山东省平原县第四中学2020-2021学年八年级第一次月考数学试卷
2020—2021年人教版八年级数学上册第一次月考测试卷【及参考答案】

2020—2021年人教版八年级数学上册第一次月考测试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( ) A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.若229x kxy y -+是一个完全平方式,则常数k 的值为( ) A .6B .6-C .6±D .无法确定4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030xx --=2 D .1000100030x x--=2 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2B .2C .2D .47.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D 1010.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________. 2.计算1273-=___________. 3.若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=________度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系. (2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.5.如图,四边形ABCD 的四个顶点分别在反比例函数m y x =与ny x=(x >0,0<m <n)的图象上,对角线BD//y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、A5、A6、B7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<23、44、x>15、1206、②.三、解答题(本大题共6小题,共72分)1、原方程无解2、112x-;15.3、±34、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1) 60x y--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
2020-2021学年人教版八年级数学上册第一次月考试卷(含答案)

2020-2021学年八年级上学期数学第一次月考试卷一、选择题(本大题共10小题,每小题4分,满分40分.)1.在平面直角坐标系中,点M(2019,-2019)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.下列函数:①y= 12x2-x;②y=-x+10;③y=2x;④y= x2-1.其中是一次函数的有()A. 1个B. 2个C. 3个D. 4个3.如图,在围棋盘上有三枚棋子,如果黑棋的位置用坐标表示为(0,-1),黑棋的位置用坐标表示为(-3,0),则白棋③的位置坐标表示为()A. (4,2)B. (-4,2)C. (4,-2)D. (-4,-2)4.若点(2-3m,-m)在第三象限,则m的取值范围是()A. m<0B. m<23C. 23<m<0 D. m>235.用固定的速度向容器里注水,水面的高度h和注水时间t的函数关系的大致图象如图,则该容器可能是()A. B. C. D.6.已知点M(-4,2),若点N是y轴上一动点,则M,N两点之间的距离最小值为()A. -4B. 2C. 4D. -27.若k<0,则在平面直角坐标系中,y=2kx-k+1的图象大致是()A. B. C. D.8.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A. (1,2)B. (1,4)C. (2,1)D. (4,1)9.已知A(2,a)、B(-1,b)、C(c,0)都在一次函数y=kx+3(k<0)的图象上,则下列结论一定正确的是()A. a<bB. a>bC. a>3D. c<010.某乡村盛产葡萄,果大味美,甲、乙两个葡萄采摘园为吸引游客,在销售价格一样的基础上分别推出优惠方案,甲采摘园的优惠方案:游客进园需购买门票,采摘的所有葡萄按六折优惠.乙采摘园的优惠方案:游客无需买票,采摘葡萄超过一定数量后,超过的部分打折销售.活动期间,某游客的葡萄采摘量为xkg,若在甲采摘园所需总费用为y甲元,若在乙采摘园所需总费用为y乙元,y甲、y乙与x之间的函数图象如图所示,则下列说法错误的是()A. 甲采摘园的门票费用是60元B. 两个采摘园优惠前的葡萄价格是30元/千克C. 乙采摘园超过10kg后,超过的部分价格是12元/千克D. 若游客采摘18kg葡萄,那么到甲或乙两个采摘园的总费用相同二、填空题(本大题共4小题,每小题5分,满分20分)11.若(2,1)表示教室里第2列第1排的位置,则教室里第5列第6排的位置表示为________ 。
2020—2021年人教版八年级数学上册第一次月考考试卷(完整版)

2020—2021年人教版八年级数学上册第一次月考考试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A.66°B.104°C.114°D.124°8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b的结果是________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.式子3x -在实数范围内有意义,则 x 的取值范围是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、A5、D6、C7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b23、x≥34、145、56.6、三、解答题(本大题共6小题,共72分)1、x=323、±34、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或9﹣6时,△APQ为等腰三角形.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
2020—2021年人教版八年级数学上册第一次月考考试卷(全面)

2020—2021年人教版八年级数学上册第一次月考考试卷(全面)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.下列运算正确的是( )A 2B 2=4C =﹣4D 2=﹣44.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -= 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见8.关于▱ABCD 的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1 二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x,则x=__________2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.若m+1m=3,则m2+21m=________.4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=________度.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、A5、A6、D7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、1或5.3、74、40°.5、30°6、(-10,3)三、解答题(本大题共6小题,共72分)1、x=-1或x=32、x 2-,32-. 3、则不等式组的解集是﹣1<x ≤3,不等式组的解集在数轴上表示见解析.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、略.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
2020—2021年人教版八年级数学上册第一次月考考试及答案【可打印】

2020—2021年人教版八年级数学上册第一次月考考试及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.132.如图,若x为正整数,则表示()2221441xx x x+-+++的值的点落在()A.段①B.段②C.段③D.段④3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+16.已知1112a b-=,则aba b-的值是()A.12B.-12C.2 D.-27.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.248.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD //BC ,AB //CDB .AB //CD ,AB CD =C .AD //BC ,AB DC = D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.计算:82-=_______.3.4的平方根是 .4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、C6、D7、A8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、±2.4、5、26、2.三、解答题(本大题共6小题,共72分)1、原方程无解2、13xx-+;15.3、(1)见解析;(2)k=84、(1)见解析(2)成立(3)△DEF为等边三角形5、略.6、(1) 4800元;(2) 降价60元.。
2020-2021学年八年级上学期第一次月考数学试题(含解析答案)

2020-2021八年级上第一次月考数学试卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x > B. 3x ≠ C. 3x o x >≠且 D. 3x x ≥0≠且 5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A.B. C. D. 6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x >32B. x <3C. x<32 D. x >310. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.12. 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为____________.x-2 0 1 y3 p 013. 已知点P(m -3,1-2m)在第三象限,则由所有满足题意的整数m 组成的最大两位数是____. 14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟; ④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg . (1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k-1,k2-1]的一次函数为正比例函数,求k的值;(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),若一次函数的图象过A,B两点,求该一次函数的特征数.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是,点A的坐标;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.2020-2021八年级上第一次月考数学试卷—解析卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限,故选B .2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度 【答案】A【解析】本题考查了平面直角坐标系内点的位置的变化,注意小虫是沿横坐标爬行还是沿纵坐标爬行即可. 分析小虫的爬行路线即可得解.解:从A (2,2),爬行到B (2,4),爬行了4-2=2个单位,再爬行到C (5,4),又爬行了5-2=3个单位,最后爬行到D (5,6),又爬行了6-4=2个单位,所以小虫一共爬行了2+3+2=7个单位.故选A .4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x >B. 3x ≠C. 3x o x >≠且D. 3x x ≥0≠且【答案】D【解析】【分析】 让二次根式的被开方数大于等于0,原式的分母不等于0,列不等式组求解即可解答.【详解】解:根据题意得:x≥0且3-x≠0,∴x 的取值范围是x≥0且x≠0.故选D.【点睛】本题考查二次根式和分式有意义是条件,二次根式的被开方数必须是非负数,分式的分母不能为0.5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A. B. C. D.【答案】B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s 表示客车从霍山出发后与合肥的距离,s 会逐渐减小为0;A 、C 、D 都不符.故选B . 点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示量,然后根据实际情况采用排除法求解.6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 【答案】D【解析】【分析】根据长方形的周长公式,可得y 和x 之间的函数解析式,由x >0,-x+6>0,x >y ,从而可以得出x 的取值范围.【详解】解:∵长方形的周长为12∴y=-x+6∵x >0,-x+6>0,x >y∴3<x <6故选:D【点睛】本题考查了函数关系式,函数自变量的取值范围,利用矩形周长公式得出不等式组是解题关键. 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:分x 是正数和负数两种情况讨论求解.详解:x >0时,1﹣x 可以是负数也可以是正数,∴点P 可以在第一象限也可以在第四象限,x <0时,1﹣x >0,∴点P 在第二象限,不在第三象限.故选C .点睛:本题考查了点的坐标,根据x 的情况确定出1﹣x 的正负情况是解题的关键.8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C【解析】【分析】先根据a 、b 的取值范围,判断出一次函数所过的象限,再根据k 的取值范围,判断出正比例函数所过的象限,那么二者所过的公共象限即为点P 所在象限.【详解】解:∵函数y=ax+b (a<0,b <0)的图象经过第二、三、四象限,y=kx (k>0)的图象过原点、第一、三象限,∴点P 应该位于第三象限.故选C .9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x>32B. x<3C. x<32D. x>3【答案】C【解析】【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【详解】解:将点A(m,3)代入y=2x得,2m=3,解得,m=3 2∴点A的坐标为(32,3),∴由图可知,不等式2x<ax+4的解集为x<3 2故选:C【点睛】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.10. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面【答案】D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.【答案】(3,5)【解析】【分析】根据有序数对的第一个数表示排数,第二个数表示列式解答.【详解】∵5排3列记为(5,3),∴3排5列记为(3,5).故答案为(3,5).【点睛】本题考查的知识点是坐标确定位置,解题的关键是熟练的掌握坐标确定位置. 12. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为____________.【答案】1【解析】一次函数的解析式为y=kx+b(k≠0),∵x=−2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=−x+1,∴当x=0时,y=1,即p=1.故答案为1.13. 已知点P(m-3,1-2m)在第三象限,则由所有满足题意的整数m组成的最大两位数是____.【答案】21【解析】【分析】根据点P(m-3,1-2m)在第三象限,可求出m的取值,再根据m为整数得出m的值,即可解答.【详解】∵点P (m -3,1-2m )在第三象限,∴m -3<0,1-2m <0,解得12<m <3, ∴m 可以求得的整数值为1,2,故所有满足题意的整数m 组成的最大两位数是21,故答案为21. 【点睛】此题主要考查列不等式,解题的关键是熟知坐标系的坐标特点列出不等式.14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.【答案】1【解析】【分析】直接根据一次函数的图象进行解答即可.【详解】解:由一次函数y=kx+b 的图象可知,当x<1时,函数的图象在x 轴上方,∴当y>0时,x<1.故答案为:1.【点睛】本题主要考查一次函数的图像与性质.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 【答案】1或79-; 【解析】 【分析】 点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +,列式:6235a a --=+,6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79 .【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法.16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟;④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);【答案】②③④.【解析】【分析】①由当x=40时,y2=0,可得出兔子比乌龟晚出发40分钟,说法①错误;②由两函数图象的终点纵坐标均为1000,可得出“龟兔再次赛跑”的路程为1000米,说法②正确;③观察y1与x之间的函数图象结合40﹣30=10,可得出乌龟在途中休息了10分钟,说法③正确;④观察y1,y2与x之间的函数图象结合60﹣50=10,可得出兔子比乌龟早10分钟到达终点,说法④正确.综上即可得出结论.【详解】①∵当x=40时,y2=0,∴兔子比乌龟晚出发40分钟,说法①错误;②∵两函数图象的终点纵坐标均为1000,∴“龟兔再次赛跑”的路程为1000米,说法②正确;③∵40﹣30=10(分钟),∴乌龟在途中休息了10分钟,说法③正确;④∵60﹣50=10(分钟),∴兔子比乌龟早10分钟到达终点,说法④正确.综上所述:正确的说法有②③④.故答案为②③④.【点睛】本题考查了一次函数的应用,观察函数图象逐一分析四条结论的正误是解题的关键.三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?【答案】(1)y=-2x-1; (2)在;【解析】【分析】(1)先把点(-2,3)和(1,-3)代入y=kx+b ,得到关于k 、b 的方程,然后解方程组即可;(2)把x=-1代入①中的一次函数中计算出对应的函数值,然后进行判断.【详解】解:(1)设一次函数解析式为y=kx+b ,把(2,3)与(-1,-3)代入得:233k b k b -+=⎧⎨+=-⎩解得:21k b =-⎧⎨=-⎩一次函数解析式为:y=-2x-1(2)一次函数解析式为y=-2x-1,当x=-1时,y=-2x-1=-2×(-1)-1=2-1=1,所以点(-1,1)在直线y=-2x-1上.【点睛】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;(2)将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg .(1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?【答案】(1)100.5y x =+ ;(2)010x ≤≤ ;(3)5kg【解析】【分析】(1)根据题意列出长度y 和挂重x 之间的函数关系式;(2)根据挂重不超过10kg ,得到自变量的取值范围;(3)令125y .=,代入函数解析式求出x 的值.【详解】解:(1)每挂重1kg 就伸长0.5cm ,挂重x kg 就伸长0.5x cm ,100.5y x =+;(2)∵挂重不超过10kg ,∴010x ≤≤;(3)令125y .=,则100.512.5x +=,解得5x =,答:挂重5kg 时,弹簧长度是12.5cm .【点睛】本题考查一次函数的应用,解题的关键是根据题意列出一次函数解析式进行求解.19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.【答案】(1)()()2,0,1,4A B --;(2)见解析;(3)41633y x =+,()41x -≤≤- 【解析】【分析】(1)根据A 、B 所在位置,写出点坐标;(2)根据点的平移画出111A B C △; (3)利用待定系数法求出一次函数解析式并写出自变量的取值范围.【详解】解:(1)根据A 、B 所在位置,写出它们的坐标,()2,0A ,()1,4B --;(2)如图所示:(3)()11,4A -,()14,0B -, 设直线l 的解析式为:y kx b =+,440k b k b -+=⎧⎨-+=⎩,解得43163k b ⎧=⎪⎪⎨⎪=⎪⎩, ()4164133y x x =+-≤≤-. 【点睛】本题考查平面直角坐标系中的点坐标和点坐标的平移以及一次函数解析式的求解,解题的关键是掌握点坐标的平移方法和待定系数法求函数解析式的方法.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;【答案】(1)322y x =+;(2)43【解析】【分析】(1)设()2331y k x -=+,将题目所给的x 和y 的值代入,求出k 的值,得到关系式;(2)求出一次函数与坐标轴的交点坐标,再求出围成的三角形的面积.【详解】解:(1)设()2331y k x -=+,当2x =时,5y =,则()253321k ⨯-=⋅⨯+,解得1k =,∴2331y x -=+,整理得322y x =+; (2)令0x =,得2y =,与y 轴交于点()0,2,令0y =,得43x =-,与x 轴交于点4,03⎛⎫- ⎪⎝⎭, ∴该函数图象与坐标轴围成的三角形面积是1442233⨯⨯=. 【点睛】本题考查正比例的定义,一次函数图象与坐标轴的交点,解题的关键是掌握用待定系数法求解析式的方法和一次函数图象与坐标轴交点坐标的求解方法.21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k -1,k 2-1]的一次函数为正比例函数,求k 的值;(2)在平面直角坐标系中,有两点A (-m ,0),B (0,-2m ),且△OAB 的面积为4(O 为原点),若一次函数的图象过A ,B 两点,求该一次函数的特征数.【答案】(1)-1;(2)[-2,-4]或[-2,4].【解析】分析:(1)根据题意中特征数的概念,可得k ﹣1与k 2﹣1的关系;进而可得k 的值;(2)根据△OAB 的面积为4,可得m 的方程,解即可得m 的值,进而可得答案.详解:(1)∵特征数为[k ﹣1,k 2﹣1]的一次函数为y =(k ﹣1)x +k 2﹣1,∴k 2﹣1=0,k ﹣1≠0,∴k =﹣1;(2)∵A (﹣m ,0),B (0,﹣2m ),∴OA =|﹣m |,OB =|﹣2m |,若S △OBA =4,则12•|﹣m |•|﹣2m |=4,m =±2,∴A (2,0)或(﹣2,0),B (0,4,)或(0,﹣4),∴一次函数为y =﹣2x ﹣4或y =﹣2x +4,∴过A ,B 两点的一次函数的特征数[﹣2,﹣4],[﹣2,4].点睛:本题要理解题目中的定义以及正比例函数的概念,根据正比例函数中的b =0,即可列方程求解.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是 ,点A 的坐标 ;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y (km )与行走时间x (h )的函数关系式.【答案】(1)16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭;(2)20km ;(3)11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩【解析】【分析】(1)根据图象求出小明速度,再得到爸爸的速度,用爸爸追上小明所走的路程求出点A 坐标;(2)设从爸爸追上小明的地点到公园路程为n (km ),列式求出n 的值,再加上16得到整个路程长; (3)用待定系数法求出一次函数解析式,并利用分段函数的形式表示.【详解】解:(1)小明的速度1816/2km h =÷=, 爸爸的速度16232/km h =⨯=, 53321644km ⎛⎫⨯-= ⎪⎝⎭,则5,164A ⎛⎫ ⎪⎝⎭, 故答案是:16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭; (2)设从爸爸追上小明地点到公园路程为n (km ),7.5163260n n -=,解得4n =, ∴小明家到滨湖森林湿地公园的路程16420km =+=;(3)设直线AB 的解析式为:116y x b =+131684b ⨯+=,解得14b =-, ∴直线AB 的解析式为:164y x =-,∴小明行走路程y (km )与行走时间x (h )的函数关系式为:11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩. 【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象分析出运动过程,并结合一次函数的解析式进行求解.。
2020—2021年人教版八年级数学上册第一次月考测试卷及参考答案

2020—2021年人教版八年级数学上册第一次月考测试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12- D .2- 2.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 83.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A.B.C.D.9.如图,下列条件:①,②,③,④,⑤中能判13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠l l的有()断直线12A.5个B.4个C.3个D.2个10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=________.2.若最简根式25a b-是同类二次根式,则a•b的值是_____.b+和343.使x2-有意义的x的取值范围是________.4.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=________°.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
2020-2021学年度八年级秋学期数学第一次月考试题

江苏省扬州市树人中学2020-2021学年度八年级秋学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°3.如果等腰三角形的一个角是80°,那么它的底角是A.80°或50°B.50°或20°C.80°或20°D.50°4.等腰三角形的两边长分别是3和7,则其周长为()A.13 B.17 C.14 D.13或17 5.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等6.如图,OP是∠MON的角平分线,点A是ON上一点,作线段OA的垂直平分线交OM 于点B,交OA于点E,过点A作CA⊥ON交OP于点C,连接BC,AB=10cm,CA=4cm.则△OBC的面积为()cm2A.4 B.30 C.20 D.107.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A .45°B .50°C .60°D .65°8.如图,点C 是△ABE 的BE 边上一点,点F 在AE 上,D 是BC 的中点,且AB=AC=CE,给出下列结论:①AD ⊥BC;②CF ⊥AE;③∠1=∠2;④AB+BD=DE,其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题 9.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x= .10.如图,△ABC ≌△DEF,BE=3,AE=2,则DE 的长是_______.11.一个三角形的三边为6、10、x,另一个三角形的三边为y 、6、12,如果这两个三角形全等,则x y +=_______.12.如图,在△ABC 中,DE 是AC 的垂直平分线,分别交BC,AC 于点D 、E,连接AD 、若△ABD 的周长C=16cm 、AB=5cm,则线段BC 的长度等于_______cm13.如图,90C ∠=︒,12∠=∠,若10BC =,6BD =,则D 到AB 的距离为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平原县第四中学2020-2021学年八年级第一次月考
数学试卷
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题:(每小题4分共60分)
1.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()
A. 14
B. 15
C. 16
D. 17
2.下列各图中,正确画出AC边上的高的是()
A. B. C. D.
3.如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()
A. 90°
B. 180°
C. 270°
D. 360°
4.如果正多边形的一个内角是140°,则这个多边形是()
A. 正十边形
B. 正九边形
C. 正八边形
D. 正七边形
5.一个多边形的内角和是1440°,且这个多边形的每一个内角都相等,则这个多边形的一个外角是()
A. 60°
B. 45°
C. 36°
D. 30°
6.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()
A.带①去B.带②去C.带③去D.带①②③去
7.下列不能推得△ABC和△A′B′C′全等的条件是()
A. AB=A′B′,∠A=∠A′,∠C=∠C′
B. AB= A′B′,AC=A′C′,BC=B′C′
C. AB=A′B′,AC=A′C′,∠B=∠B′
D. AB=A′B′,∠A=∠A′,∠B=∠B′
8.如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()
A. 27°
B. 54°
C. 30°
D. 55°
9.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()
A. SAS
B. ASA
C. AAS
D. SSS
10.如图,直线a,b,c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有())
A.1个 B.2个 C.3个 D.4个
11.如图,△ABC的三边AB,BC,CA的长分别为20,30,40,O是△ABC三条角平分线的交点,则S△ABO∶S△BCO∶S△CAO等于( )
A. 1∶1∶1
B. 1∶2∶3
C. 2∶3∶4
D. 3∶4∶5
12.下面图案中是轴对称图形的有()
A. 1个
B. 2个
C. 3个
D. 4个
13.点P是锐角△ABC内一点,PE⊥AB于E,PF⊥BC于F,PH⊥CA于H,若PE=PF=PH,则点P是△ABC的()
A. 三条中线的交点
B. 三条高线的交点
C. 三条角平分线的交点
D. 三边垂直平分线的交点
14.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()
A.10°B.15°C.20°D.35°
15. 如图,已知在△ABC, △ADE中,∠BAC=∠DAE=90°, AB=AC, AD=AE,点C, D, E三点在同一条直线上,连接BD, BE以下四个结论:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°其中结论正确的个数是
( )
二、填空题:(每小题4分,共40分)
16.如图,一扇窗户打开后,用窗钩BC 可将其固定,这里所运用的几何原理是__________.
17.一个多边形的内角和比外角和的3倍多180°,则它的边数是___________.
18. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD 的度数为___________.
19、如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=45°,则∠2的度数为__________
20、如图,在△ABC 中,∠ABC 、∠ACB 的平分线BE 、CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=____ .
21、已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1.若这两个三角形全等,则x 等于( )
A.73
B.4
C.3
D.3或73
22.如图,△ABC 中,∠C=90°,CA=CB ,AD 平分∠CAB .交BC 于D ,DE ⊥AB 于E ,且AB=8,△DEB 的周长为_____.
23.如图,△ABC中,∠B=∠C,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=55°,则∠A=.
24.如图,在△ABC中,∠C=90°,AD是角平分线,AC=5,DC=3,则点D到AB的距离是______ .
25.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_______.
三、解答题(每小题10分共60分)
26、(本题9分)如图,已知∠AOB和C、D两点,在∠AOB的内部求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)
27、(本题10分)如图,在⊿ABC中,∠B = 50º,∠C = 70º,AD是高,AE是角平分线,求∠EAD的度数。
28.(本题8分)如图AB=AD,AC=AE,∠BAE=∠DAC.
求证:(1)∠C=∠E;(2)AM=AN.
29.(本题10分)如图所示,已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.试说明:AD垂直平分EF.
30.(本题11分)已知:如图∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF ⊥AC,垂足分别为E,F.⑴试说明:BE=CF;⑵若AF=3,BC=4,求△ABC的周长.
31.(本题12分)如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若
点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?。