第06章 离散时间信号与系统的复频域分析——z变换

合集下载

26利用Z变换分析信号和系统的频域特性

26利用Z变换分析信号和系统的频域特性

26利用Z变换分析信号和系统的频域特性Z变换是一种用于分析离散时间信号和离散时间系统频域特性的数学工具。

在这篇文章中,我们将介绍Z变换的定义、性质以及如何利用Z变换分析信号和系统的频域特性。

首先,我们来定义Z变换。

对于一个离散时间信号序列x[n],它的Z 变换被定义为:X(z) = ∑(from n=0 to ∞) x[n] * z^(-n)其中,z为复变量。

Z变换将一个离散时间信号序列映射到一个复平面上的函数。

通过计算X(z),我们可以得到信号x[n]的频域特性。

下面,我们来讨论一些Z变换的性质。

首先是线性性质。

对于两个离散时间信号序列x1[n]和x2[n],以及它们的Z变换X1(z)和X2(z),以及常量a和b,则有:Z(a*x1[n]+b*x2[n])=a*X1(z)+b*X2(z)也就是说,Z变换具有线性性质。

另一个重要的性质是时移性。

对于一个离散时间信号序列x[n-k],以及它的Z变换X(z),则有:Z(x[n-k])=z^(-k)*X(z)这意味着在时域上的延迟会导致复平面上的旋转。

接下来,我们来讨论如何利用Z变换分析信号的频域特性。

首先,我们需要确定信号的Z变换X(z)。

对于一个给定的离散时间信号x[n],我们可以通过对它进行Z变换的计算得到X(z)。

然后,我们可以通过观察X(z)在复平面上的分布来分析信号的频域特性。

例如,我们可以通过计算X(z)的极点和零点来确定信号的稳定性。

如果X(z)的所有极点都位于单位圆内,那么信号是稳定的;否则,信号是不稳定的。

另外,我们还可以通过计算X(z)的幅度和相位特性来分析信号的频域特性。

信号的幅度特性可以通过计算,X(z),来获得,而信号的相位特性可以通过计算arg(X(z))来获得。

除了分析信号的频域特性,Z变换还可以用于分析离散时间系统的频域特性。

对于一个离散时间系统的冲激响应h[n]和输入信号x[n],它们的Z变换分别为H(z)和X(z)。

离散时间信号及其Z变换

离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。

离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。

其中,Z变换是离散时间信号的重要工具之一。

离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。

离散时间信号通常用序列表示,即按一定顺序排列的值的集合。

离散时间信号可以是有限长度的,也可以是无限长度的。

离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。

在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。

在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。

在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。

Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。

Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。

Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。

离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。

通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。

在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。

我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。

Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。

这些性质使得Z变换在信号处理中有着广泛的应用。

通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。

此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。

总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。

信号与系统 z变换

信号与系统 z变换

信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。

本文将介绍信号与系统中的z变换原理及应用。

一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。

在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。

它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。

z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。

通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。

此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。

二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。

通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。

2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。

我们可以通过分析代数方程的根的位置,判断系统的稳定性。

如果差分方程的根都在单位圆内,说明系统是稳定的。

3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。

通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。

4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。

通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。

然后再通过z逆变换将离散时间信号重构为连续时间信号。

5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。

通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。

z变换是信号与系统分析中非常重要的工具。

离散时间系统与z变换简介

离散时间系统与z变换简介

离散时间系统与z变换简介离散时间系统是一种在时间轴上以离散方式运行的系统。

在这种系统中,信号的取样是在特定的时间间隔内进行的,而不是连续地采样。

离散时间系统可以用于模拟实际世界中的许多系统,如数字信号处理、数字滤波器和控制系统等。

离散时间系统的数学表达通常使用z变换。

z变换是一种将离散时间信号转换为复平面上的函数的变换。

它与连续时间系统中的拉普拉斯变换类似,但在z变换中,时间是用离散的步长表示的。

z变换将离散时间系统中的差分方程转换为复平面上的代数表达式,从而方便了对系统的分析和设计。

在离散时间系统中,信号和系统的运算通常使用差分方程进行描述。

差分方程是一种递推关系,它将当前时间步的输入和输出与其之前的时间步的输入和输出之间建立起关联。

z变换提供了一种将这些差分方程转换为代数方程的方法,从而可以更方便地分析系统的特性。

使用z变换,可以计算离散时间系统的频率响应、稳定性和传输函数等重要性质。

频率响应描述了系统对不同频率输入的响应。

稳定性判断了系统是否能够产生有界的输出,而传输函数则表示系统输入和输出之间的关系。

总结来说,离散时间系统是一种以离散方式运行的系统,可以使用z变换进行数学建模和分析。

z变换将离散时间信号和系统转换为复平面上的函数,方便了对系统的频率响应、稳定性和传输函数等特性进行研究。

离散时间系统和z变换在数字信号处理和控制系统等领域具有广泛的应用。

离散时间系统是现代通信、信号处理、控制系统等领域中的核心概念之一。

离散时间系统可以通过对输入信号进行离散采样,以特定的时间间隔获取信号的采样值,从而实现在离散时间点上对信号进行处理和操作。

与连续时间系统不同,离散时间系统的输入和输出信号在时间上都是离散的。

离散时间系统的分析和设计常常采用差分方程描述。

差分方程是一种递推关系,它表达了当前时间步的输入和输出与之前时间步的输入和输出之间的关系。

在离散时间系统中,z变换是一种非常重要的数学工具。

z变换将离散时间信号转换为复平面上的函数,从而方便了对离散时间系统进行数学建模和分析。

离散时间信号与系统的复频域分析——z变换课件

离散时间信号与系统的复频域分析——z变换课件
只有当H(z)的所有极点在单位圆内时系统才是稳定的。
6.5.4 离散系统的频域分析 1.离散系统的频率响应
如果一个离散时间 LTI 系统的单位样 值响应为h[n],激励为x[n],则根据 时域的分析方法,系统的响应为
y[n]=x[n]*h[n]
在z域的对应关系为
Y(z)=X(z)H(z)
令z=ejΩ,即当z只在单位圆上变化时,可得 到系统在频域的对应关系为
2.系统幅频特性与选频滤波器
由式( 6-32 )和式( 6-33 ),可以得 到系统在不同频率信号作用下响应的幅度 为
|Y(ejΩ)|=|X(ejΩ)||H(ejΩ)|
根据数字滤波器通带与阻带在频率轴 上占据的相对位置,它也分为低通、高通、 带通、全通等不同类型。
6.6 数 字 滤 波 器
6.6.1 数字滤波器的概念
与模拟滤波器相比,数字滤波器具有 更高的精确度和可靠性,使用灵活、方便, 已经成为数字信号处理技术中的重要手段。 数字滤波器的分类方法很多。若按照 其幅频响应的通带特性,可分为低通滤波 器、高通滤波器、带通或带阻滤波器;若 按照数字滤波器的构成方式,可分为递归 型滤波器和非递归型滤波器;或按照其单 位样值响应的时间特性,又可以分为无限 长冲激响应(IIR)滤波器和有限长冲激响 应(FIR)滤波器。
连续系统中,利用拉氏变换我们引入 了系统函数 H(s) ,它是输出信号的拉氏变 换Y(s)与输入信号的拉氏变换X(s)的比值,
也是冲激响应h(t)的拉氏变换。我们是否可
以利用z变换引入离散系统的系统函数 H(z)
呢?
连续系统中,利用系统函数,我们可
以分析系统的时域特性、频率特性、稳定
性。在离散系统中,我们是否也可以用系
第6章 离散时间信号与系统的复 频域分析——z变换

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。

离散时间系统是指信号的取样点在时间上离散的系统。

而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。

Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。

Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。

通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。

系统的传递函数是指系统的输出与输入之间的关系。

在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。

通过Z变换可以对离散时间系统进行频域分析。

频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。

频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。

Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。

其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。

这个性质说明Z变换对线性系统是可加性的。

2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。

这个性质说明Z变换对系统的时移(时延)是敏感的。

3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种将离散时间信号转换为复平面上的函数的数学工具。

它在离散时间系统的分析和设计中起着重要的作用。

本文将介绍Z变换的定义、性质,以及如何利用Z变换分析离散时间系统。

1.Z变换的定义:Z变换可以将离散时间信号转换为复平面上的函数。

假设有一个离散时间信号x[n],经过Z变换得到的函数为X(z)。

其定义为:X(z)=Z{x[n]}=∑(x[n]*z^(-n))其中,z是复变量,n为离散时间点。

2.Z变换的性质:Z变换具有许多重要的性质,其中一些性质与连续时间傅里叶变换类似,另一些则是离散时间系统的特有性质。

(1)线性性质:如果x1[n]和x2[n]是离散时间信号,a和b是常数,则有:Z{a*x1[n]+b*x2[n]}=a*X1(z)+b*X2(z)(2)平移性质:如果x[n]的Z变换是X(z),那么x[n-m]的Z变换是z^(-m)*X(z)。

这意味着在离散时间域上的平移,在Z变换域上相当于乘以z的负幂次。

(3)初值定理和终值定理:如果x[n]的Z变换是X(z),则有:x[0] = lim(z->∞) X(z)x[-1] = lim(z->0) X(z)(4)共轭对称性:如果x[n]的Z变换是X(z),那么x*[n](x[n]的共轭)的Z变换是X*(z)(X(z)的共轭)。

(5)频率抽样定理:如果x(t)是带限信号,那么它的频谱可以通过对x[n]进行离散化来获得,即X(jω)=X(e^(jωT)),其中T是采样间隔。

3.离散时间系统的分析:利用Z变换,可以对离散时间系统进行分析和设计。

通常,我们可以将离散时间系统看作是一个线性差分方程,通过对该差分方程进行Z变换,可以得到系统的传输函数H(z)。

离散时间系统的输入输出关系可以表示为:Y(z)=H(z)*X(z)其中,Y(z)为输出信号,X(z)为输入信号,H(z)为系统的传输函数。

通过分析传输函数H(z),我们可以确定系统的稳定性、频率响应、相位特性等。

离散时间信号z变换

离散时间信号z变换

*即满足均匀性与叠加性; *收敛域为两者重叠部分。
例3-8 已知 x(n) cos( 0 n)u (n)
,求其z变换。
1 j 0 n j 0 n e ]u (n) 解: cos( 0 n)u (n) [e 2 1 n Z [a u (n)] ,z a 1 1 az 1 j 0 n j 0 Z [e u (n)] , z e 1 j 0 1 1 e z 1 j 0 n j 0 Z [e u (n)] ,z e 1 j 0 1 1 e z 1 1 1 因此,Z [cos( 0 n)u (n)] [ ], z 1 j 0 1 j 0 1 2 1 e z 1 e z
X ( z) 4 A ]z 2 1 [( z 2) z 3 X ( z) 1 A2 [( z 0.5) ] z 0.5 z 3 4 z 1 z X ( z) 3 z2 3 z 0.5
又 z 2, 4 n 1 n 2 ( 0 . 5 ) ,n 0 x ( n) 3 3 ,n 0 0
n 0

n
三.对z变换式的理解
X (z)
n n x ( n ) z
x( 2) z 2 x( 1) z 1
z的 正 幂
x(0) z 0 x(1) z 1 x( 2) z 2 x( n) z n
3.幂级数展开法(长除法) 因为 x(n) 的Z变换为Z-1 的幂级数,即
X ( z)
n
x ( n) z

n
x(2) z x(1) z
2
x(0) z 0 x(1) z 1 x(2) z 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.系统幅频特性与选频滤波器
由 式 ( 6-32 ) 和 式 ( 6-33 ) , 可 以 得 到系统在不同频率信号作用下响应的幅度 为
|Y(ejΩ)|=|X(ejΩ)||H(ejΩ)|
根据数字滤波器通带与阻带在频率轴 上占据的相对位置,它也分为低通、高通、 带通、全通等不同类型。
6.6 数 字 滤 波 器
连续系统中,利用系统函数,我们可 以分析系统的时域特性、频率特性、稳定 性。在离散系统中,我们是否也可以用系 统函数做相同的事情呢?
回答以上问题就是本章的内容。
6.1 z 变 换 的 定 义
6.1.1 抽样信号的拉氏变换
由第四章可知,对连续时间信号进行均 匀冲激取样后就得到离散时间信号。设有连 续时间信号x(t),每隔时间T取样一次,这相 当于连续时间信号x(t)乘以冲激序列δT(t)。
6.5.2 离散系统的系统函数
1.系统函数的引出 2.线性时不变离散系统的三种描述方式
可以用以下三种方式描述:差分方程,样 值响应,系统函数,它们之间可以相互转换。
6.5.3 离散时间系统的稳定性
1.时域判别法
与连续时间系统类似,离散时间系统 的样值响应h[n]或系统函数H(z)决定了 系统的特性。
单边拉普拉斯变换的收敛域是s平面上 σ>σ0 的 右 半 平 面 , 相 应 z 变 换 的 收 敛 域 为 r>r0的圆外。即z平面上以原点为中心,以 r0=eσ0T为半径的圆外区域(包括无穷大区 的关系
由于z=esT,则s平面的虚轴s=jω映射到 z 平 面 的 单 位 圆 |z|=e0=r=1 。 正 像 虚 轴 上 的 拉普拉斯变换对应于连续时间信号的傅里 叶变换一样,单位圆上的z变换对应于离散 时间信号的傅里叶变换。因此,若一个离 散时间信号的傅里叶变换存在,它在z平面 的收敛域应包含单位圆。
Y(ejΩ)=X(ejΩ)H(ejΩ)
H(ejΩ)一般为复数,可用幅度和相位表示为
H(ejΩ)=|H(ejΩ)|ejφ(Ω)
H(ejΩ)随频率Ω的变化称为离散时间系统的 频率响应。|H(ejΩ)|称为幅度函数,而φ(Ω) 称为相位函数。由于ejΩ为Ω的周期函数, 周期为2π,因而H(ejΩ)也是Ω的周期函数。
只有当H(z)的所有极点在单位圆内时系统才是稳定的。
6.5.4 离散系统的频域分析
1.离散系统的频率响应
如果一个离散时间LTI系统的单位样 值响应为h[n],激励为x[n],则根据 时域的分析方法,系统的响应为
y[n]=x[n]*h[n]
在z域的对应关系为
Y(z)=X(z)H(z)
令z=ejΩ,即当z只在单位圆上变化时,可得 到系统在频域的对应关系为
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析
在连续时间系统中,为了把时域的微 分方程转换为代数方程,我们利用了拉氏 变换。在离散系统中,我们是否可以用类 似的变换——z变换把差分方程的问题转换 为代数方程的问题呢?
如果对任一有界输入x[n]只能产生 有界输出y[n],则称系统在有界输入、 有界输出意义下是稳定的。根据该定义, 对所有n,当
|x[n]|<M
时(其中M为实常数),若有|y[n]|<∞, 则系统稳定。
.
2. z域判别法
图 6 3 稳 定 系 统 的 极 点 分 布
3.系统函数的零极点与时域响应的关系
6.6.2 IIR滤波器
IIR滤波器特点如下。 (1)系统的单位样值响应h[n]是无 限长的;
(2)系统函数H(z)在有限z平面上有极 点存在;
(3)结构上存在输出到输入的反馈, 即结构递归。
在实际应用中,往往根据系统的技术 指标要求,首先确定出系统函数H(z),再 选用一种框图实现H(z),最后,根据框图 编写数据处理的算法和程序。实际算法由 一组基本运算单元组成,它们是加法器、 乘法器和延时器。
6.3.1 线性 6.3.2 移位性质 6.3.3 z域微分性质 6.3.4 时域卷积定理
6.4 逆 z 变 换
6.4.1 变换对对比法 6.4.2 幂级数展开法(长除法) 6.4.3 部分分式展开法
6.5 离散系统的z域分析
6.5.1 应用z变换求解差分方程
应用z变换求解差分方程,是根据z变 换的线性性质和移位性质,把差分方程转 化为代数方程。
6.2 常 用 序 列 的 z 变 换
许多序列的z变换可直接由z变换的定义式求出。
1. δ[n]的z变换 2. u[n]的z变换 3. anu[n]的z变换
6.3 z 变 换 的 性 质
z变换具有许多性质,这些性质在离散 时间系统研究中非常重要。利用这些性质, 可以方便的计算许多复杂信号的z变换和逆 z变换,还可以找到z域与时域的关系。
(3)系数ak(k≠0)全为零,没有输出到 输入的反馈,即结构非递归。
6.7 用MATLAB进行z域分析
6.7.1 用MATLAB求z变换
MATLAB进行符号z变换的指令为:xz =
ztrans(xn,n,z)
其中:xn为x[n]的符号表达式;n为序 号n;z为复频率z;xz为x[n]的z变换X(z)。
用结构框图方法可以表示数字滤波器 的运算结构,使我们一目了然的看到系统 运算的步骤,加法、乘法的次数,存储单 元的多少。不同的运算结构对应不同的算 法。用它表达的运算结构即可以用硬件依 靠电路设计去实现,又可以用软件依靠程 序设计去实现。
6.6.3 FIR滤波器
FIR滤波器的特点如下: (1)系统的单位样值响应h[n]在有 限个n值处不为零; (2)系统函数H(z)仅有零点和z=0处的 极点;
利用拉氏变换,我们可以把求解连续 系统零状态响应的卷积积分问题转换为乘 积计算问题,在离散时间系统中,我们是 否可以用z变换把系统零状态响应的卷积和 的问题转换为乘积问题呢?
连续系统中,利用拉氏变换我们引入 了系统函数H(s),它是输出信号的拉氏变 换Y(s)与输入信号的拉氏变换X(s)的比值, 也是冲激响应h(t)的拉氏变换。我们是否可 以利用z变换引入离散系统的系统函数H(z) 呢?
6.1.2 z变换的定义
1.双边z变换 2.单边z变换
6.1.3 单边z变换的收敛域
1.单边z变换收敛域的定义
使序列x[n]的z变换收敛的所有z的 集合称为z变换X(z)的收敛域,简记为ROC (Region of Convergence)。
2. z变换收敛域与拉氏变换收敛域的关系
图6.2 单边z变换的收敛域
6.7.2用MATLAB求z逆变换
1.长除法 2.部分分式展开法
6.7.3 用MATLAB计算频率响应
用MATLAB计算频率响应可直接使用 如下指令:
freqz(b,a)
freqz(b,a,n)
其中 b和a分别为系统函数分子、分母的系 数向量;n为频率的计算点数,常取2的整 数次幂;绘制的频率特性的横坐标Ω的范 围为0到π。
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
数字滤波器可以用差分方程、单位样 值响应h[n]、系统函数H(z)或频率响应 H(ejΩ)来描述。
与模拟滤波器相比,数字滤波器具有 更高的精确度和可靠性,使用灵活、方便, 已经成为数字信号处理技术中的重要手段。
数字滤波器的分类方法很多。若按照 其幅频响应的通带特性,可分为低通滤波 器、高通滤波器、带通或带阻滤波器;若 按照数字滤波器的构成方式,可分为递归 型滤波器和非递归型滤波器;或按照其单 位样值响应的时间特性,又可以分为无限 长冲激响应(IIR)滤波器和有限长冲激响 应(FIR)滤波器。
相关文档
最新文档