数列问题的题型与方法[上学期]江苏教育版.doc
数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列题型及解题方法

数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。
根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。
题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。
等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。
根据题目给出的条件,代入公式计算即可得到所求的和。
题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。
可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。
题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。
递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。
根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。
(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪ 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就能够由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
高考数学复习 数列问题的题型与方法教案 苏教版

数列问题的题型与方法一.复习目标:1. 能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n 项和公式解题; 2.能熟练地求一些特殊数列的通项和前n 项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决。
数列与数列问题的解题思路与方法

数列与数列问题的解题思路与方法数列是数学中常见的概念,它是按照一定规律排列的一系列数的集合。
解决数列问题需要运用一定的思路与方法,本文将介绍几种常见的解题思路与方法,以供参考。
一、等差数列的求和公式等差数列是指数列中相邻两项之间的差都是一个常数的数列。
对于等差数列,我们可以利用求和公式来求解其前n项和。
其求和公式如下:Sn = n(a1 + an)/2其中,Sn表示前n项和,a1为首项,an为末项,n为项数。
通过利用这个公式,我们可以快速计算等差数列的前n项和,从而解决相关问题。
二、等比数列的求和公式等比数列是指数列中相邻两项之间的比都是一个常数的数列。
对于等比数列,我们可以利用求和公式来求解其前n项和。
其求和公式如下:Sn = a1(1-q^n)/(1-q)其中,Sn表示前n项和,a1为首项,q为公比,n为项数。
通过利用这个公式,我们可以快速计算等比数列的前n项和。
三、递推关系式与通项公式对于一般的数列问题,我们需要找到数列中的递推关系式与通项公式。
递推关系式指的是通过前一项或前几项可以推导出后一项的关系式。
而通项公式则是直接计算数列中第n项的公式。
以斐波那契数列为例,其递推关系式为Fn = Fn-1 + Fn-2,通项公式为Fn = (1/sqrt(5))*(((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)。
通过找到递推关系式与通项公式,我们可以快速计算数列中任意项的值,从而解决相关问题。
四、特殊数列的解法除了等差数列、等比数列和斐波那契数列外,还存在一些特殊的数列,它们具有独特的解题方法。
例如,三角数列是指数列中的每一项都是一个三角形的总数。
为了解决三角数列的问题,我们可以通过图形推导出其通项公式。
类似地,阶乘数列、幂次数列等特殊数列也有各自的解题方法。
五、常见数列问题的解决思路在解决数列问题时,我们还可以采用一些常见的思路和方法。
1. 找规律法:观察数列的前几项,寻找规律,再根据规律解决问题。
数列问题的题型与方法

a数列问题的题型与方法一.复习目标:1.能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n项和公式解题;2.能熟练地求一些特殊数列的通项和前n项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的2930能力,试题大多有较好的区分度。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列问题的题型与方法一、考试内容数列;等差数列及其通项公式,等差数列前n 项和公式;等比数列及其通项公式,等比数列前n 项和公式。
二、考试要求1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
三、复习目标1. 能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n 项和公式解题; 2.能熟练地求一些特殊数列的通项和前n 项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.四、双基透视1. 可以列表复习等差数列和等比数列的概念、有关公式和性质. 2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
(2)通项公式法:①若 = +(n-1)d= +(n-k )d ,则{}n a 为等差数列;②若,则{}n a 为等比数列。
(3)中项公式法:验证都成立。
3. 在等差数列{}n a 中,有关S n的最值问题——常用邻项变号法求解:(1)当 >0,d<0时,满足的项数m 使得取最大值.(2)当 <0,d>0时,满足 的项数m 使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
4.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
五、注意事项1.证明数列{}n a 是等差或等比数列常用定义,即通过证明11-+-=-n n n n a a a a 或11-+=n n n n a aa a 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便。
3.对于一般数列的问题常转化为等差、等比数列求解。
4.注意一些特殊数列的求和方法。
5.注意n s 与n a 之间关系的转化。
如:n a = ,,11--n n s s s 21≥=n n , n a =∑=--+nk k k a a a 211)(.6.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.7.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.8.通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决。
六、范例分析例1.已知数列{a n }是公差d ≠0的等差数列,其前n 项和为S n .(2)过点Q 1(1,a 1),Q 2(2,a 2)作直线12,设l 1与l 2的夹角为θ,证明:(1)因为等差数列{a n }的公差d ≠0,所以Kp 1p k 是常数(k=2,3,…,n).(2)直线l 2的方程为y-a 1=d(x-1),直线l 2的斜率为d .例2.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和。
分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S 1n +作切入点探索解题的途径.解:(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S1n +=4(a 1n +-a n ),即a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)a 2n +-2a 1n +=2(a 1n +-2a n ),又b n =a 1n +-2a n ,所以b 1n +=2b n ①已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+2;当n=1时,S 1=a 1=1也适合上式.综上可知,所求的求和公式为S n =21n -(3n-4)+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。
解决本题的关键在于由条件241+=+n n a S 得出递推公式。
2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.例3.已知数列{a n }是首项a1>0,q >-1且q ≠0的等比数列,设数列{b n }的通项b n =a 1n +-ka 2n + (n ∈N),数列{a n }、{b n }的前n 项和分别为S n ,T n .如果T n >kS n 对一切自然数n 都成立,求实数k 的取值范围. 分析:由探寻T n 和S n 的关系入手谋求解题思路。
解:因为{a n }是首项a 1>0,公比q >-1且q ≠0的等比数列,故a 1n +=a n ·q , a 2n +=a n ·q 2.所以 b n =a 1n +-ka 2n +=a n (q-k ·q 2). T n =b 1+b 2+…+b n =(a 1+a 2+…+a n )(q-k ·q 2)=S n (q-kq 2).依题意,由T n >kS n ,得S n (q-kq 2)>kS n , ①对一切自然数n 都成立. 当q >0时,由a1>0,知a n >0,所以S n >0;当-1<q <0时,因为a1>0,1-q >0,1-q n>0,所以S n =综合上面两种情况,当q>-1且q≠0时,Sn>0总成立.由①式可得q-kq2>k②,例4.(2001年全国理)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业. 根据规划,本年度投入800万元,以后每年投入将比上年减少15.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14。
(Ⅰ)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元. 写出a n,b n的表达式(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?解析:第1年投入800万元,第2年投入800×(1-)万元……,第n年投入800×(1-)n-1万元所以总投入a n=800+800(1-)+……+800×(1-)n-1=4000[1-()n]同理:第1年收入400万元,第2年收入400×(1+)万元,……,第n年收入400×(1+)n-1万元b n=400+400×(1+)+……+400×(1+)n-1=1600×[()n-1](2)∴b n-a n>0,1600[()n-1]-4000×[1-()n]>0化简得,5×()n+2×()n-7>0设x=()n,5x2-7x+2>0∴x<,x>1(舍)即()n<,n≥5.说明:本题主要考查建立函数关系式,数列求和,不等式等基础知识,考查综合运用数学知识解决实际问题的能力。
解数学问题应用题重点在过好三关:(1)事理关:阅读理解,知道命题所表达的内容;(2)文理关:将“问题情景”中的文字语言转化为符号语言,用数学关系式表述事件;(3)数理关:由题意建立相关的数学模型,将实际问题数学化,并解答这一数学模型,得出符合实际意义的解答。
例5.设实数0≠a ,数列{}n a 是首项为a ,公比为a -的等比数列,记),(||1*N n a g a b n n n ∈=n n b b b S +++= 21,求证:当1-≠a 时,对任意自然数n 都有n S =2)1(lg a a a +[]n n a na n )1()1(11++-++解:n n n n n a a a qa a 1111)1()(----=-==。
||lg )1(|)1(|lg )1(||lg 111a na a a a a b n n n n n n n n n ----=--==∴||lg )1(||lg )1()1(||lg 3||lg 2||lg 11232a na a a n a a a a a a S n n n n n ----+--+++-=∴||lg ])1()1()1(32[11232a na a n a a a n n n n ----+--+++-=记n n n n na a n a a a S 11232)1()1()1(32----+--+++-= ①1121332)1()1()1()2()1(2+-----+--+--++-=n n n n n n na a n a n a a as ②①+②得1121232)1()1()1()1(+-----+-+-+++-=+n n n n n n na a a a a a s a ③1111(1)1,(1)(1)1(1)n n n n a a a a S n a a -+-++-≠-∴+=+-⋅--])1()1(1[)1(||lg )1(])1)(1(1[)1()1()1()1()1()1()1(122121121111nn n n n n n n n n n a na n a a a S a a na n a a a na n a S a a n a a a S ++-++=∴+-+++=+-⋅+++=∴+⋅⋅-⋅++-+=∴+++-+-+- 说明:本例主要复习利用错位相减解决差比数列的求和问题。