top B B *y=stack.s[stack.top]; A A stack.top - -; } 出栈操作 }
top=p;
} 栈的入栈、出栈操作的时间复杂度都为O(1)。
栈的应用
一、 表达式求值 表达式由操作数、运算符和界限符组成。 运算符可包括算术运算符、关系运算符、逻辑运算符。

数据结构 习题 第三章 栈和队列 答案

数据结构 习题 第三章 栈和队列 答案

第三章栈和队列部分答案解释如下。

1、尾递归的消除就不需用栈2、这个数是前序序列为1,2,3,…,n,所能得到的不相似的二叉树的数目。

三、填空题1、操作受限(或限定仅在表尾进行插入和删除操作)后进先出2、栈3、3 1 24、23 100CH5、0 n+1 top[1]+1=top[2]6、两栈顶指针值相减的绝对值为1(或两栈顶指针相邻)。

7、(1)满 (2)空 (3)n (4)栈底 (5)两栈顶指针相邻(即值之差的绝对值为1)8、链式存储结构 9、S×SS×S×× 10、data[++top]=x;11、23.12.3*2-4/34.5*7/++108.9/+(注:表达式中的点(.)表示将数隔开,如23.12.3是三个数)12、假溢出时大量移动数据元素。

13、(M+1) MOD N (M+1)% N; 14、队列 15、先进先出 16、先进先出 17、s=(LinkedList)malloc(sizeof(LNode)); s->data=x;s->next=r->next;r->next=s;r=s;18、牺牲一个存储单元设标记19、(TAIL+1)MOD M=FRONT (数组下标0到M-1,若一定使用1到M,则取模为0者,值改取M20、sq.front=(sq.front+1)%(M+1);return(sq.data(sq.front));(sq.rear+1)%(M+1)==sq.front;21、栈 22、(rear-front+m)% m; 23、(R-P+N)% N;24、(1)a[i]或a[1] (2)a[i] (3)pop(s)或s[1];25、(1)PUSH(OPTR,w)(2)POP(OPTR)(3)PUSH(OPND,operate(a,theta,b))26、(1)T>0(2)i<n(3)T>0(4)top<n(5)top+1(6)true(7)i-1(8)top-1(9)T+w[i](10)false四、应用题1、栈是只准在一端进行插入和删除操作的线性表,允许插入和删除的一端叫栈顶,另一端叫栈底。

《数据结构及其应用》笔记含答案 第三章_栈和队列

《数据结构及其应用》笔记含答案 第三章_栈和队列

第3章栈和队列一、填空题1、栈是限定仅在表尾进行插入或删除操作的线性表。

2、栈的修改是按照后进先出的原则进行的。

3、队是一种先进先出的线性表。

4、把队列头尾相接的顺序存储结构称为循环队列。

5、队列也是一种操作受限的线性表,允许插入的一端叫做__队尾___,允许删除的一端叫做__队头__。

二、判断题1、栈和队列的存储,既可以采用顺序存储结构,又可以采用链式存储结构。

(√)2、任何一个递归过程都可以转换成非递归过程。

(√)3、若输入序列为1,2,3,4,5,6,则通过一个栈可以输出序列3,2,5,6,4,1。

(√)4、通常使用队列来处理函数的调用。

(╳)5、循环队列通常用指针来实现队列的头尾相接。

(╳)三、单项选择题1、若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在(C)种情况。

A.5,4,3,2,1 B.2,1,5,4,3 C.4,3,1,2,5 D.2,3,5,4,1解释:栈是后进先出的线性表,不难发现C选项中元素1比元素2先出栈,违背了栈的后进先出原则,所以不可能出现C选项所示的情况。

2、若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为(C)。

A.i B.n-i C.n-i+1 D.不确定解释:栈是后进先出的线性表,一个栈的入栈序列是1,2,3,…,n,而输出序列的第一个元素为n,说明1,2,3,…,n一次性全部进栈,再进行输出,所以p1=n,p2=n-1,…,pi=n-i+1。

3、数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为(D)。

A.r-f B.(n+f-r)%n C.n+r-f D.(n+r-f)%n解释:对于非循环队列,尾指针和头指针的差值便是队列的长度,而对于循环队列,差值可能为负数,所以需要将差值加上MAXSIZE(本题为n),然后与MAXSIZE(本题为n)求余,即(n+r-f)%n。

数据结构练习题第三章栈、队列和数组习题及答案

数据结构练习题第三章栈、队列和数组习题及答案

第三章栈、队列和数组一、名词解释:1.栈、栈顶、栈底、栈顶元素、空栈2.顺序栈3.链栈4.递归5.队列、队尾、队头6.顺序队7.循环队8.队满9.链队10.随机存储结构11.特殊矩阵12.稀疏矩阵13.对称方阵14.上(下)三角矩阵二、填空题:1.栈修改的原则是_________或称________,因此,栈又称为________线性表。

在栈顶进行插入运算,被称为________或________,在栈顶进行删除运算,被称为________或________。

2.栈的基本运算至少应包括________、________、________、________、________五种。

3.对于顺序栈,若栈顶下标值top=0,此时,如果作退栈运算,则产生“________”。

4.对于顺序栈而言,在栈满状态下,如果此时在作进栈运算,则会发生“________”。

5.一般地,栈和线性表类似有两种实现方法,即________实现和________实现。

6.top=0表示________,此时作退栈运算,则产生“________”;top=sqstack_maxsize-1表示________,此时作进栈运算,则产生“________”。

7.以下运算实现在顺序栈上的初始化,请在________处用适当的句子予以填充。

int InitStack(SqStackTp *sq){ ________;return(1);}8.以下运算实现在顺序栈上的进栈,请在________处用适当的语句予以填充。

Int Push(SqStackTp *sq,DataType x){ if(sp->top==sqstack_maxsize-1}{error(“栈满”);return(0);}else{________________:________________=x;return(1);}}9.以下运算实现在顺序栈上的退栈,请在________________用适当句子予以填充。

第三章 栈

第三章 栈

S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
S
e P
p=(Lstack)malloc(sizeof(lnode));
p->data=e; p->next=s; s=p; return (1); }
S
∧ base
2.3.1.3 栈的应用
(1) 过程的嵌套
主 程 序 r 子 程 序 1 s r 子 程 序 2
S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
P p=(Lstack)malloc(sizeof(lnode));
p->data=e; S
p->next=s;
s=p; return (1); }
∧ base
进栈算法
int lpush(Lstack s, int e)
4 3 2
栈s
top a4 a3 a2 a1
else { - -top;
*py=s[top]; /*返回出栈元素*/
1
0
*ptop=top;
return(1);}}
(2)链栈
用指针来实现的栈叫链栈。栈的容量事先不能 估计时采用这种存储结构。 链栈的类型说明如下:
Typedef struct lnode
(c) 7,5,9,3 (d) 9,5,7,3
A[T]是栈顶元素
P76#15 用一维数组设计栈,初态是栈空, top=0。现有输入序列是 a、b、c、d,经过 push 、push、pop、push、pop、push操作后,输出 序列是( b、c ),栈顶指针是( 2 )

数据结构第3章栈

数据结构第3章栈
Elemtype pop(sqstack *s) { /*若栈s不为空,则删除栈顶元素*/ Elemtype x; if(s->top<0) return NULL; /*栈空*/ x=s->stack[s->top]; s->top--; return x; }
13
(4)取栈顶元素操作
Elemtype gettop(sqstack *s) { /*若栈s不为空,则返回栈顶元素*/ If(s->top<0) return NULL; /*栈空*/ return (s->stack[s->top]); }

29
算术表达式求值
在计算机中,任何一个表达式都是由: 操作数(operand)、运算符(operator)和 界限符(delimiter)组成的。 其中操作数可以是常数,也可以是变量或常量的 标识符;运算符可以是算术运算体符、关系运算符和 逻辑符;界限符为左右括号和标识表达式结束的结束 符。
30
6
存储结构
栈是一种特殊的线性表,有两种存储方式: 顺序存储结构存储
链式存储结构存储。


7
顺序栈的数组表示
与第二章讨论的一般的顺序存储结构的线性表 一样,利用一组地址连续的存储单元依次存放自 栈底到栈顶的数据元素,这种形式的栈也称为顺 序栈。 使用一维数组来作为栈的顺序存储空间。 设指针top指向栈顶元素的当前位置,以数组 小下标的一端作为栈底。 top=0时为空栈,元素进栈时指针top不断地 加1,当top等于数组的最大下标值时则栈满。
5)假如读出的运算符的优先级不大于运算符栈栈顶运算符
的优先级,则从操作数栈连续退出两个操作数,从运算符栈中 退出一个运算符,然后作相应的运算,并将运算结果压入操作 数栈。此时读出的运算符下次重新考虑(即不读入下一个符号 )。

数据结构练习题 第三章 栈、队列和数组 习题及答案

数据结构练习题 第三章 栈、队列和数组 习题及答案

第三章栈、队列和数组一、名词解释:1.栈、栈顶、栈底、栈顶元素、空栈2.顺序栈3.链栈4.递归5.队列、队尾、队头6.顺序队7.循环队8.队满9.链队10.随机存储结构11.特殊矩阵12.稀疏矩阵13.对称方阵14.上(下)三角矩阵二、填空题:1.栈修改的原则是_________或称________,因此,栈又称为________线性表。

在栈顶进行插入运算,被称为________或________,在栈顶进行删除运算,被称为________或________。

2.栈的基本运算至少应包括________、________、________、________、________五种。

3.对于顺序栈,若栈顶下标值top=0,此时,如果作退栈运算,则产生“________”。

4.对于顺序栈而言,在栈满状态下,如果此时在作进栈运算,则会发生“________”。

5.一般地,栈和线性表类似有两种实现方法,即________实现和________实现。

6.top=0表示________,此时作退栈运算,则产生“________”;top=sqstack_maxsize-1表示________,此时作进栈运算,则产生“________”。

7.以下运算实现在顺序栈上的初始化,请在________处用适当的句子予以填充。

int InitStack(SqStackTp *sq){ ________;return(1);}8.以下运算实现在顺序栈上的进栈,请在________处用适当的语句予以填充。

Int Push(SqStackTp *sq,DataType x){ if(sp->top==sqstack_maxsize-1}{error(“栈满”);return(0);}else{________________:________________=x;return(1);}}9.以下运算实现在顺序栈上的退栈,请在________________用适当句子予以填充。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

链队列的实现——出队
操作接口: template <class T> T LinkQueue<T>::DeQueue() front
a1
a2
an ∧ rear 队列不空时算法描述:
Node<T>*p=front;
P front 队列只有一个元素时?
Node<T>*p=front; x=p->data; front==rear; Front=NULL; front delete p;
算法实现:
template <class T> void LinkQueue<T>::EnQueue(T x) { Node<T> *s; s=new Node<T>; s->data=x; //申请一个数据域为x的结点s s->next=NULL; if(front==NULL)//空队列,新结点既是队头,又是队尾 { front=rear=s; } else { rear->next=s; //将结点s插入到队尾 rear=s;} }
链队的构造函数算法实现
操作接口: template <class T> LinkQueue<T>::LinkQueue( ); 算法实现: template <class T> LinkQueue<T>::LinkQueue( ) {
front=rear=NULL;
}
链队列的实现——入队 操作接口:
无需考虑满的情况。
链式队列类的定义: template <class T> struct Node { T data; Node<T> *next; //此处<T>也可以省略 }; template <class T> class LinkQueue { public: LinkQueue( ); //构造函数,初始化一个空的链队列 ~LinkQueue( );//析构函数,释放链队中各结点的存储空间 void EnQueue(T x); //将元素x入队 T DeQueue( ); //将队头元素出队 T GetQueue( ); //取链队列的队头元素 bool Empty( ); //判断链队列是否为空 private: Node<T> *front, *rear; //队头和队尾指针,分别指向头结点和终端结点 };
template <class T> void LinkQueue<T>::EnQueue(T x) front a 1 an ∧ x ∧
rear rear s front x front 队不空核心算法描述: ∧ NULL Node<T>*s=new Node<T>; s->data=x; rear s rear s->next=NULL; rear->next=s; 队空时核心算法描述: Node<T>*s=new Node<T>; rear=s; s->data=x; s->next=NULL; front=rear=s;
循环队列的读队头元素算法实现
操作接口:
出队
入队
0
1
2

3
4
template <class T> T DCirQueue<T>::GetQueue( )
a3
a4
a5
a6
rear
算法实现: front i template <class T> T DCirQueue<T>::GetQueue( ) { int i; if (rear==front) throw “队空!"; i=(front+1) % maxsize; //注意不要给队头指针赋值 return queue[i]; a1 }
J8
J9
front front J1
J5
J4
front
J7
rear
J6 J5
front
rear
rear
rear
解:由图可知,初始状态,队头和队尾指针的初态分别为 front=0和rear=5。
删除4个元素后(front+4)%6=4; 再插入4个元素后,r=(rear+4)%6=(5+4)%6=3
动态循环队列类的定义:(重点) //DCirQueue.h #ifndef DCirQueue_H #define DCirQueue_H template <class T> //定义模板类DCirQueue class DCirQueue {public: DCirQueue( int size=10); //构造函数,置空队 ~ DCirQueue( ){delete []queue;}; //析构函数 void EnQueue(T x); //将元素x入队 T DeQueue( ); //将队头元素出队 T GetQueue( ); //取队头元素(并不删除) bool IsEmpty( ); //判断队列是否为空 int Isfull()const{return (rear+1)%maxsize==front;} //队列满则返回1,否则返回0 private: T *queue; //存放队列元素的数组 int front, rear; //队头和队尾指针,分别指向队头元素的前 一个位置和队尾元素的位置 int maxsize;//队列最大可容纳元素个数为maxsize-1 }; #endif
① 加设标志位,让删除动作使其为1,插入动作使其为0,则可识别当前 front==rear ② 使用一个计数器记录队列中元素个数(即队列长度); ③ 人为浪费一个单元,令队满特征为front==(rear+1)%N;
队空条件 : front == rear (初始化时:front = rear ) 队满条件: front == (rear+1) % N (N=maxsize) 队列长度:L=(N+rear-front)% N
(2)队列的链接存储结构及实现
链队列:队列的链接存储结构 如何改造单链表实现队列的链接存储?
a1 front
a2
an ∧ rear
队头指针即为链表的头指针; 常用不带头结点链表结构。
空链队列如何表示?
NULL NULL
front rear front==NULL; front==rear;
链队列满如何表示?
操作接口:
循环队列的出队算法实现 0
出队
入队
1
2
3
4
template <class T> T DCirQueue<T>::DeQueue( )
a3
a4
a5
a6
算法实现: rear front front template <class T> T DCirQueue<T>::DeQueue( ) { if (rear==front) throw "下溢"; front=(front+1) % maxsize; //队头指针在循环意义下加1 return queue[front]; //读取并返回出队前的队头元素,注意队头指针 a1 }
问1:左图中队列长度L=? 5
J2 J1 J5 J3 J4
问2: 在具有n个单元的循环队 列中,队满时共有多少个元素? n-1个
front
rear
例1: 一循环队列如下图所示,若先删除4个元素,接着再插 入4个元素,请问队头和队尾指针分别指向哪个位置? front rear rear front
J2 J3
链队的获得队首元素操作算法实现
操作接口: template <class T> T LinkQueue<T>::GetQueue() 算法实现: template <class T> T LinkQueue<T>::GetQueue() { if (front!=NULL) return front->data; }
循环队列的构造函数算法实现
操作接口: template <class T> DCirQueue<T>::DCirQueue( int size); 算法实现: template <class T> DCirQueue<T>::DCirQueue( int size) :front(0),rear(0),maxsize(size) { queue=new T[maxsize]; if(queue==NULL) 1 2 throw"动态分配失败!";0 } front rear
x=p->data; front=front->next; a2 ∧ delete p;
rear p
链队的出队操作算法实现
操作接口: template <class T> T LinkQueue<T>::DeQueue(); 算法实现: template <class T> T LinkQueue<T>::DeQueue() { Node <T> *p; int x; if (front==NULL) throw “队空"; p=front; x=p->data; //暂存队头元素 front=front->next; //将队头元素所在结点摘链 if (front==NULL) rear=front; //判断出队前队列长度是否为1 delete p; return x; }
相关文档
最新文档