2014-2015年江苏省扬州市邗江区八年级上学期期中数学试卷及参考答案
【精品】2014-2015年江苏省扬州市邗江区八年级(上)期中数学试卷带答案

2014-2015学年江苏省扬州市邗江区八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形3.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或204.(3分)如图,△ABC≌△DEF,BE=4,则AD的长是()A.5 B.4 C.3 D.25.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠B=∠E D.∠B=∠E,∠BCE=∠ACD6.(3分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°8.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点.则当PB+PE的值为最小值时,点P的位置在()A.AC的三等分点B.AC的中点C.连接DE与AC的交点D.以上答案都不对二、填空题(共10小题,每小题3分,满分30分)9.(3分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.10.(3分)如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.11.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.12.(3分)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.13.(3分)直角三角形的两边长为3、4,则第三边的平方为.14.(3分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,连接AB、BC,则∠ABC的度数为.16.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.17.(3分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.18.(3分)等腰三角形的底边长为10cm,一腰上的中线把这个三角形的周长分成两个部分的差为3cm,则腰长为.三、解答题(共10小题,满分96分)19.(8分)有公路l 2同侧、l1异侧的两个城镇A、B,如图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路l1、l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)20.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的△A'B'C';(2)线段CC′被直线l;(3)△ABC的面积为.21.(8分)如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.22.(10分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.23.(8分)如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?24.(10分)如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.25.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.26.(10分)△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P 到点C的距离与点P到边AB的距离相等,求BP的长.27.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.28.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.2014-2015学年江苏省扬州市邗江区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有3个.故选:C.2.(3分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形【解答】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.3.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.4.(3分)如图,△ABC≌△DEF,BE=4,则AD的长是()A.5 B.4 C.3 D.2【解答】解:∵△ABC≌△DEF,∴AB=DE,∴AB﹣AE=DE﹣AE,即AD=BE,∵BE=4,∴AD=4.故选:B.5.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠B=∠E D.∠B=∠E,∠BCE=∠ACD【解答】解:A、根据SAS能推出△ABC≌△DEC,正确,故本选项错误;B、根据SSS能推出△ABC≌△DEC,正确,故本选项错误;C、根据AC=DC,AB=DE和∠B=∠E不能推出△ABC≌△DEC,错误,故本选项正确;D、∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,即根据AAS能推出△ABC≌△DEC,正确,故本选项错误;故选:C.6.(3分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=【解答】解:A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=180°=90°,故是直角三角形,正确;C、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确;D、设a=20k,b=15k,c=12k,∵(12k)2+(15k)2≠(20k)2,故不能判定是直角三角形.故选:D.7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选:B.8.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点.则当PB+PE的值为最小值时,点P的位置在()A.AC的三等分点B.AC的中点C.连接DE与AC的交点D.以上答案都不对【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.根据两点之间线段最短,所以此时PB+PE的值最小.故P点即为所求;故选:C.二、填空题(共10小题,每小题3分,满分30分)9.(3分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.10.(3分)如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有3个.【解答】解:∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°﹣72°﹣36°﹣36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°﹣72°﹣36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.故答案为:3.11.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19cm.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.12.(3分)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是47.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.13.(3分)直角三角形的两边长为3、4,则第三边的平方为25或7.【解答】解:①若4是直角边,则第三边x是斜边,由勾股定理,得42+32=x2,所以x2=25;②若4是斜边,则第三边x为直角边,由勾股定理,得x2=42﹣32,所以x2=7;故x2=25或7.故答案为:25或7.14.(3分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为1.【解答】解:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边长为4﹣3=1,∴阴影部分面积为1×1=1.故答案为1.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,连接AB、BC,则∠ABC的度数为45°.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵+=,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.16.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.17.(3分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10 cm.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.18.(3分)等腰三角形的底边长为10cm,一腰上的中线把这个三角形的周长分成两个部分的差为3cm,则腰长为7cm或13cm..【解答】解:如图,设等腰三角形的腰长是xcm.当AD+AC与BC+BD的差是3cm时,即x+x﹣(x+10)=3解得:x=13cm;当BC+BD与AD+AC的差是3cm时,即10+x﹣(x+x)=3解得:x=7cm.故腰长是:7cm或13cm.三、解答题(共10小题,满分96分)19.(8分)有公路l2同侧、l1异侧的两个城镇A、B,如图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路l1、l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)【解答】解:如图所示:C1,C2即为所求..20.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的△A'B'C';(2)线段CC′被直线l垂直平分;(3)△ABC的面积为3.【解答】解:(1)如图所示;(2)∵点C与点C′关于直线l对称,∴线段CC′被直线l垂直平分.故答案为:垂直平分;(3)S=4×2﹣×2×2﹣×1×2﹣×1×4=8﹣2﹣1﹣2=3.△ABC故答案为:3.21.(8分)如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.22.(10分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是BC′,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.【解答】解:(1)如图,折叠后,DC的对应线段是BC′.(2)由题意得:∠BEF=∠2;AD∥BC,∴∠2=∠1=60°,∴∠3=180°﹣2∠2=60°.(3)由题意得:BE=DE(设为λ),则AE=10﹣λ,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,即BE的长为5.23.(8分)如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠C=∠ABE=60°,在△ABE和△BCD中,,∴△ABE≌△BCD(SAS),∴∠BAE=∠CBD,∴∠AFD=∠ABF+∠BAE=∠ABF+∠CBD=∠ABC=60°.24.(10分)如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.【解答】解:(1)AD平分∠BAC.理由:∵BC为斜边上的中线,∴BD=5.∵在△ABC中,AB=13,AD=12,BD=5,∴132=122+52,即AB2=AD2+BD2,∴∠ADB=90°,即AD⊥BC,∴AD垂直平分BC,∴AB=AC,∴AD平分∠BAC;(2)∵由(1)知,△ABC是等腰三角形,∴BC=2BD=5,=BC•AD=×10×12=60.∴S△ABC25.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.26.(10分)△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P到点C的距离与点P到边AB的距离相等,求BP的长.【解答】解:作∠CAB的平分线,交BC于点P,过点P作PD⊥AB于D,∴PD=PC.在Rt△ADP和Rt△ACP中,,∴Rt△ADP≌Rt△ACP(HL)∴AD=AC=3.在Rt△ABC中,由勾股定理,得AB=5,∴BD=5﹣3=2.设PC=x,则PD=x,BP=4﹣x,在Rt△BDP中,由勾股定理,得(4﹣x)2=x2+22,解得:x=1.5,∴BP=4﹣1.5=2.5.答:BP的长为2.5.27.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.28.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.【解答】(1)证明:∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,在△ADC和△AEB中∴△ADC≌△AEB(SAS),(2)△EGM为等腰三角形;理由:∵△ADC≌△AEB,∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(3)线段BG、AF与FG的数量关系为BG=AF+FG.理由:如图所示:过点B作AB的垂线,交GF的延长线于点N,∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°﹣∠DCB,∵AF⊥BE,∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,在△BFN和△BFA中∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.。
扬州市邗江区八年级数学上册期中考试试题及答案

2018-2019 学年度第一学期期中质量监测 八年级数学试题 2018.11.注意事项】1、下列几种图案中,既是中心对称又是轴对称图形的有(▲)A .1个B .2个C .3个D .4个 2、在实数4.21⋅⋅,π722,0)21(-中无理数的个数是(▲)A .1个B .2个C .3个D .4个 3A .点PB .点QC .点MD .点N4、如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于(▲).A.55 B.45 C.40 D.355、下列说法: ①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④不带根号的数一定是有理数;⑤有理数和数轴上的点一一对应;⑥负数没有立方根。
其中正确的有(▲) A.1个 B.2个 C.3个 D.4个6、等腰三角形两边长为2和5,则此三角形的周长为(▲) A.7B.9C.12D.9或127、如图在平行四边形ABCD 中CE AB ⊥,E 为垂足.如果 ∠A=115°,则BCE =∠(▲) A.55B.358、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为1 , l 2,l 3之间的距离为2 ,则AC 的长是(▲)A .13B .20C .26D .5 二、细心填一填:(每题3分,共30分) 9、 9的平方根是_____________。
10、定义运算“@”的运算法则为: x@y ,则 (2@6)@8=____。
11、据统计,2018年十·一期间,某市某风景区接待中外游客的人数为86740人次,将这个数字保.留三个...有效数字....,用科学记数法可表示为 12、小明有两条长分别是3厘米和4厘米的小木棒,当他再找一根长度为A EBCD 第7题图22011112-⎛⎫-+- ⎪⎝⎭厘米的小木棒时,可以使这三根木棒刚好拼成一个直角三角形. 13、已知梯形的中位线长为6 cm ,高为3 cm ,则此梯形的面积为_______cm 2. 14、直角三角形两直角边长分别为3和4,则它斜边上的高为__________. 15、平行四边形ABCD 中,AB=6cm ,BC=8cm ,对角线AC 、BD 相交于点O ,则:△BCO 与△ABO 的周长之差为 。
中学附属初级中学2014-2015八年级数学上学期期中试题 苏科版

江苏省泰州中学附属初级中学2014-2015学年八年级数学上学期期中试题注意:请把所有答案书写到答题卡上!请不要错位、越界答题!在本试题上答题无效。
一、选择题(共6小题,每小题3分,满分18分)1.下列四个图案中是轴对称图形的有---------------------------------------------------(▲)A .1个B .2个C .3个D .4个 2.在实数12, -3,-3.14,0,π,2.161 161 161…,316中,无理数有------------(▲) A . 1 个 B .2个 C . 3个 D .4个3.实数a 、b 在数轴上的位置如图所示,则化简代数式()b b a --2的结果是----------------(▲)A .b a 2-B .b a 2--C .a -D .b2-4.下列四组线段中,可以构成直角三角形的是(▲)A .4,5,6B .1.5,2, 2.5C .2,3,4D .1,2, 35.如图,在下列条件中,不能..证明△ABD ≌△ACD 的条件是----------------------------------(▲) A .∠B=∠C ,BD=DCB .∠ADB=∠ADC ,BD=DCC .∠B=∠C ,∠BAD=∠CAD D .BD=DC ,AB=AC6.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为2cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为-----------------------------------------------------(▲)A .32B .3C .23D .2二、填空题(共10小题,每小题3分,满分30分) 7.36的算术平方根是 ▲ .8.若式子3-x 有意义,则x 的取值范围是 ▲ . 9.近似数4.30万精确到 ▲ 位.10.已知直角三角形斜边长为12㎝,周长为30㎝,则此三角形的面积为 ▲ . 11.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC= ▲ .12.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 ▲ .第5题图第6题图 A EC (F ) DB图(1)EAG BC D图(2)第14题 第15题13.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是12cm ,当一段葛藤绕树干盘旋1圈升高为9cm 时,那么这段葛藤的长是 ▲ .14.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8 cm ,PB=3 cm ,则△POA 的面积等于 ▲ .15.如图,等腰三角形ABC 中,已知AB =AC ,∠A =30°,AB 的垂直平分线交AC 于D ,则∠CBD 的度数为 ▲ .16.如图在四边形ABCD 中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD 的长为 ▲ .三、解答题(共10小题,满分102分)17.(本题满分10分)⑴求式中x 的值:09)1(42=--x⑵计算:()()3214.331275-+-+---π18.(本题满分10分)已知2-x 的平方根是2±,72++y x 的立方根是3,求22y x +的平方根.19.(本题满分8分)在如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两个格点,若C 也是图中的格点,且使得△ABC 为等腰三角形,在网格中画出所有符合条件的点C .20.(本题满分10分)如图,在△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作一直线交AB 、AC 于E 、F ,且BE=EO.设△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,求△OBC 的面积.21.(本题满分10分)如图所示,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点,若AB=17,BD=12,⑴求证:△BCD ≌△ACE ;⑵求DE的长度.第16题22.(本题满分10分)如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.23.(本题满分10分)已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.⑴请问:AB、BD、DC有何数量关系?并说明理由.⑵如果∠B=60°,证明:CD=3BD.24.(本题满分10分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题小溪边长着两棵棕榈树,恰好隔岸相望,一棵树高是15肘尺(肘尺是古代的长度单位),另外一棵高15肘尺;两棵棕榈树的树梢间的距离是25肘尺,每棵树的树梢上都停着一只鸟,忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们以相同的速度立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?(请画出示意图解答)25.(本题满分12分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C 落在点D处(如图1).⑴若折叠后点D恰为AB的中点(如图2),求θ的度数;⑵若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,①点B落在点四边形OABC的边AB上的E处(如图3),求a的值;②若点E落在四边形OABC的外部,直接写出a的取值范围.26.(本题满分12分)问题解决如图⑴,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当12CECD时,求AMBN的值.A DFl图1DC BO θAθl图2DC BAOl图EDC BAO类比归纳在图⑴中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n=(n 为整数),则AM BN 的值等于 .(用含n 的式子表示) 联系拓广如图⑵,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导:为了求得AMBN 的值,可先求BN 、AM 的长. 2=AB 2=AB AB图(2)N ABCD EFM。
2014-2015年江苏省扬州市邗江区梅岭中学八年级(上)期末数学试卷(解析版)

2014-2015学年江苏省扬州市邗江区梅岭中学八年级(上)期末数学试卷一、选择题:(本大题共有8小题,每小题3分,共24分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(3分)二次根式可化简成()A.﹣2B.4C.2D.2.(3分)下列各选项的图形中,不是轴对称图形的是()A.B.C.D.3.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 4.(3分)下列说法正确的是()A.﹣4的平方根是±2B.(﹣3)2的平方根是﹣3C.1的立方根是±1D.0的平方根是05.(3分)如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm6.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象经过点(﹣2,1)B.y随x的增大而增大C.图象不经过第三象限D.图象不经过第二象限7.(3分)估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间8.(3分)如图,∠MON=90°,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为()A.2.4B.C.D.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在答题纸相对应的位置上)9.(3分)要使二次根式有意义,字母x必须满足的条件是.10.(3分)如果等腰三角形的周长为10,底边长为4,那么腰长为.11.(3分)16的平方根是.12.(3分)姜堰区溱湖风景区2013年接待游客的人数为289700人次,将这个数字精确到万位,并用科学记数法表示为.13.(3分)小亮在镜子中看到一辆汽车的车牌号为,实际车牌号为.14.(3分)如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=8,则四边形AEDF的周长为.15.(3分)如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b>4x+2的解集为.16.(3分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm2和15cm2,则正方形③的面积为.17.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.18.(3分)若[x]表示不超过x的最大整数(如[π]=3,[﹣2]=﹣3等),则[]+[]+…[]=.三、解答题(本大题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)(2).20.(6分)如图,小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.22.(8分)如图,有人在岸上点C的地方,用绳子拉船靠岸开始时,绳长CB=5米,拉动绳子将船身岸边行驶了2米到点D后,绳长CD=米,求岸上点C 离水面的高度CA.23.(10分)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.24.(10分)某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.25.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.26.(12分)甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB表示货车离甲地的距离y (千米)与行驶的时间x(小时)之间的函数关系;折线O﹣C﹣D表示轿车离甲地的距离y(千米)与行驶时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)求线段AB的函数关系式,并求出轿车出发多少小时与货车相遇?(3)当轿车出发多少小时两车相距80千米?27.(12分)已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x 轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1≥y2的解;=3,试求这个一次函数的表达式;(2)若S△AOP(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.28.(12分)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)2014-2015学年江苏省扬州市邗江区梅岭中学八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共有8小题,每小题3分,共24分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(3分)二次根式可化简成()A.﹣2B.4C.2D.【解答】解:=2,故选:C.2.(3分)下列各选项的图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项不合题意.故选:C.3.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.4.(3分)下列说法正确的是()A.﹣4的平方根是±2B.(﹣3)2的平方根是﹣3C.1的立方根是±1D.0的平方根是0【解答】解:﹣4没有平方根,A错误;(﹣3)2的平方根是±3,B错误;1的立方根是1,C错误;0的平方根是0,D正确,故选:D.5.(3分)如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.6.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象经过点(﹣2,1)B.y随x的增大而增大C.图象不经过第三象限D.图象不经过第二象限【解答】解:A、∵当x=﹣2时,y=﹣4+1=3≠1,∴图象不经过点(﹣2,1),故本选项错误;B、∵﹣2<0,∴y随x的增大而减小,故本选项错误;C、∵k=﹣2<0,b=1>0,∴图象不经过第三象限,故本选项正确;D、∵k=﹣2<0,b=1>0,∴图象经过第二象限,故本选项错误.故选:C.7.(3分)估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【解答】解:∵5<<6,∴3<﹣2<4.故选:C.8.(3分)如图,∠MON=90°,边长为2的等边三角形ABC的顶点A、B分别在边OM,ON上当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为()A.2.4B.C.D.【解答】解:如图,取AB的中点D,连接CD.∵△ABC是等边三角形,且边长是2,∴BC=AB=2,∵点D是AB边中点,∴BD=AB=1,∴CD===,即CD=;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,由(1)得,CD=,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故选:C.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在答题纸相对应的位置上)9.(3分)要使二次根式有意义,字母x必须满足的条件是x≥﹣1.【解答】解:根据题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.10.(3分)如果等腰三角形的周长为10,底边长为4,那么腰长为3.【解答】解:∵等腰三角形的底边长为4,周长为10,∴腰长为:(10﹣4)÷2=3.故答案为:3.11.(3分)16的平方根是±4.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.(3分)姜堰区溱湖风景区2013年接待游客的人数为289700人次,将这个数字精确到万位,并用科学记数法表示为 2.9×105.【解答】解:289700≈29万,故答案为:2.9×105.13.(3分)小亮在镜子中看到一辆汽车的车牌号为,实际车牌号为100968.【解答】解:根据镜面对称性质得出:实际车牌号是100968.故答案为:10096814.(3分)如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=8,则四边形AEDF的周长为18.【解答】解:∵AD是高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,∴ED=EB=AB,DF=FC=AC,∵AB=10,AC=8,∴AE+ED=10,AF+DF=8,∴四边形AEDF的周长为10+8=18,故答案为:18.15.(3分)如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b>4x+2的解集为x<﹣1.【解答】解:∵直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴观察图象得:当x<﹣1时,kx+b>4x+2,∴不等式kx+b>4x+2的解集为x<﹣1.故答案为:x<﹣1.16.(3分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm2和15cm2,则正方形③的面积为19.【解答】解:∵四边形1、2、3都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC,AB=CD.∵正方形①、②的面积分别4cm2和15cm2,∴AE2=4,CD2=15.∴AB2=15.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=19,正方形③为19.故答案为:19.17.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).【解答】解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).18.(3分)若[x]表示不超过x的最大整数(如[π]=3,[﹣2]=﹣3等),则[]+[]+…[]=2014.【解答】解:∵==1﹣=1﹣,∴[]=[1﹣]=1,∴[]+[]+…[]=1+1+…+1=2014.故答案为:2014.三、解答题(本大题共10个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)(2).【解答】解:(1)原式=2﹣3+4=3;(2)原式=9+12+20﹣16+7=20+12.20.(6分)如图,小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.【解答】答:同意.证明:如图,设AD与EF交于点G.∵∠BAD=∠CAD.又∵∠AGE=∠DGE,∠AGE+∠DGE=180°,∴∠AGE=∠AGF=90°,∴∠AEF=∠AFE.∴AE=AF,即△AEF为等腰三角形.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,B′(2,1).22.(8分)如图,有人在岸上点C的地方,用绳子拉船靠岸开始时,绳长CB=5米,拉动绳子将船身岸边行驶了2米到点D后,绳长CD=米,求岸上点C 离水面的高度CA.【解答】解:设AD=x,根据题意得13﹣x2=25﹣(x+2)2解得:x=2,∵BD=2,∴AB=4,∴由勾股定理得:,答:岸离水面高度AC为3米.23.(10分)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.24.(10分)某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.【解答】解:(1)设生产两种产品的获利总额为y(元),生产A产品x(件),则B种产品共(50﹣x)件,∴y与x之间的函数关系式为:y=1200x+700(50﹣x)=500x+35000;(2)∵生产A、B两种产品的件数均不少于10件,∴,解得:10≤x≤40,∵y=500x+35000,y随x的增大而增大,∴当x=40时,此时达到总利润的最大值为:40×500+35000=55000(元),答:总利润的最大值为55000元.25.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BAC=45°.26.(12分)甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB表示货车离甲地的距离y (千米)与行驶的时间x(小时)之间的函数关系;折线O﹣C﹣D表示轿车离甲地的距离y(千米)与行驶时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)求线段AB的函数关系式,并求出轿车出发多少小时与货车相遇?(3)当轿车出发多少小时两车相距80千米?【解答】解:(1)设线段CD的解析式为:y=kx+b,将(1,80),(3.2,300)代入得出:,解得:∴线段CD对应的函数关系式为:y=100x﹣20;(2)设线段AB的解析式为:y=ax+c,将(0,300),(5,0)代入得出:,解得:,∴线段AB的函数关系式为:y=﹣60x+300;∵货车的速度为:300÷5=60(km/h),轿车开始1小时的速度为:80km/h,1小时后速度为:(300﹣80)÷(3.2﹣1)=100(km/h),∴轿车出发1小时后两车相距:300﹣(80+60)=160(km),160÷(100+60)=1(小时),∴轿车出发2小时与货车相遇;(3)∵轿车开始1小时的速度为:80km/h,1小时后速度为:100km/h,∴轿车出发1小时后两车相距:160km,∴继续行驶当两车相距80km,则所需时间为:80÷(100+60)=,∴轿车出发小时两车相距80千米;当两车相遇后再次相距80km时,即2小时后再次相距80km,则还需小时,∴轿车出发小时或小时两车相距80千米.27.(12分)已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x 轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1≥y2的解;=3,试求这个一次函数的表达式;(2)若S△AOP(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.【解答】解:(1)∵正比例函数y1=2x和一次函数y2=﹣x+b的图象相交于点P,P点坐标为(3,n),∴代入正比例函数求得n=6,∴点P的坐标为(3,6),∴代入y2=﹣x+b得b=9,所以一次函数的表达式为y2=﹣x+9;图象为:∴y1≥y2的解为:x≥3;(2)∵一次函数y2=﹣x+b的图象与x轴、y轴分别交于点A(b,0)、点B(0,b),两函数的图象交与点(,),=×b×=3,∴S△AOP解得:b=±3,所以一次函数的表达式为:y2=﹣x±3;(3)当b>0时,如图:∵△POB≌△EPA,∴PO=PE,∵E(2,0),∴点P的横坐标为1,∵点P在y=2x上,∴点P的纵坐标为2,∴点P的坐标为(1,2),∴代入y2=﹣x+b得:y2=﹣x+3;当b<0时,如图:∵△POB≌△EPA,∴PO=PE,∵点P在第三象限,∴不成立;综上所叙:若△POB≌△EPA时,一次函数的表达式为y=﹣x+3.28.(12分)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)【解答】(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′。
2014-2015学年江苏省扬州市邗江区2015学年八年级下学期期中考试数学试题(含答案)

扬州市邗江区2014—2015学年第二学期八年级数学期中试卷(满分:150分 时间:120分钟)一、选择题(每题3分,共24分)题号 1 2 3 4 5 6 7 8 答案1.下列调查中,适合用普查方式的是 ( ▲ )A.了解瘦西湖风景区中鸟的种类B.了解扬州电视台《关注》栏目的收视率 “扬农”牌牛奶的喜爱情况 D .航天飞机发射前的安全检查2.下列事件是随机事件的是 ( ▲ ) A .没有水分,种子发芽B .367人中至少有2人的生日相同C .三角形的内角和是180°D .小华一出门上学,天就下雨3.在一个不透明的布袋中装有2个白球和1个红球,它们除了颜色不同外,其余均相同.从中 随机摸出一个球,摸到红球的概率是( ▲ ) A .51 B .31 C .83 D .85 4. 分式242x x -+的值为0,则( ▲ )A .x=-2B .x=±2C .x=2D .x=05. 计算2311x x +--的结果是( ▲ ) A .11x - B .11x - C .51x - D .51x-6. 矩形具有而菱形不具有的性质是( ▲ )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等7. 如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求。
连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( ▲ ) A. 矩形 B. 正方形 C.菱形 D. 梯形(第8题)8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论中正确结论的个数是( ▲ )①△ABG ≌△AFG ; ②BG =GC ; ③AG ∥CF ; ④S △FGC =3. A.1 B.2C.3D.4二、填空题(每题3分,共30分)9.某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是 10.当x 时,分式x-31有意义. )(612123y x x x - ;的最简公分母是_ . 12.化简:x y ÷a ⋅ ya= . 13.在下列图形:①菱形 ②等边三角形 ③矩形 ④平行四边形中,既是中心对称图形又是轴对 称图形的是_ (填写序号).14顺次连接矩形四边中点所形成的四边形是 .学校的一块菱形花园两对角线的长分别是6 m 和 8 m ,则这个花园的面积为 .15.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区 域的概率是_ .( 第15题 ) ( 第16题 ) 16.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为_ .17 .如图,▱ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是( 第17题 ) ( 第18题 )18.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是_ .三、解答下列各题(共96分) 19.化简:(每小题5分,共20分) (1)2311x x+-- (2)(1-11m +) (m+1)(3)n m n n m ++-22 (4)4)222(2-÷+--x xx x x x20.(本题6分)先化简,再求值:)211(342--⋅--a a a ,其中3-=a ⋅21.(10分)某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?22.(本题 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1)画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC 面积相等的概率是 ▲ .23.(本题10分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ .(2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.24(本题10分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O , A0=C0, B0=D0中, 且∠ABC +∠ADC=180°。
2014-2015学年邗江实验度第一学期期中考试——初二

2014-2015学年度第一学期期中考试八年级数学一、选择题(每题3分,共24分)1.下列数:722,2,π,25,0.1010010001...(相邻两个1之间一次增加一个0)中,无理数有( )个A.2B.3C.4D.52.一个等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A.12B.15C.12或15D.183.下列各组数,可以作为直角三角形的三边长的是( )A.2, 3, 4B.5, 13, 15C.7, 24, 25D.8, 12, 204.下列图形:①角;②线段;③等腰三角形;④直角三角形;⑤等边三角形。
其中一定是轴对称图形的有( )A.2个B.3个C.4个D.5个5.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM ∥CNC.AB=CDD.AM=CN6.如图所示的正方形网格中,网格线的交点称为格点。
已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则满足条件的点C 有( )A.6个B.7个C.8个D.9个7.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店, 买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了 ( )A.任意两块B.①④或③④C.①④或②④D.①④或②④③④8.如图是一个边长为6的等边三角形电子跳蚤游戏盘。
如果跳蚤开始时在AB 边的P 0处,BP 0=1,跳蚤第一步从P 0跳到BC 边的P 1(第1次落点)处,且BP 1=BP 0;第二步从P 1跳到AC 边的P 2(第2次落点)处,且CP 2=CP 1;第三步从P 2跳到AB 边的P 3(第3次落点)处,且AP 3=AP 2;……;跳蚤按上述规则一直跳下去,第n 次落点为Pn (n 为正整数),则点P 2014与P 2015之间的距离为 ( )A.1B.3C.4D.5二、填空题(每题3分,共30分)9.4的平方根是 .10.地球上七大洲的总面积约为149480000km 2,用科学记数法表示为 km 2.11.比较大小:213 0.5.(填“>”、“<”或“=”) 第5题图 第6题图 第7题图 第8题图12.如图,已知∠B=∠C ,添加一个条件使△ABD ≌△ACE (不标注新的字母,不添加新的线段),你添加的条件是 .(添加一个条件即可)13.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别是2cm 和3cm ,则正方形③的面积是 cm 2.14.如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于点D ,若AD=5厘米,AC=4厘米,则点D 到直线AB 的距离是 厘米.15.已知等腰三角形的一个内角是50°,则它的底角是 .16.如图,在△ABC 中,BC=15cm ,BP 、CP 分别是∠ABC 和∠ACB 的平分线,且PD ∥AB , PE ∥AC ,则△PDE 的周长是 cm.17.如图,在△ABC 中,∠ACB=90°,∠ABC=60°,BD 平分∠ABC ,P 点是BD 的中点,若AD=9,则CP 的长为 .18.如图,在△ABC 中,AB=AC ,∠BAC=42°,∠BAC 的平分线与AC 的垂直平分线交于点O ,将∠B 沿EF (E 在BC 上,F 在AB 上)折叠,点B 与点O 恰好重合,则∠OEB= .三、解答题(共10题,共96分)19.(本题满分8分)计算:求x 的值:(1)()4912=+x (2)012583=+x第14题图 第13题图 第12题图 第17题图 第16题图 第18题图20.(本题满分8分)已知32-+y x 与()252--y x 互为相反数,求y x 4-的算术平方根.21.(本题满分分)22.(本题满分8分)先化简再求值:23.(本题满分10分)24.(本题满分10分)25.(本题满分10分)26.(本题满分10分)27.(本题满分12分)28.(本题满分12分)。
2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
2024年江苏省扬州市八年级(上)期中考试数学试卷含答案

八年级(上)期中考试数学试卷(时间:120分钟 总分:150分)友情提醒:本卷中的所有题目均在答题纸上作答,在本卷中作答无效。
一、选择题(每小题3分,共24分)1.下面有4个汽车标志图案,其中是轴对称图形的是 ( ▲ )① ② ③ ④ A .①②④ B.②③④ C.①②③ D .①③④ 2.2(3)-的值等于 ( ▲ )A 、3-B 、3或3-C 、9D 、33.一等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为( ▲ ) A .20 B .18 C .16 D . 16或204.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是 ( ▲ )A .带其中的任意两块去都可以B .带1、2或2、3去就可以了C .带1、4或3、4去就可以了D .带1、4或2、4或3、4去均可 5.下列三角形中,不是直角三角形的是( ▲ )A.△ABC 中,∠A =∠B -∠CB.△ABC 中,a :b :c =1:2:3C.△ABC 中,a 2=c 2-b 2D.△ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn (m>n>0) 6.若m =40-2,则估计m 的值所在的范围是( ▲ )A .1<m<2 B.2<m<3 C .3<m<4 D .4<m<5 7.如图,∠B=∠C ,∠1=∠3,则∠1与∠2之间的关系是( ▲ ) A .∠1=2∠2B .3∠1﹣∠2=180°C .∠1+3∠2=180°D .2∠1+∠2=180° 8.已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一条直线上,连接BD 、BE .以下四个结论: ①BD =CE ; ②BD ⊥CE ; ③∠ACE +∠DBC =45°; ④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( ▲ ) A .1 B .2 C .3 D .4(第4题图) (第7题图) (第8题图)二、填空题(每小题3分,共30分) 9.的平方根为 ▲ .10.已知△ABC ≌△DEF ,∠A =30°,∠E =50°,则∠C = ▲ .11.一个汽车牌照上的数字在车前水坑中的倒影是,则该车牌照上的数字为 ▲ .E D A12.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是 ▲ .(填上一个条件即可)(第11题 图) (第12题 图) (第13题 图) (第15题图) 13.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD 之间的距离等于 ▲ . 14.已知2323y x x =-+-+,则x y -= ▲ .15.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为 ▲ . (第17题 图) (第18题 图) 16.如图,在△ABC 中,∠C =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP = ▲ °. 17. 如图,在钝角△ABC 中,已知∠A 为钝角,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,若BD 2+CE 2=DE 2,则∠A 的度数为 ▲ °.18.如图,△ABC 中,AC =DC =3,BD 垂直∠BAC 的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为____▲______.三、解答题(本大题共有10题,共96分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省扬州市邗江区八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形3.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或204.(3分)如图,△ABC≌△DEF,BE=4,则AD的长是()A.5 B.4 C.3 D.25.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠B=∠E D.∠B=∠E,∠BCE=∠ACD6.(3分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°8.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点.则当PB+PE的值为最小值时,点P的位置在()A.AC的三等分点B.AC的中点C.连接DE与AC的交点D.以上答案都不对二、填空题(共10小题,每小题3分,满分30分)9.(3分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.10.(3分)如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.11.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.12.(3分)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.13.(3分)直角三角形的两边长为3、4,则第三边的平方为.14.(3分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,连接AB、BC,则∠ABC的度数为.16.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.17.(3分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.18.(3分)等腰三角形的底边长为10cm,一腰上的中线把这个三角形的周长分成两个部分的差为3cm,则腰长为.三、解答题(共10小题,满分96分)19.(8分)有公路l2同侧、l1异侧的两个城镇A、B,如图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路l1、l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)20.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的△A'B'C';(2)线段CC′被直线l;(3)△ABC的面积为.21.(8分)如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.22.(10分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.23.(8分)如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?24.(10分)如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.25.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.26.(10分)△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P 到点C的距离与点P到边AB的距离相等,求BP的长.27.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.28.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.2014-2015学年江苏省扬州市邗江区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有3个.故选:C.2.(3分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形【解答】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.3.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.4.(3分)如图,△ABC≌△DEF,BE=4,则AD的长是()A.5 B.4 C.3 D.2【解答】解:∵△ABC≌△DEF,∴AB=DE,∴AB﹣AE=DE﹣AE,即AD=BE,∵BE=4,∴AD=4.故选:B.5.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠B=∠E D.∠B=∠E,∠BCE=∠ACD【解答】解:A、根据SAS能推出△ABC≌△DEC,正确,故本选项错误;B、根据SSS能推出△ABC≌△DEC,正确,故本选项错误;C、根据AC=DC,AB=DE和∠B=∠E不能推出△ABC≌△DEC,错误,故本选项正确;D、∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,即根据AAS能推出△ABC≌△DEC,正确,故本选项错误;故选:C.6.(3分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=【解答】解:A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=180°=90°,故是直角三角形,正确;C、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确;D、设a=20k,b=15k,c=12k,∵(12k)2+(15k)2≠(20k)2,故不能判定是直角三角形.故选:D.7.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选:B.8.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点.则当PB+PE的值为最小值时,点P的位置在()A.AC的三等分点B.AC的中点C.连接DE与AC的交点D.以上答案都不对【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.根据两点之间线段最短,所以此时PB+PE的值最小.故P点即为所求;故选:C.二、填空题(共10小题,每小题3分,满分30分)9.(3分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.10.(3分)如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有3个.【解答】解:∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°﹣72°﹣36°﹣36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°﹣72°﹣36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.故答案为:3.11.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19cm.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.12.(3分)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是47.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.13.(3分)直角三角形的两边长为3、4,则第三边的平方为25或7.【解答】解:①若4是直角边,则第三边x是斜边,由勾股定理,得42+32=x2,所以x2=25;②若4是斜边,则第三边x为直角边,由勾股定理,得x2=42﹣32,所以x2=7;故x2=25或7.故答案为:25或7.14.(3分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为1.【解答】解:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边长为4﹣3=1,∴阴影部分面积为1×1=1.故答案为1.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,连接AB、BC,则∠ABC的度数为45°.【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵+=,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.16.(3分)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.17.(3分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10 cm.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.18.(3分)等腰三角形的底边长为10cm,一腰上的中线把这个三角形的周长分成两个部分的差为3cm,则腰长为7cm或13cm..【解答】解:如图,设等腰三角形的腰长是xcm.当AD+AC与BC+BD的差是3cm时,即x+x﹣(x+10)=3解得:x=13cm;当BC+BD与AD+AC的差是3cm时,即10+x﹣(x+x)=3解得:x=7cm.故腰长是:7cm或13cm.三、解答题(共10小题,满分96分)19.(8分)有公路l2同侧、l1异侧的两个城镇A、B,如图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路l1、l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)【解答】解:如图所示:C1,C2即为所求..20.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的△A'B'C';(2)线段CC′被直线l垂直平分;(3)△ABC的面积为3.【解答】解:(1)如图所示;(2)∵点C与点C′关于直线l对称,∴线段CC′被直线l垂直平分.故答案为:垂直平分;(3)S=4×2﹣×2×2﹣×1×2﹣×1×4=8﹣2﹣1﹣2=3.△ABC故答案为:3.21.(8分)如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.22.(10分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是BC′,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.【解答】解:(1)如图,折叠后,DC的对应线段是BC′.(2)由题意得:∠BEF=∠2;AD∥BC,∴∠2=∠1=60°,∴∠3=180°﹣2∠2=60°.(3)由题意得:BE=DE(设为λ),则AE=10﹣λ,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,即BE的长为5.23.(8分)如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠C=∠ABE=60°,在△ABE和△BCD中,,∴△ABE≌△BCD(SAS),∴∠BAE=∠CBD,∴∠AFD=∠ABF+∠BAE=∠ABF+∠CBD=∠ABC=60°.24.(10分)如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.【解答】解:(1)AD平分∠BAC.理由:∵BC为斜边上的中线,∴BD=5.∵在△ABC中,AB=13,AD=12,BD=5,∴132=122+52,即AB2=AD2+BD2,∴∠ADB=90°,即AD⊥BC,∴AD垂直平分BC,∴AB=AC,∴AD平分∠BAC;(2)∵由(1)知,△ABC是等腰三角形,∴BC=2BD=5,=BC•AD=×10×12=60.∴S△ABC25.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.26.(10分)△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P 到点C的距离与点P到边AB的距离相等,求BP的长.【解答】解:作∠CAB的平分线,交BC于点P,过点P作PD⊥AB于D,∴PD=PC.在Rt△ADP和Rt△ACP中,,∴Rt△ADP≌Rt△ACP(HL)∴AD=AC=3.在Rt△ABC中,由勾股定理,得AB=5,∴BD=5﹣3=2.设PC=x,则PD=x,BP=4﹣x,在Rt△BDP中,由勾股定理,得(4﹣x)2=x2+22,解得:x=1.5,∴BP=4﹣1.5=2.5.答:BP的长为2.5.27.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.28.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.【解答】(1)证明:∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,在△ADC和△AEB中∴△ADC≌△AEB(SAS),(2)△EGM为等腰三角形;理由:∵△ADC≌△AEB,∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(3)线段BG、AF与FG的数量关系为BG=AF+FG.理由:如图所示:过点B作AB的垂线,交GF的延长线于点N,∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°﹣∠DCB,∵AF⊥BE,∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,在△BFN和△BFA中∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。