兴化市顾庄学区三校2015-2016年七年级下期中数学试题含答案
泰州兴化市七年级下期中数学学试题及答案-精选

苏教版七年级下册期中考试数学学试题(详细答案)系列(D)一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼 C.导弹击中目标后爆炸 D.卫星绕地球运动2.下列计算正确的是()A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1 C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)93.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18°B.36° C.58° D.72°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cm C.5cm、7cm、11cm D.5cm、10cm、13cm6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x﹣1)(﹣2x+1)8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.79.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y210.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= ,(﹣3xy3)3= ,(﹣0.125)2015×82016= .12.一滴水的质量约0.000051kg,用科学记数法表示这个数为kg.13.若a m=2,a n=4,则a m+n= .14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于.15.一个多边形所有内角都是135°,则这个多边形的边数为.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .18.已知方程组的解满足x﹣y=2,则k的值是.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= .20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.三、解答题:(本大题共7小题,共56分).21.计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)22.解下列二元一次方程组:(1)(2).23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为 cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.详细答案一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【考点】生活中的平移现象.【分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选B.【点评】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.2.下列计算正确的是()A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)9【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂相乘,底数不变指数相加,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C错误;D、同底数幂相乘,底数不变指数相加,故D正确;故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°【考点】平行线的判定.【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【解答】解:A、∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B、∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C、∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D、∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点评】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18°B.36° C.58° D.72°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=36°,再根据角平分线的定义得到∠ABC=∠EBC=36°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=36°,又∵BC平分∠ABE,∴∠ABC=∠EBC=36°,∴∠BED=∠C+∠EBC=36°+36°=72°.故选D.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A中,5+2=7,不符合;B中,10+7>13,10﹣7<13,符合;C中,5+7>11,7﹣5<11,符合;D中,5+10>13,10﹣5<13,符合.故选A.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm是底边和腰长两种情况,根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后再利用三角形的周长的定义解答.【解答】解:①4cm是底边时,三角形的三边分别为4cm、8cm、8cm,能组成三角形,周长=4+8+8=20cm,②4cm是腰长,三角形的三边分别为4cm、4cm、8cm,∵4+4=8,∴不能组成三角形,综上所述,三角形的周长是20cm.故选C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.7【考点】正多边形和圆.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y2【考点】完全平方式.【分析】根据4x2+12xy+■=(2x+3y)2得出即可.【解答】解:∵4x2+12xy+■是一个二项式的平方,∴■=(3y)2=9y2,故选C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.10.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407【考点】三角形.【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选B.【点评】此题主要考查了利用平面内点的个数确定三角形个数,根据n取比较小的数值时得到的数值,找出规律,再利用规律解决问题.二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= a4,(﹣3xy3)3= ﹣27x3y9,(﹣0.125)2015×82016= ﹣8 .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得答案;根据积的乘方等于乘方的积,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:a6÷a2=a4,(﹣3xy3)3=﹣27x3y9,(﹣0.125)2015×82016=(﹣0.125)2015×882015×8=(﹣0.125×8)2015×8=﹣8,故答案为:a4;﹣27x3y9;﹣8.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.12.一滴水的质量约0.000051kg,用科学记数法表示这个数为 5.1×10﹣5kg.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000051=5.1×10﹣5.故答案为:5.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a m=2,a n=4,则a m+n= 8 .【考点】同底数幂的乘法.【分析】因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.【解答】解:a m+n=a m•a n=2×4=8,故答案为:8.【点评】此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于70°.【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B的度数,根据翻折变换的性质求出∠BCD的度数,根据三角形内角和定理求出∠BDC.【解答】解:在△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°﹣∠BCD﹣∠B=70°.故答案为:70°.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.一个多边形所有内角都是135°,则这个多边形的边数为8 .【考点】多边形内角与外角.【专题】常规题型.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为35°.【考点】平行线的性质.【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【解答】解:延长CB,解:延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°﹣∠1=180°﹣145°=35°.故答案为:35°.【点评】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .【考点】平移的性质.【分析】根据平移的性质可知:AB=DE,设BE=CF=x;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可根据阴影部分的面积求得x的值即可.【解答】解:根据题意得,DE=AB=6;设BE=CF=x,∵CH∥DF.∴EG=6﹣4=2;EG:GD=EC:CF,即 2:4=EC:x,∴EC=x,∴EF=EC+CF=x,∴S△EFD=×x×6=x;S△ECG=×2×x=x.∴S阴影部分=x﹣x=15.解得:x=.故答案为.【点评】此题考查平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.18.已知方程组的解满足x﹣y=2,则k的值是 1 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减表示出x﹣y,代入x﹣y=2中求出k的值即可.【解答】解:,①﹣②得:x﹣y=3﹣k,代入x﹣y=2得:3﹣k=2,解得:k=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= ﹣4032 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的和为零,可得每个非负数同时为零,代入所求代数式计算即可.【解答】解:∵(x﹣y﹣2016)2+|x+y+2|=0,∴x﹣y﹣2016=0,x+y+2=0,∴x﹣y=2016,x+y=﹣2,∴x2﹣y2=(x﹣y)(x+y)=﹣4032,故答案为:﹣4032.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AO B绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒.【考点】点、线、面、体.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.三、解答题:(本大题共7小题,共56分).21.(2016春•南长区期中)计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)根据整式的混合计算解答即可;(3)根据整式的混合计算解答即可;(4)根据整式的混合计算解答即可.【解答】解:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0=﹣1﹣+1=﹣;(2)a3﹒a3+(﹣2 a3)2﹣a8÷a2=a6+4a6﹣a6=4a6(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)=5x3﹣10 x2﹣5x﹣(10 x+2x3﹣15﹣3 x2)=3 x3﹣7 x2﹣15x+15(4)(x+3y﹣4z)(x﹣3y+4z)=[x+(3y﹣4z)][x﹣(3y﹣4z)]=x2﹣(3y﹣4z)2=x2﹣9 y2+24 yz﹣16z2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.22.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣2y=13,即y=5,把y=5代入②得:x=23,则方程组的解为;(2)方程组整理得:,①×3+②×4得:25x=200,即x=8,把x=8代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有 4 个(点P异于A)【考点】作图-平移变换.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【考点】平行线的判定;角平分线的定义.【专题】证明题;探究型.【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为6m+6n cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.【考点】完全平方公式的几何背景.【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出m+n的值,然后根据矩形的周长公式整理求解即可.【解答】解:(1)切痕总长=2[(m+2n)+(2m+n)],=2(m+2n+2m+n),=6m+6n;故答案为:6m+6n;(2)由题意得:mn=48,2m2+2n2=200,∴m2+n2=100,∴(m+n)2=m2+n2+2mn=196,∵m+n>0,∴m+n=14,∴周长=2(m+2n+2m+n)=6m+6n=6(m+n)=84.【点评】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.。
2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。
2016-2017学年泰州兴化市七年级下期中数学学试题含参考答案

苏教版七年级下册期中考试数学学试题(详细答案)系列(D) 一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是( )A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动2.下列计算正确的是( )A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1 C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)93.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是( )A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是( )A.18°B.36°C.58°D.72°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5cm、7cm、2cm B.7cm、13cm、10cm C.5cm、7cm、11cm D.5cm、10cm、13cm6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是( )A.12 cm B.16cmC.20cmD.16cm或20cm7.下列各式能用平方差公式计算的是( )A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10B.9C.8D.79.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是( )A.3y2B.6y2C.9y2D.±9y210.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是( )A.399B.401C.405D.407 二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= ,(﹣3xy3)3= ,(﹣0.125)2015×82016= .12.一滴水的质量约0.000051kg,用科学记数法表示这个数为 kg.13.若a m=2,a n=4,则a m+n= .14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于 .15.一个多边形所有内角都是135°,则这个多边形的边数为 .16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为 .17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .18.已知方程组的解满足x﹣y=2,则k的值是 .19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= .20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 .三、解答题:(本大题共7小题,共56分).21.计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)22.解下列二元一次方程组:(1)(2).23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有 个(点P异于A)25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为 cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.详细答案一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是( )A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【考点】生活中的平移现象.【分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选B.【点评】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动. 2.下列计算正确的是( )A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)9【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂相乘,底数不变指数相加,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C错误;D、同底数幂相乘,底数不变指数相加,故D正确;故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是( )A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°【考点】平行线的判定.【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【解答】解:A、∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B、∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C、∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D、∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点评】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是( )A.18°B.36°C.58°D.72°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=36°,再根据角平分线的定义得到∠ABC=∠EBC=36°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=36°,又∵BC平分∠ABE,∴∠ABC=∠EBC=36°,∴∠BED=∠C+∠EBC=36°+36°=72°.故选D.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A中,5+2=7,不符合;B中,10+7>13,10﹣7<13,符合;C中,5+7>11,7﹣5<11,符合;D中,5+10>13,10﹣5<13,符合.故选A.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是( )A.12 cm B.16cmC.20cmD.16cm或20cm【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm是底边和腰长两种情况,根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后再利用三角形的周长的定义解答.【解答】解:①4cm是底边时,三角形的三边分别为4cm、8cm、8cm,能组成三角形,周长=4+8+8=20cm,②4cm是腰长,三角形的三边分别为4cm、4cm、8cm,∵4+4=8,∴不能组成三角形,综上所述,三角形的周长是20cm.故选C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.7.下列各式能用平方差公式计算的是( )A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10B.9C.8D.7【考点】正多边形和圆.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是( )A.3y2B.6y2C.9y2D.±9y2【考点】完全平方式.【分析】根据4x2+12xy+■=(2x+3y)2得出即可.【解答】解:∵4x2+12xy+■是一个二项式的平方,∴■=(3y)2=9y2,故选C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.10.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是( )A.399B.401C.405D.407【考点】三角形.【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选B.【点评】此题主要考查了利用平面内点的个数确定三角形个数,根据n取比较小的数值时得到的数值,找出规律,再利用规律解决问题.二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= a4 ,(﹣3xy3)3= ﹣27x3y9 ,(﹣0.125)2015×82016= ﹣8 .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得答案;根据积的乘方等于乘方的积,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:a6÷a2=a4,(﹣3xy3)3=﹣27x3y9,(﹣0.125)2015×82016=(﹣0.125)2015×882015×8=(﹣0.125×8)2015×8=﹣8,故答案为:a4;﹣27x3y9;﹣8.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.12.一滴水的质量约0.000051kg,用科学记数法表示这个数为 5.1×10﹣5 kg.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000051=5.1×10﹣5.故答案为:5.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a m=2,a n=4,则a m+n= 8 .【考点】同底数幂的乘法.【分析】因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.【解答】解:a m+n=a m•a n=2×4=8,故答案为:8.【点评】此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于 70° .【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B的度数,根据翻折变换的性质求出∠BCD的度数,根据三角形内角和定理求出∠BDC.【解答】解:在△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°﹣∠BCD﹣∠B=70°.故答案为:70°.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.一个多边形所有内角都是135°,则这个多边形的边数为 8 .【考点】多边形内角与外角.【专题】常规题型.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为 35° .【考点】平行线的性质.【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【解答】解:延长CB,解:延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°﹣∠1=180°﹣145°=35°.故答案为:35°.【点评】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .【考点】平移的性质.【分析】根据平移的性质可知:AB=DE,设BE=CF=x;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可根据阴影部分的面积求得x的值即可.【解答】解:根据题意得,DE=AB=6;设BE=CF=x,∵CH∥DF.∴EG=6﹣4=2;EG:GD=EC:CF,即2:4=EC:x,∴EC=x,∴EF=EC+CF=x,∴S△EFD=×x×6=x;S△ECG=×2×x=x.∴S阴影部分=x﹣x=15.解得:x=.故答案为.【点评】此题考查平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.18.已知方程组的解满足x﹣y=2,则k的值是 1 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减表示出x﹣y,代入x﹣y=2中求出k的值即可.【解答】解:,①﹣②得:x﹣y=3﹣k,代入x﹣y=2得:3﹣k=2,解得:k=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= ﹣4032 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的和为零,可得每个非负数同时为零,代入所求代数式计算即可.【解答】解:∵(x﹣y﹣2016)2+|x+y+2|=0,∴x﹣y﹣2016=0,x+y+2=0,∴x﹣y=2016,x+y=﹣2,∴x2﹣y2=(x﹣y)(x+y)=﹣4032,故答案为:﹣4032.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒 .【考点】点、线、面、体.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.三、解答题:(本大题共7小题,共56分).21.(2016春•南长区期中)计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)根据整式的混合计算解答即可;(3)根据整式的混合计算解答即可;(4)根据整式的混合计算解答即可.【解答】解:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0=﹣1﹣+1=﹣;(2)a3﹒a3+(﹣2 a3)2﹣a8÷a2=a6+4a6﹣a6=4a6(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)=5x3﹣10 x2﹣5x﹣(10 x+2x3﹣15﹣3 x2)=3 x3﹣7 x2﹣15x+15(4)(x+3y﹣4z)(x﹣3y+4z)=[x+(3y﹣4z)][x﹣(3y﹣4z)]=x2﹣(3y﹣4z)2=x2﹣9 y2+24 yz﹣16z2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序解答. 22.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣2y=13,即y=5,把y=5代入②得:x=23,则方程组的解为;(2)方程组整理得:,①×3+②×4得:25x=200,即x=8,把x=8代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有 4 个(点P异于A)【考点】作图-平移变换.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【考点】平行线的判定;角平分线的定义.【专题】证明题;探究型.【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为 6m+6n cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.【考点】完全平方公式的几何背景.【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出m+n的值,然后根据矩形的周长公式整理求解即可.【解答】解:(1)切痕总长=2[(m+2n)+(2m+n)],=2(m+2n+2m+n),=6m+6n;故答案为:6m+6n;(2)由题意得:mn=48,2m2+2n2=200,∴m2+n2=100,∴(m+n)2=m2+n2+2mn=196,∵m+n>0,∴m+n=14,∴周长=2(m+2n+2m+n)=6m+6n=6(m+n)=84.【点评】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.。
江苏省兴化市七年级数学下学期期中试题苏科版

一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1. 下列运算正确的是( ▲ )A .2a •3a =6aB .23)(a -=6aC .437a a a =-D .623632=⨯2. 单项式A 与y x 23-的乘积是266y x ,则单项式A 是( ▲ )A.y x 32B.y x 42 C.y x 42- D.y x 32-3. 若a y a x -<-,ay ax >,则( ▲ )A .y x >,0>aB .y x >,0<aC .y x <,0>aD .y x <,0<a 4. 方程组⎩⎨⎧=++=-532143y x k y x 的解中x 与y 的值相等,则k 等于( ▲ )A .-1B .-2C .-3D .-45. 已知032=-+a a ,那么)4(2+a a 的值是( ▲ )A .-18B .-12C .9D .以上答案都不对 6. 算式13320162018++结果的末尾数字是( ▲ )A .1B .3C .5D .7二、填空题(本大题共10小题,每小题3分,共30分)7. 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0 000 105 m ,将0.0 000 105用科学记数法表示为 ▲ . 8. 若922=-b a ,3-=+b a ,则b a -= ▲ .9. 将方程743=-y x 变形为用含x 的代数式表示y 的形式,则y = ▲ . 10. 关于x 的一元一次不等式232-≤-xm 的解集为x ≥4,则m 的值为 ▲ . 11. 关于x 的二次三项式x 2+mx +16是完全平方式,则常数m 等于 ▲ . 12. 若24(1)()x x m x x n -+=--,m 、n 为常数,则m 的值为 ▲ . 13. 已知0136422=++++b a b a ,则ba 的值为 ▲ .14. 某厂生产甲、乙两种型号的产品,生产甲种产品1个需用时8s 、铜8g ;生产乙种产品1个的型号需用时6s 、铜16g .如果生产甲、乙两种产品共用时1h 、用铜6.4kg ,那么甲、乙两种产品共生产了 ▲ 个.15. 无论a 取何值,关于x 、y 的二元一次方程(2a -1)x +(a +2)y +5-2a =0总有一个公共解,这个公共解是 ▲ .16. 已知039=++c b a ,1->c b ,c a t --=491,则t 的取值范围是 ▲ . 三、解答题(本大题共10小题,共102分,请写出必要的解题步骤) 17. (本题满分8分)计算:(1))2)(12(--+a a ; (2))3)(3(+--+y x y x .18. (本题满分8分)计算:(1)(3.14-π)0+0.254×44-1)21(-; (2)2019201720202016⨯-⨯.19. (本题满分10分)解方程组:(1)⎩⎨⎧=-=+1352y x y x ; (2)⎩⎨⎧-=++=- )5(3)1(55)1(3x y y x .20. (本题满分10分)把下列各式分解因式:(1)50182-a ; (2)4224167281y y x x +-.21. (本题满分10分)解下列不等式,并将解集在数轴上表示出来:(1)21)2(3-≤+-y ; (2)312261-<+-x x .22. (本题满分10分)(10分)观察下列关于自然数的等式:① 514322=⨯-;② 924522=⨯-;③ 1334722=⨯-;… 根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ▲ ; (2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.23. (本题满分10分)在解方程组⎩⎨⎧=--=+②①7223by x y ax 时,由于粗心,甲看错了方程组中的a ,而得解为⎩⎨⎧-==11y x ,乙看错了方程组中的b ,而得解为⎩⎨⎧==15y x ,根据上面的信息解答:(1)甲把a 看成了什么数,乙把b 看成了什么数? (2)求出正确的a ,b 的值;(3)求出原方程组的正确解,并求出代数式()x y -·3(519)x y --的值.24. (本题满分10分)小明同学去某批零兼营的文具店,为学校美术小组的30名同学购买铅笔和橡皮.若给全组每人各买2支铅笔和1块橡皮,那么需按零售价购买,共支付30元;若给全组每人各买3支铅笔和2块橡皮,那么可按批发价购买,共支付40.5元.已知1支铅笔的批发价比零售价低0.05元,1块橡皮的批发价比零售价低0.10元.请解决下列问题(均需写出解题过程): (1)问这家文具店每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家文具店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),有哪几种购买方案?25. (本题满分12分)尝试解决下列有关幂的问题:(1)若9×27173=x,求x 的值; (2)已知xa =-2,ya =3,求yx a 23-的值;(3)若x =21×m 25+23×m 5+43,y =23×m25+m 5+1,请比较x 与y 的大小.26. (本题满分14分)如图,边长为a 的正方形ABCD 和边长为b (a >b )的正方形CEFG 拼在一起,B 、C 、E 三点在同一直线上,设图中阴影部分的面积为S .FF(第26题图①) (第26题图②) (第26题图③) (1)如图①,S 的值与a 的大小有关吗?说明理由; (2)如图②,若a +b =10,ab =21,求S 的值; (3)如图③,若a -b =2,22b a =7,求2S 的值.2018年春学期期中考试七年级数学参考答案一、选择题(每小题3分,共18分.)二、填空题(每小题3分,共30分.)7.1.05×10-5; 8.-3; 9.473-x ; 10.2; 11. 8或-8; 12.3; 13.81-; 14.520; 15.⎪⎩⎪⎨⎧-==5859y x ; 16. 41>t . 三、解答题(10小题,共102分)17. 解:(1)原式=2422----a a a (2分)=2522---a a ; (2分,共4分). (2)原式=)]3()][3([---+y x y x =22)3(--y x (2分)=)96(22+--y y x =9622-+-y y x . (2分,共4分). (不同算法酌情给分) 18. 解:(1)原式=1+(0.25×4)4-2(2分)=1+1-2=0 (2分,共4分). (2)原式=)12018)(12018()22018)(22018(+--+- (2分)=)12018()42018(22---=-3. (2分,共4分).(不同算法酌情给分) 19.解:(1)②×2,得6x -2y =2 ③ ,①+③得7x =7,解得x =1. (2分) 把x =1代入①,得1+2y =5,解得y =2,(2分) ∴原方程组的解是⎩⎨⎧==21y x .(1分,共5分)(不同解法酌情给分) (2)整理,得⎩⎨⎧=-=-205383y x y x ,③-④,得:4y =-12,∴y =-3,(2分)把y =-3代入③,得3x +3=8,∴x =35,(2分) ∴原方程组的解是⎪⎩⎪⎨⎧-==335y x .(1分,共5分)(不同解法酌情给分)20.解:(1)原式=2(9a 2-25)(2分)=2(3a +5)(3a -5);(3分,共5分)(2)原式=(9x 2-4y 2)2(2分)=[(3x +2y )(3x -2y )]2=(3x +2y )2(3x -2y )2.(3分,共5分)21.解:(1)去括号,得 3y -6+1≤-2,(1分) 移项,得 3y ≤-2+6-1,(1分) 合并同类项,得 3y ≤3,(1分)系数化为1,得y ≤1. (1分,计4分)其解集在数轴上表示为:.(1分,共5分)(2)去分母,得 )12(2)6(36-<+-x x ,(1分) 去括号,得 241836-<--x x ,(1分) 移项,得 -3x -4x <-2-6+18,合并同类项,得 -7x <10, (1分) 系数化为1,得710->x .(1分,计4分)其解集在数轴上表示为:-7.(1分,共5分)22.解:(1)2294417-⨯=;(4分)(2)猜想第n 个等式为:144)12(22+=-+n n n ,(2分)证明如下:∵左式=14414422+=-++n n n n ,右式=14+=n ,∴左式=右式,∴该等式成立. (4分,共6分)(不同证法酌情给分)23.解:(1)把⎩⎨⎧-==11y x 代入②,得a -3=-2,解得a =1(1分);把⎩⎨⎧==15y x 代入②,得10-b =7,解得b=3. (1分)∴甲把a 看成了1,乙把b 看成了3.(1分,共3分) (2)把⎩⎨⎧==15y x 代入①,得5a +3=-2,∴a =-1;(1分)把⎩⎨⎧-==11y x 代入②,得2+b =7,∴b =5.(1分,共2分)(3)原方程组为⎩⎨⎧=--=+-75223y x y x ,解得原方程组的正确解为:⎩⎨⎧==311y x .(3分)∴()x y -·3(519)x y --=382--⨯()=18()18⨯-=-.(2分,共5分) 24.解:(1)设每支铅笔零售价为x 元,每块橡皮零售价为y 元,则每支铅笔批发价为(x -0.05)元,每块橡皮零售价为(y -0.10)元,由题意知⎩⎨⎧=-+-=+5.40)]10.0(2)05.0(3[3030)2(30y x y x ,(2分)解方程组得⎩⎨⎧==4.03.0y x ,∴⎩⎨⎧=-=-3.01.025.005.0y x ,(2分)∴每支铅笔的批发价为0.25元,每块橡皮的批发价为0.3元;(1分,共5分)(2)由(1)知每支铅笔的零售价为0.3元,每块橡皮的零售价为0.4元.设买铅笔m 支,橡皮n 块,由题知0.3m +0.4n =4,即3m +4n =40,(2分)∴m n 4310-=,∴m 必然为4的整数倍,因此共有下列三种购买方案:(3分,共5分)25.解:(1)∵9×27173=x,∴317233=+x ,∴3x +2=17,∴x =5; (4分)(2)∵a x=-2,a y=3, ∴yx a23-=(x a 3)÷(ya2)=(a x )3÷(a y )2=(-2)3÷32=-8÷9=-98;(4分) (3)令t m=5,则222)5()5(25t m m m===,∴x =21×m25+23×5m +43=4323212++t t ,y =1232++t t (2分) ∴=-x y 41212+-t t =163)41(2+-t >0,∴x <y. (2分,共4分)26.解:(1)S 的值与a 无关,理由如下:由题意知:S = a 2+b 2-21(a +b )•a -21(a -b )•a -21b 2=21b 2,∴S 的值与a 无关.(4分) (如果学生连接AC ,利用45°角证AC ∥EG ,从而解决问题,算对.) (2)∵a +b =10,ab =21, ∴S =21a 2+b 2-21(a +b )•b =21a 2+21b 2-21ab =21(a +b )2-23ab =21×102-23×21=50-31.5=18.5.(如果学生猜出a =7,b =3,算正确.)(5分) (3)∵S =21(a -b )•a +21(a -b )•b =21(a -b )(a +b ), ∴2S =41(a -b )2(a +b )2.(2分) ∵a -b =2,∴(a -b )2=4222=+-b ab a ,∵22b a +=7,∴32=ab , ∴2)(b a +=10222=++b ab a ,∴2S =41×4×10=10.(3分,共5分)。
泰州兴化市七年级下期中数学学试题及答案-精品

苏教版七年级下册期中考试数学学试题(详细答案)系列(D)一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼 C.导弹击中目标后爆炸 D.卫星绕地球运动2.下列计算正确的是()A.b5•b5=2b5 B.(a n﹣1)3=a3n﹣1 C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)93.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18° B.36° C.58° D.72°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cm C.5cm、7cm、11cm D.5cm、10cm、13cm6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x﹣1)(﹣2x+1)8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.79.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y210.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= ,(﹣3xy3)3= ,(﹣0.125)2015×82016= .12.一滴水的质量约0.000051kg,用科学记数法表示这个数为kg.13.若a m=2,a n=4,则a m+n= .14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于.15.一个多边形所有内角都是135°,则这个多边形的边数为.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .18.已知方程组的解满足x﹣y=2,则k的值是.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= .20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.三、解答题:(本大题共7小题,共56分).21.计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)22.解下列二元一次方程组:(1)(2).23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为 cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.详细答案一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【考点】生活中的平移现象.【分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选B.【点评】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.2.下列计算正确的是()A.b5•b5=2b5 B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)9【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂相乘,底数不变指数相加,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C错误;D、同底数幂相乘,底数不变指数相加,故D正确;故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3B.∠B+∠BCD=180°C.∠2=∠4D.∠D+∠BAD=180°【考点】平行线的判定.【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【解答】解:A、∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B、∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C、∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D、∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点评】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18° B.36° C.58° D.72°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=36°,再根据角平分线的定义得到∠ABC=∠EBC=36°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=36°,又∵BC平分∠ABE,∴∠ABC=∠EBC=36°,∴∠BED=∠C+∠EBC=36°+36°=72°.故选D.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A中,5+2=7,不符合;B中,10+7>13,10﹣7<13,符合;C中,5+7>11,7﹣5<11,符合;D中,5+10>13,10﹣5<13,符合.故选A.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm是底边和腰长两种情况,根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后再利用三角形的周长的定义解答.【解答】解:①4cm是底边时,三角形的三边分别为4cm、8cm、8cm,能组成三角形,周长=4+8+8=20cm,②4cm是腰长,三角形的三边分别为4cm、4cm、8cm,∵4+4=8,∴不能组成三角形,综上所述,三角形的周长是20cm.故选C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣ x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.7【考点】正多边形和圆.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y2【考点】完全平方式.【分析】根据4x2+12xy+■=(2x+3y)2得出即可.【解答】解:∵4x2+12xy+■是一个二项式的平方,∴■=(3y)2=9y2,故选C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.10.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407【考点】三角形.【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选B.【点评】此题主要考查了利用平面内点的个数确定三角形个数,根据n取比较小的数值时得到的数值,找出规律,再利用规律解决问题.二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2= a4,(﹣3xy3)3= ﹣27x3y9,(﹣0.125)2015×82016= ﹣8 .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得答案;根据积的乘方等于乘方的积,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:a6÷a2=a4,(﹣3xy3)3=﹣27x3y9,(﹣0.125)2015×82016=(﹣0.125)2015×882015×8=(﹣0.125×8)2015×8=﹣8,故答案为:a4;﹣27x3y9;﹣8.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.12.一滴水的质量约0.000051kg,用科学记数法表示这个数为 5.1×10﹣5kg.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000051=5.1×10﹣5.故答案为:5.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a m=2,a n=4,则a m+n= 8 .【考点】同底数幂的乘法.【分析】因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.【解答】解:a m+n=a m•a n=2×4=8,故答案为:8.【点评】此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于70°.【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B的度数,根据翻折变换的性质求出∠BCD的度数,根据三角形内角和定理求出∠BDC.【解答】解:在△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°﹣∠BCD﹣∠B=70°.故答案为:70°.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.一个多边形所有内角都是135°,则这个多边形的边数为8 .【考点】多边形内角与外角.【专题】常规题型.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为35°.【考点】平行线的性质.【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【解答】解:延长CB,解:延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°﹣∠1=180°﹣145°=35°.故答案为:35°.【点评】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF= .【考点】平移的性质.【分析】根据平移的性质可知:AB=DE,设BE=CF=x;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可根据阴影部分的面积求得x的值即可.【解答】解:根据题意得,DE=AB=6;设BE=CF=x,∵CH∥DF.∴EG=6﹣4=2;EG:GD=EC:CF,即 2:4=EC:x,∴EC=x,∴EF=EC+CF=x,∴S△EFD=×x×6=x;S△ECG=×2×x=x.∴S阴影部分=x﹣x=15.解得:x=.故答案为.【点评】此题考查平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.18.已知方程组的解满足x﹣y=2,则k的值是 1 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减表示出x﹣y,代入x﹣y=2中求出k的值即可.【解答】解:,①﹣②得:x﹣y=3﹣k,代入x﹣y=2得:3﹣k=2,解得:k=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2= ﹣4032 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的和为零,可得每个非负数同时为零,代入所求代数式计算即可.【解答】解:∵(x﹣y﹣2016)2+|x+y+2|=0,∴x﹣y﹣2016=0,x+y+2=0,∴x﹣y=2016,x+y=﹣2,∴x2﹣y2=(x﹣y)(x+y)=﹣4032,故答案为:﹣4032.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AO B绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒.【考点】点、线、面、体.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.三、解答题:(本大题共7小题,共56分).21.(2016春•南长区期中)计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)根据整式的混合计算解答即可;(3)根据整式的混合计算解答即可;(4)根据整式的混合计算解答即可.【解答】解:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0=﹣1﹣+1=﹣;(2)a3﹒a3+(﹣2 a3)2﹣a8÷a2=a6+4a6﹣a6=4a6(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)=5x3﹣10 x2﹣5x﹣(10 x+2x3﹣15﹣3 x2)=3 x3﹣7 x2﹣15x+15(4)(x+3y﹣4z)(x﹣3y+4z)=[x+(3y﹣4z)][x﹣(3y﹣4z)]=x2﹣(3y﹣4z)2=x2﹣9 y2+24 yz﹣16z2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.22.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣2y=13,即y=5,把y=5代入②得:x=23,则方程组的解为;(2)方程组整理得:,①×3+②×4得:25x=200,即x=8,把x=8代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有 4 个(点P异于A)【考点】作图-平移变换.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【考点】平行线的判定;角平分线的定义.【专题】证明题;探究型.【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为6m+6n cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.【考点】完全平方公式的几何背景.【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出m+n的值,然后根据矩形的周长公式整理求解即可.【解答】解:(1)切痕总长=2[(m+2n)+(2m+n)],=2(m+2n+2m+n),=6m+6n;故答案为:6m+6n;(2)由题意得:mn=48,2m2+2n2=200,∴m2+n2=100,∴(m+n)2=m2+n2+2mn=196,∵m+n>0,∴m+n=14,∴周长=2(m+2n+2m+n)=6m+6n=6(m+n)=84.【点评】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.。
2016-2017学年泰州兴化市七年级下期中数学学试题(有答案)

苏教版七年级下册期中考试数学学试题(详细答案)系列(D)一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸 D.卫星绕地球运动2.下列计算正确的是()A.b5•b5=2b5 B.(a n﹣1)3=a3n﹣1 C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)93.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3 B.∠B+∠BCD=180°C.∠2=∠4 D.∠D+∠BAD=180°4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18°B.36°C.58°D.72°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cm C.5cm、7cm、11cm D.5cm、10cm、13cm6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.79.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y210.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2=,(﹣3xy3)3=,(﹣0.125)2015×82016=.12.一滴水的质量约0.000051kg,用科学记数法表示这个数为kg.13.若a m=2,a n=4,则a m+n=.14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于.15.一个多边形所有内角都是135°,则这个多边形的边数为.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF=.18.已知方程组的解满足x﹣y=2,则k的值是.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2=.20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB 平行,则t的值为.三、解答题:(本大题共7小题,共56分).21.计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)22.解下列二元一次方程组:(1)(2).23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC 和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.详细答案一、选择题:(本大题共10小题,每小题3分,共30分)1.在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【考点】生活中的平移现象.【分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选B.【点评】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.2.下列计算正确的是()A.b5•b5=2b5 B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3 D.(a﹣b)5(b﹣a)4=(a﹣b)9【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂相乘,底数不变指数相加,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C错误;D、同底数幂相乘,底数不变指数相加,故D正确;故选:D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是()A.∠1=∠3 B.∠B+∠BCD=180°C.∠2=∠4 D.∠D+∠BAD=180°【考点】平行线的判定.【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【解答】解:A、∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B、∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C、∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D、∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点评】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.4.如图,已知AB∥CD,BC平分∠ABE,∠C=36°,则∠BED的度数是()A.18°B.36°C.58°D.72°【考点】平行线的性质.【分析】根据平行线的性质得到∠ABC=∠C=36°,再根据角平分线的定义得到∠ABC=∠EBC=36°,然后利用三角形外角性质计算即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=36°,又∵BC平分∠ABE,∴∠ABC=∠EBC=36°,∴∠BED=∠C+∠EBC=36°+36°=72°.故选D.【点评】本题考查了平行线的性质:两直线平行,内错角相等.也考查了三角形外角性质以及角平分线的定义.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A中,5+2=7,不符合;B中,10+7>13,10﹣7<13,符合;C中,5+7>11,7﹣5<11,符合;D中,5+10>13,10﹣5<13,符合.故选A.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.6.已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cm B.16cm C.20cm D.16cm或20cm【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm是底边和腰长两种情况,根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后再利用三角形的周长的定义解答.【解答】解:①4cm是底边时,三角形的三边分别为4cm、8cm、8cm,能组成三角形,周长=4+8+8=20cm,②4cm是腰长,三角形的三边分别为4cm、4cm、8cm,∵4+4=8,∴不能组成三角形,综上所述,三角形的周长是20cm.故选C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.7.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.8.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.7【考点】正多边形和圆.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9.小明在计算一个二项式的平方时,得到的正确结果是4x2+12xy+■,但最后一项不慎被污染了,这一项应是()A.3y2B.6y2C.9y2D.±9y2【考点】完全平方式.【分析】根据4x2+12xy+■=(2x+3y)2得出即可.【解答】解:∵4x2+12xy+■是一个二项式的平方,∴■=(3y)2=9y2,故选C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.10.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407【考点】三角形.【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选B.【点评】此题主要考查了利用平面内点的个数确定三角形个数,根据n取比较小的数值时得到的数值,找出规律,再利用规律解决问题.二、填空题(本大题共10小题,每空2分,共24分)11.计算a6÷a2=a4,(﹣3xy3)3=﹣27x3y9,(﹣0.125)2015×82016=﹣8.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,可得答案;根据积的乘方等于乘方的积,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【解答】解:a6÷a2=a4,(﹣3xy3)3=﹣27x3y9,(﹣0.125)2015×82016=(﹣0.125)2015×882015×8=(﹣0.125×8)2015×8=﹣8,故答案为:a4;﹣27x3y9;﹣8.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.12.一滴水的质量约0.000051kg,用科学记数法表示这个数为 5.1×10﹣5kg.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000051=5.1×10﹣5.故答案为:5.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a m=2,a n=4,则a m+n=8.【考点】同底数幂的乘法.【分析】因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.【解答】解:a m+n=a m•a n=2×4=8,故答案为:8.【点评】此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.14.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠BDC等于70°.【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B的度数,根据翻折变换的性质求出∠BCD的度数,根据三角形内角和定理求出∠BDC.【解答】解:在△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°﹣∠BCD﹣∠B=70°.故答案为:70°.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.一个多边形所有内角都是135°,则这个多边形的边数为8.【考点】多边形内角与外角.【专题】常规题型.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.16.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC的度数为35°.【考点】平行线的性质.【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【解答】解:延长CB,解:延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°﹣∠1=180°﹣145°=35°.故答案为:35°.【点评】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.17.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF=.【考点】平移的性质.【分析】根据平移的性质可知:AB=DE,设BE=CF=x;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可根据阴影部分的面积求得x的值即可.【解答】解:根据题意得,DE=AB=6;设BE=CF=x,∵CH∥DF.∴EG=6﹣4=2;EG:GD=EC:CF,即2:4=EC:x,∴EC=x,∴EF=EC+CF=x,∴S△EFD=×x×6=x;S△ECG=×2×x=x.∴S阴影部分=x﹣x=15.解得:x=.故答案为.【点评】此题考查平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.18.已知方程组的解满足x﹣y=2,则k的值是1.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减表示出x﹣y,代入x﹣y=2中求出k的值即可.【解答】解:,①﹣②得:x﹣y=3﹣k,代入x﹣y=2得:3﹣k=2,解得:k=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.已知(x﹣y﹣2016)2+|x+y+2|=0,则x2﹣y2=﹣4032.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的和为零,可得每个非负数同时为零,代入所求代数式计算即可.【解答】解:∵(x﹣y﹣2016)2+|x+y+2|=0,∴x﹣y﹣2016=0,x+y+2=0,∴x﹣y=2016,x+y=﹣2,∴x2﹣y2=(x﹣y)(x+y)=﹣4032,故答案为:﹣4032.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB 平行,则t的值为 5.5秒或14.5秒.【考点】点、线、面、体.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.三、解答题:(本大题共7小题,共56分).21.(2016春•南长区期中)计算或化简:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0(2)a3﹒a3+(﹣2a3)2﹣a8÷a2(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)(4)(x+3y﹣4z)(x﹣3y+4z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)根据整式的混合计算解答即可;(3)根据整式的混合计算解答即可;(4)根据整式的混合计算解答即可.【解答】解:(1)(﹣1)2015﹣2﹣1+(π﹣3.14)0=﹣1﹣+1=﹣;(2)a3﹒a3+(﹣2 a3)2﹣a8÷a2=a6+4a6﹣a6=4a6(3)﹣5x(﹣x2+2x+1)﹣(2x﹣3)(5+x2)=5x3﹣10 x2﹣5x﹣(10 x+2x3﹣15﹣3 x2)=3 x3﹣7 x2﹣15x+15(4)(x+3y﹣4z)(x﹣3y+4z)=[x+(3y﹣4z)][x﹣(3y﹣4z)]=x2﹣(3y﹣4z)2=x2﹣9 y2+24 yz﹣16z2.【点评】此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.22.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣2y=13,即y=5,把y=5代入②得:x=23,则方程组的解为;(2)方程组整理得:,①×3+②×4得:25x=200,即x=8,把x=8代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.先化简,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2,其中x2+y2=5,xy=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2=2x2﹣xy﹣x2+y2+x2﹣2xy+y2=2x2+2y2﹣3xy,当x2+y2=5,xy=﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.24.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S△PBC=S△ABC的格点P的个数有4个(点P异于A)【考点】作图-平移变换.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC=S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.25.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【考点】平行线的判定;角平分线的定义.【专题】证明题;探究型.【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.26.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕的总长为6m+6n cm;(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.【考点】完全平方公式的几何背景.【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出m+n的值,然后根据矩形的周长公式整理求解即可.【解答】解:(1)切痕总长=2[(m+2n)+(2m+n)],=2(m+2n+2m+n),=6m+6n;故答案为:6m+6n;(2)由题意得:mn=48,2m2+2n2=200,∴m2+n2=100,∴(m+n)2=m2+n2+2mn=196,∵m+n>0,∴m+n=14,∴周长=2(m+2n+2m+n)=6m+6n=6(m+n)=84.【点评】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.27.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC 和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO角的平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.。
兴化市顾庄学区三校2016-2017学年七年级数学下学期期中试题

江苏省兴化市顾庄学区三校2016—2017学年七年级数学下学期期中试题注意:1。
本试卷共4页,满分为150分,考试时间为120分钟.2。
答题前,考生务必将本人的学校、班级、姓名、学号填写在答题纸相应的 位置上.3.考生答题必须用0。
5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分) 1。
计算 b 5·b ,结果正确的是(▲)A .b 5B .2 b 5C .b 6D .2 b 62.计算(—2xy 2)3,结果正确的是(▲)A .—8xy 6B .—6x 3y 2C .-6xy 6D .—8x 3y 63.下列式子中,计算结果为x 2-x —6的是(▲) A .(x +2)(x -3) B .(x +6)(x -1) C .(x —2)(x +3) D .(x —6)(x +1)4.在数轴上表示不等式—x +1≥0的解集,正确的是( ▲ )O 1O 1O 1O 1A B C D 5.下列从左到右的变形属于因式分解的是(▲)A .x 2-x —1=x (x -1)-1B .a 2- ab =a (a -b )C .x 2-1= x (x -x1) D .(x +2)(x —2)=x 2—46.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”。
乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x 岁,乙y 岁,下列方程 组正确的是(▲)A 。
1025y x y x y x+=-⎧⎨-=-⎩, B 。
1025y x y x y y-=-⎧⎨-=-⎩,C 。
1025y x y x y x-=-⎧⎨-=+⎩, D 。
1025y x y x y x -=-⎧⎨-=-⎩,二、填空题(本大题共有10小题,每小题3分,共30分)7.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0。
2015-2016学年七年级下学期期中联考数学试题(含答案)

2015-2016学年七年级下数学期中测试题数 学 试 题(含答案)一、填空题(每题2分共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。
4.如图2,要把池中的水引到D 处,可过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.如图4,170=∠,270=∠,388=∠,则4=∠_____________. 8 . 若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第 象限 。
0. 如图5,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.ABCD 图2A FC EB D图1OAB DC12 图3 图43142图4c ba5 4 32 1 图6 图511.若│x2-25│+3y -=0,则x=_______,y=_______.12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。
二、 选择题 (下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题2分,共12分) 题 号 1 2 3 4 56 答 案1.下列各图中,∠1与∠2是对顶角的是:( )2.一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3.如图7,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐 的角∠A 是120°,第二次拐的角 ∠B 是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( ) A、150°B、140°C、130° D、120°4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( ) A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图6 下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180° 6.在实数范围内,下列判断正确的是 ( ) (A) .若m=n,则n m = (B) .若22b a >, 则b a >(C) .若2a =2)(b ,则b a = (D) .若3a =3b ,则b a =7.16的平方根是( )(A )2 (B )4 (C )- 2或2 (D )- 4或48. 若a 是(-3)2的平方根,则3a 等于( ) (A )-3 (B )33 (C )33或-33 (D )3或-3三.作图题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年春学期期中学业质量测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.计算x 5·x ,结果正确的是(▲)A .x 5B .2x 5C .x 6D .2x 62.计算(-2x 2y )3,结果正确的是(▲)A .-8x 6yB .-6x 2y 3C .-6x 6y 3D .-8x 6y 33.下列式子中,计算结果为x 2-5x -6的是(▲)A .(x -6)(x +1)B .(x +6)(x -1)C .(x -2)(x +3)D .(x +2)(x -3)4.下列从左到右的变形属于因式分解的是(▲)A .x 2+5x -1=x (x +5)-1B .x 2-9=(x +3)(x -3)C .x 2-4+3x =(x +2)(x -2)+3xD .(x +2)(x -2)=x 2-45. 在数轴上表示不等式-x+2≥1的解集,正确的是( ▲ ) O 1O 1O 1O 1A B C D6.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”. 乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x 岁,乙y 岁,下列方程 组正确的是(▲)A.1025y x y x y x -=-⎧⎨-=-⎩,B.1025y x y x y y -=-⎧⎨-=-⎩, C.1025y x y x y x -=-⎧⎨-=+⎩, D.1025y x y x y x +=-⎧⎨-=-⎩, 二、填空题(本大题共有10小题,每小题3分,共30分)7.人体中红细胞的直径大约是0.0000077m ,用科学记数法来表示红细胞的直径 是 ▲ m.8.计算:()=⋅x x 32 ▲ .9.计算:(-s )7÷ ▲ =-s 5.10.已知方程2x -y =3,用含x 的代数式表示y ,y = ▲ .11.已知a >b ,则-3-2a ▲ -3-2b .(填>、=或<)12.若(x -1)与(2-kx )的乘积中,不含x 的一次项,则常数k 的值是 ▲ .13.若2-3n m =,则2296n mn m +-的值是 ▲ .14.不等式31(x-m )>3-m 的解集为x >1,则m 的值为 ▲ . 15.若三项式4a 2-2a +1加上一个单项式后是一个多项式的完全平方,请写出一个这 样的单项式 ▲ .16. 某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 ▲ 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)用适当的不等式表示下列数量关系:(1)x 与-6的和大于2; (2)x 的2倍与5的差是负数;(3)x 的41与-5的和是非负数; (4)y 的3倍与9的差不大于-1.18.(本题满分8分)计算:(1)20222016-3--++(); (2)(2x -3y )2-(y +3x )(3x -y ).19.(本题满分8分)解不等式1211232≤--x x ,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.20.(本题满分8分)因式分解:(1)(x +y )2-4x 2; (2)3m 2n -12mn +12n .21.(本题满分10分)解方程组:(1)⎩⎨⎧=+-=.823,32y x x y (2)⎩⎨⎧=--=-.622,953x y y x22.(本题满分10分)先化简,再求值:(1)(-2x 2 y )2·(-13xy 3)-(-x 3)3÷x 4·y 5,其中xy =-1. (2)(2a +3)(a -2)-a (2a -3),其中a =-2.23.(本题满分10分)已知A =x -y +1,B=x +y +1,C=(x +y )(x -y )+2x .两位同学对x 、 y 分别取了不同的值,求出A 、B 、C 的值各不相同,但A ×B-C 的值却总是一样 的.由此这两位同学得出结论:无论x 、y 取何值,A ×B-C 的值不变.你认为这个 结论正确吗?请说明理由.24.(本题满分10分)某校组织学生乘汽车去自然保护区野营,先以60km/h 的速度走平路,后又以30km/h 的速度爬坡,共用了6.5h ;返回时,汽车以40km/h 的 速度下坡,又以50km/h 的速度走平路,共用了6h .学校距自然保护区有多远?(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.25.(本题满分12分)(1)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…, 探索以上式子的规律,试写出第n 个等式;(2)运用所学的数学知识说明你所写式子的正确性;(3)请用文字语言表达这个规律,并用这个规律计算.......:20172-20152.26.(本题满分14分)某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?2016年春学期期中学业质量测试七年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分)1.C ;2.D ;3.A ;4.B ;5.D ;6.A .二、填空题(本大题共有10小题,每小题3分,共30分)7. 7.7×10-6;8.x 7;9. (-s )2(或s 2)(只要一个正确即可);10.2x-3;11.<;12.-2;13.4;14.4;15.答案不唯一,如-3a 2或-2a 或6a 或43-;16.120. 三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准....给分...) 17.(本题满分12分)(1)x-6>2;(2)2x -5<0;(3)541-x ≥0;(4)9-3y ≤-1(每题3分).18.(本题满分8分)(1)原式=9141++-(3分)=439(4分);(2)原式=(4x 2-12xy+9y 2)-(9x 2-y 2)(2分)=4x 2-12xy+9y 2-9x 2+y 2= -5x 2-12xy+10y 2(4分).19.(本题满分8分)去分母得3x -6≤4x -3(1分),移项、合并同类项得-x ≤3(3分),系数化为1得x ≥-3(4分).解集在数轴上表示如图(6分),其负整数解为-1,-2,-3(8分).20.(本题满分8分)(1)(x +y )2-4x 2=(x +y )2-(2 x )2(1分)=[(x +y )+2x ][(x +y )-2x ](3分)=-(3x +y )(x -y )【或(3x +y )(y-x )】(4分);(2)3m 2n -12mn +12n =3n (m 2-4m +4)(2分)=3n (m -2)2(4分).21.(本题满分10分)(1)①代入②有,3x+2(2x-3)=8(1分),x=2(3分),把x=2代入①,得到y=1(4分),∴⎩⎨⎧==.1,2y x (5分);(2)由②有:y=x+3(1分),代入①有3x-5(x+3)=-9,x=-3(3分),∴y=0(4分),∴⎩⎨⎧=-=.0,3y x (5分)(用其他方法的类比给分).22.(本题满分10分)(1)原式=4x 4 y 2·(-13xy 3)-(-x 9)÷x 4·y 5(2分)=-34x 5y 5+x 5y 5=-31x 5y 5(4分),当xy=-1时,原式=31(5分);(2)原式=2a 2-a-6-(2a 2-3a )(2分)=2a-6(4分),当a=-2时,原式=-10(5分).23.(本题满分10分)结论正确(1分).理由:A ×B-C=(x -y +1)(x +y +1)-【(x +y )(x -y )+2x 】(2分)=(x +1-y )(x +1+y )-(x 2-y 2+2x )(4分)=x 2+2x +1-y 2-x 2+y 2-2x (7分)=1(9分),所以无论x 、y 取何值,A ×B -C 的值不变(10分).24.(1)以60km/h 的速度走平路用的时间+以30km/h 的速度爬坡用的时间=6.5h (2分);以40km/h 的速度下坡用的时间+以50km/h 的速度走平路用的时间=6h (4分);(2)设平路长为x km ,山坡长为y km (5分).根据题意,得 6.56030 6.5040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,(7分),解得150120x y =⎧⎨=⎩,.(8分)x+y=270(9分).答:学校距自然保护区270km (10分).25.(本题满分12分)(1)第n 个等式为(2n+1)2-(2n-1)2=8n (n 为正整数,3分,不写“n 为正整数”不扣分);(2)验证:(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n -1)]=2×4n=8n (6分);(3)两个连续奇数的平方差是8的整数倍(8分);由20172-20152可知2n+1=2017,解得n=1008(10分),∴20172-20152=8×1008=8064(12分)(答案正确,没有过程的得2分,用平方差公式计算正确的得2分).26.(本题满分14分)设每名熟练工人和每名新工人每月分别可安装x 、y 辆电动汽车(1分),则有方程组:⎩⎨⎧=+=+.1432,82y x y x (3分)解得⎩⎨⎧==.2,4y x (4分)答:每名熟练工人和每名新工人每月分别可安装4辆和2辆电动汽车(5分);(2)设工厂抽调m 名熟练工,则12(4m+2n )=240,化简可得n=10-2m(7分).∵0<n <10且m 、n 为正整数,∴m 、n 的取值情况如下:m=1,n=8;m=2,n=6;m=3,n=4;m=4,n=2.∴工厂有四种招聘方案,招聘新工人8名或6名或4名或2名(11分,每一个方案1分);(3)为使工厂每月支出的工资总额W (元)尽可能少,且新工人的数量多于熟练工,工厂应招聘4名新工人(14分).。