高中数学第三章概率3.3模拟方法—概率的应用学案北师大版3剖析
北师大版高中数学必修3《三章 概率 3 模拟方法——概率的应用 模拟方法——概率的应用》优质课教案_14

3模拟方法——概率的应用一、教学分析这部分介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于体会几何概型的意义,所以教科书中选的例题都是比较简单的。
随机模拟部分是本节的重点内容。
几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个。
它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。
如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件。
二、教学建议1、本节的教学需要一些事物模型为教具,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果。
在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精确度会越来越高。
2、注意与古典概型的对比。
三、教学目标1、知识与技能(1)正确理解几何概型的概念;(2)掌握几何概型的计算公式。
2、过程与方法通过师生共同探究,体会几何概型知识的形成过程,提高学生利用数学知识解决实际问题的能力。
通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度价值观通过本节的教学,进一步培养学生用随机的观点认识世界,体会数学在实际生活中的广泛应用,激发学生的学习兴趣。
四、教学重点、难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率。
教学难点:等可能事件的判断与几何概型和古典概型的区别。
(一)课题引入复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的。
那么对于有无限多个试验结果的情况相应的概率应如何求呢?比如:一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
高中数学 第三章 概率 3.3 模拟方法—概率的应用学案 北师大版必修3(2021年最新整理)

高中数学 第三章 概率 3.3 模拟方法—概率的应用学案 北师大版必修31高中数学 第三章 概率 3.3 模拟方法—概率的应用学案 北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学 第三章 概率 3.3 模拟方法—概率的应用学案 北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为高中数学 第三章 概率 3.3 模拟方法—概率的应用学案 北师大版必修3的全部内容。
3模拟方法——概率的应用学习目标课标描述:初步体会几何概型的意义。
学习目标分解:1、学生通过试验、交流,结合对实例的分析,体会学习几何概型的必要性;2、学生通过讨论、类比,能说出古典概型和几何概型的区别和联系;3、学生通过体验,能总结几何概型的意义,并会利用几何概型概率公式求简单问题的概率。
学习重点:几何概型的意义。
学习难点:几何概型中随机试验结果个数的无限性理解.学习方法:试验、交流、归纳等方法的综合应用.学习过程:Ⅰ、体验与思考情境一、甲、乙二人玩转盘游戏。
如图,规定当指针指向阴影区域时,甲获胜,否则乙获胜。
分析:1、所有可能的试验结果与甲获胜包含的试验结果;2、能否用古典概型公式求甲获胜的概率,为什么?情境二、长为3米的绳子,从中间随机剪开,则得到的每段绳长都不小于1米的概率是多少?归纳:以上两个问题的共同特点是什么?如何求以上两个随机事件发生的概率?Ⅱ总结阅读课本P135~P136,回答:什么是几何概型?其概率公式是什么?举例说明:举一个几何概型的实例.(图2)(图3)(图1)2比较并探究:古典概型与几何概型的区别与联系是什么?Ⅲ应用阅读课本P136例1。
北师大版高中数学必修3《三章 概率 3 模拟方法——概率的应用 模拟方法——概率的应用》优质课教案_20

§3.3模拟方法——概率的应用教学设计一、教材内容分析《模拟方法——概率的应用》是北师大版高中教材必修三第3章第3节的内容,安排在《随机事件的概率》和《古典概型》两节之后。
本小节共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸。
另外,本节内容的学习,可以帮助学生全面系统地掌握概率知识,体会抽象概括建立模型的思想方法和数形结合的思想方法,为应用数学解决实际问题提供了新的思想和方法。
二、学生情况分析学生之前已经学习了一般性随机事件,概率统计定义以及古典概型.而且有了一定的观察和归纳能力,几何概型的内容可以和古典概型的内容进行类比学习.但是,古典概型研究有限的事件,而几何概型研究无限事件,如何实现两者的过渡以及如何将问题实际背景转化为相应的长度,面积,体积等几何模型是有困难的,需要教师创设好的问题情境,选择好例题,帮助学生形成几何概型的概念,掌握计算方法。
三、教学目标1、过程与方法:通过自主探究、讨论交流,参与概念产生与发展的过程;经历观察、分析、类比等方法,养成逻辑推理能力;感知用图形解决概率问题的方法,渗透化归、数形结合等思想方法。
2、知识与技能:(1)了解模拟方法的基本思想,会用这种思想解决某些具体问题:如求某些不规则图形的近似面积;(2)记住几何概型的概念和特征,了解古典概型和几何概型的区别与联系;(3)掌握几何概型的计算方法和步骤,用几何概型来解决一些纯数学问题和实际生活问题。
3、情感态度与价值观:感受生活中处处有数学,体会数学对自然与社会所产生的作用;充分认识数学的价值,习惯用数学的眼光解决生活中的问题;形成从有限向无限探究的意识,养成合作交流的习惯。
四、教学重点与难点重点:几何概型概念的建构和建立合理的几何概型进行简单的几何概率计算。
3.3模拟方法--概率的应用 学案1 高中数学必修三北师大版

3.3模拟方法――概率的应用一、学习目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯. 3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯.二、重点与难点:几何概型的概念、公式及应用;三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、学习过程:1、情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、例题分析:例1、判下列试验中事件A发生的概度是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.练习:1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率. 2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率.例4 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.例5 取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的.因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m.这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A发生的概率.小结:用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.4、课堂小结:1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数 )有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.5、课堂练习:1.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( ) A .0.5 B .0.4 C .0.004 D .不能确定2.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.第五课时 3.3模拟方法――概率的应用答案例题分析:例1解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型. 例2解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)=605060 =61,即此人等车时间不多于10分钟的概率为61. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.练习:解:1.由几何概型知,所求事件A 的概率为P(A)=111; 2.记“灯与两端距离都大于2m ”为事件A ,则P(A)= 62=31. 例3解:记“钻到油层面”为事件A ,则P(A)= 所有海域的大陆架面积储藏石油的大陆架面积=1000040=0.004.答:钻到油层面的概率是0.004.例4解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则 P(A)= 所有种子的体积取出的种子体积=100010=0.01. 答:取出的种子中含有麦诱病的种子的概率是0.01.例5解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a 1=RAND .(2)经过伸缩变换,a=a 1*3.(3)统计出[1,2]内随机数的个数N 1和[0,3] 内随机数的个数N .(4)计算频率f n (A)=NN 1即为概率P (A )的近似值. 解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N 1及试验总次数N ,则f n (A)=NN 1即为概率P (A )的近似值. 课堂练习:1.C (提示:由于取水样的随机性,所求事件A :“在取出2ml 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004) 2.解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[o,a],只有当r <OM ≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=的长度的长度],0[],(a a r =a r aM。
北师大版高中数学必修3《三章 概率 3 模拟方法——概率的应用 模拟方法——概率的应用》优质课教案_2

模拟方法——概率的应用一.教学目标:1.通过试验初步体会几何概型及其基本特征;2.会把一些简单的实际问题转化为几何概型,会运用几何概型的概率计算公式求简单的几何概型的概率问题;3.通过亲身试验,感受数学不仅仅是抽象的符号,还和我们的生活密切相关。
通过试验体会辩证的唯物主义思想,和实事求是的科学作风。
二.教学重点、难点:重点: 将实际问题转化为几何概型求概率的问题难点:如何实际问题转化为几何概型求概率的问题三.教学方法与教学手段:自主探究、数学试验四.教学过程:(一、)复习巩固1.请同学们回忆下求随机事件的概率的方法有哪些呢?2.古典概型的基本特点是什么呢?(二、)创设情景,引入新课:问题1:取一根长度为3m的绳子,如果拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?问题2:取一个边长为2a的正方形及其内图1切圆(如图1)随机地向正方形内射箭,假设射箭都能中靶,求射中圆内的概率为多少?问题3: 有一杯1 L的水,其中有1个微生物,用一个容器从这杯水中取出10ml,求容器中的水含有这个微生物的概率.归纳上述三个问题的特点,引入几何概型。
同时让学生思考古典概型的方法还能用吗?如何几何概率计算呢?进一步分析上述三个概率问题的求法。
问题1分析:剪刀落在中点的时候,显然能够得到符合要求的两段绳子,我继续剪可以么?到什么时候为止?落在中间的点有无穷多,我把这些点全取出。
总基本事件也有无穷多,古典概型的方法还能用吗?怎么处理?练习:取一根长度为3m的绳子,如果拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率有多大?问题2分析:由于靶点随机的落在正方形内,而靶点落在圆内时,事件A发生解:记“射中圆内”为事件A,正方形的面积圆的面积=)(A P =4π 答:射中圆内的概率为4π由于问题2的可操作性,下面通过试验“用频率估计概率的方法”来研究它的概率问题。
两人一组合作试验,用扎针来模拟射箭,用针孔代替射箭的靶点。
高中数学必修3北师大版 第三章§3 模拟方法——概率的应用 学案(Word版含答案)

[核心必知]1.模拟方法在大量重复试验的前提下,可以用随机事件发生的频率来估计其发生的概率,但确定随机事件发生的频率常常需要人工做大量的重复试验,既费时又费力,并且有时很难实现.因此,我们可以借助于模拟方法来估计某些随机事件发生的概率.2.几何概型(1)定义:向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型. (2)说明:几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.[问题思考]1.几何概型的概率计算与构成事件的区域形状有关吗?提示:几何概型的概率只与它的长度(面积或体积)有关,而与构成事件的区域形状无关.2.在几何概型中,如果A 为随机事件,若P (A )=0,则A 一定为不可能事件;若P (A )=1,则A 一定为必然事件,这种说法正确吗?提示:这种说法不正确.如果随机事件所在的区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,显然它不是不可能事件;如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.讲一讲1.取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1 m 的概率有多大?[尝试解答] 如图所示,记事件A ={剪得两段绳子长都不小于1 m},把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.全部试验结果构成的区域长度是绳子的长度3 m ,事件A 包含的结果构成的区域长度是中间一段的长度为3×13=1(m),故事件A 发生的概率P (A )=13.在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.练一练1.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.解析:由|x |≤1得,-1≤x ≤1,故易知所求概率为1-(-1)2-(-1)=23. 答案:23讲一讲2.假设你家订了一份报纸,送报人可能在早上6:30~7:30把报纸送到你家,你父亲离开家去工作的时间是7:00~8:00,问你父亲在离开家前能拿到报纸(称为事件A )的概率是多少?[尝试解答] 如图,送报人到达的时间是6:30~7:30的任一时刻,父亲离开家去工作的时间是7:00~8:00的任一时刻,如果在直角坐标系内以x 轴表示报纸送到的时间,y 轴表示父亲离开家的时间,因为报纸送到的时间和父亲离开家的时间都是随机的,所以随机试验的所有结果(x ,y )是图中所示正方形中等可能的任意一点.事件A (父亲离开家前能拿到报纸)发生须x ≤y ,即正方形内阴影部分,事件A 发生的概率只与阴影部分的面积大小有关,这符合几何概型的条件.μA =12-12×12×12=78,μΩ=1,所以P (A )=μA μΩ=78.在研究射击、射箭、投中、射门等实际问题时,常借助于区域的面积来计算概率的值.此时,只需分清各自区域特征,分别计算其面积,以公式P (A )=构成事件A 的区域面积试验的全部结果构成的区域面积计算事件的概率即可.练一练2.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.解析:如图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案:π16讲一讲3.有一杯2升的水,其中含有一个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.[尝试解答] 把判断这个细菌所在的位置看成一次试验,设所取的0.1升水中含有这个细菌为事件A ,则事件A 构成的区域体积是0.1升,全部试验结果构成的区域体积是2升,所以P (A )=0.12=0.05.如果试验的结果所成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总体积及事件A 所分布的体积.其概率的计算P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积. 练一练3.在棱长为3的正方体内任意取一个点,求这个点到各面的距离均大于1的概率.解:记事件A 为“点到各面的距离均大于1”,则满足题意的点构成的区域为:位于该正方体中心的一个棱长为1的小正方体的内部.由几何概型的计算公式,可得满足题意的概率为P (A )=1333=127.讲一讲4.设A 为圆周上一定点,在圆周上等可能的任取一点与A 连接,求弦长超过半径的2倍的概率.[尝试解答] 如图所示,在⊙O 上有一定点A ,任取一点B 与A 连结,则弦长超过半径的2倍,即为∠AOB 的度数大于90°,而小于270°.记“弦长超过半径的2倍”为事件C ,则C 表示的范围是∠AOB ∈(π2,3π2). 则由几何概型概率的公式,得P (C )=270°-90°360°=12.如果试验的结果所构成的区域的几何度量可用角度来表示,则其概率的计算公式为P (A )=事件A 构成的区域角度试验的全部结果构成的区域角度. 练一练4.在转盘游戏中,假设转盘有三种颜色:红、绿、蓝.当转盘停止时,如果指针指向红色为赢,绿色为平,蓝色为输.若每种颜色被平均分成四块,不同颜色相间排列,要使赢的概率为15,输的概率为13,求每个绿色扇形的圆心角为多少度(假设转盘停止位置都是等可能的).解:由于转盘停止旋转时,指针指向每个位置都是等可能的,并且位置是无限多的,所以符合几何概型的特点,问题转化为求圆盘角度或周期问题.因为赢的概率为15,故红色所占角度为周角的15,即P 1=360°5=72°.同理,蓝色占周角的13,即P 2=360°3=120°, 所以绿色的角度P 3=360°-120°-72°=168°.再将P 3分成四等份,得P 3÷4=168°÷4=42°,即每个绿色扇形的圆心角为42°.【解题高手】【易错题】如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.[错解] 在AB 上截取线段AC ′,使AC ′=AC .则P (AM <AC )=P (AM <AC ′)=AC ′AB =22. [错因] 因为该题所涉及的基本事件是与角度有关的,而不是在线段AB 上取点,即该题是与角度有关的几何概型,而不是与长度有关的几何概型.[正解] 在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°. ∴P (AM <AC )=67.5°90°=34.1.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率为( )A .0B .0.002C .0.004D .1解析:选C 由几何概型公式得:P =2500=0.004. 2.(辽宁高考)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( ) A.16 B.13 C.23 D.45解析:选C 设|AC |=x cm,0<x <12,则|CB |=(12-x ) cm ,要使矩形面积大于20 cm 2,只要x (12-x )>20,则x 2-12x +20<0,2<x <10,所以所求概率为P =10-212=23. 3.(湖南高考)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB =( )。
北师大版高中数学必修3《三章 概率 3 模拟方法——概率的应用 模拟方法——概率的应用》优质课教案_6

《模拟方法---概率的应用》教学设计三维目标:知识与技能:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。
过程与方法:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
情感、态度与价值观:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。
教学重难点:重点:借助模拟方法来估计某些事件发生的概率难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;应用随机数解决各种实际问题.教学过程:创设情境、导入新课:我们做这样一个试验:图1,我们往正方形中随机地撒一把芝麻,假设每一粒芝麻落在正方形内的每一个位置的可能性都是相同的(随机撒100粒芝麻,学生统计落在阴影区域A的芝麻数目)。
1.活动:观察落在区域A的芝麻数目与落在正方形内的芝麻数目的比值;计算区域A的面积与正方形的面积的比值;你能发现二者有什么关系?2.假如我们去200粒芝麻、300粒芝麻等你能猜想什么样的结论?3.假设图形换成图2,反复做如上实验,还能得出类似结论吗?动手实践、探究新知:学生动手实践,小组研究,形成结论并展示。
图1 提问1.回顾古典概型的特点和计算公式?答:特点:<1>有限性;<2>等可能性图2 提问2.大家能猜想出来什么样的结论?落在区域内的芝麻数落在正方形内的芝麻数区域的面积正方形的面积提问3.如图, 曲线y=-x2+1与x轴、y轴围成一个区域A, 直线x=1, 直线y=1, x轴、y轴围成一个正方形, 你能否设计一个方法求出区域A的近似面积?(小组讨论,教师指导)教师指导:借助如上结论我们可以计算区域A的面积!抽象概括、深入研究:几何概型:向平面上有限区域(集合)G 内随机地投掷点M , 若点M 落在子区域G 1⊂G 的概率与G 1的面积成正比, 而与G 的形状、位置无关, 即 则称这种模型为几何概型.问题1.几何概型与古典概型有何区别?答:<1>无限性 <2>等可能性问题2.几何概型中的这种正比关系与G 的形状、位置有关系吗?答:无关。
高中数学北师大版必修三3.3【教学设计】《模拟方法--概率的应用》

《模拟方法--概率的应用》模拟方法是北师大版高中数学必修3第三章第三节,也是必修3最后一节。
本节内容,是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力和试验分析能力的好素材。
【知识与能力目标】(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型。
【过程与方法目标】(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
【情感态度价值观目标】本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
【教学重点】记住几何概型的概念和特点,掌握几何概型的计算方法和步骤,准确地把实际问题转化为几何概型问题。
【教学难点】了解模拟方法的基本思想,会利用这种思想解决某些具体问题,如求某些不规则图形的近似面积等。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、导入部分在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
二、研探新知,建构概念1.模拟方法:模拟方法是一种非常有效而且应用广泛的方法,所以我们常常借助模拟方法来估计某些随机事件发生的概率,用模拟方法可以在短时间内完成大量的重要试验。
2.几何概型:向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1 G的概率与G1的面积成正比,而与G的形状、位置无关,即,则称这种模型为几何概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3模拟方法——概率的应用
学习目标课标描述:初步体会几何概型的意义.
学习目标分解:1、学生通过试验、交流,结合对实例的分析,体会学习几何概型的必要性; 2、学生通过讨论、类比,能说出古典概型和几何概型的区别和联系;
3、学生通过体验,能总结几何概型的意义,并会利用几何概型概率公式求简单
问题的概率.
学习重点:几何概型的意义.
学习难点:几何概型中随机试验结果个数的无限性理解. 学习方法:试验、交流、归纳等方法的综合应用. 学习过程: Ⅰ、体验与思考
情境一、甲、乙二人玩转盘游戏.如图,规定当指针指向阴影区域时,甲获胜,否则乙获胜. 分析:1、所有可能的试验结果与甲获胜包含的试验结果;2、能否用古典概型公式求甲获胜的概率,为什么?
情境二、长为3米的绳子,从中间随机剪开,则得到的每段绳长都不小于1米的概率是多少?
归纳:以上两个问题的共同特点是什么?如何求以上两个随机事件发生的概率? Ⅱ 总结
阅读课本P135~P136,
回答:什么是几何概型?其概率公式是什么?
举例说明:举一个几何概型的实例.
比较并探究:古典概型与几何概型的区别与联系是什么?
Ⅲ 应用
阅读课本P136例1.
思考:若等待时间不超过20分钟,则概率是多少?
例2 如图,在墙上挂着一块边长为16cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm 、4cm 、6cm.某人站在3m 外向此板投镖,设镖击中线上或没有击中都不算,可重投.问:
(Ⅰ)投中大圆的概率是多少?
(Ⅱ)投中小圆与中圆形成的圆环的概率是多少? (Ⅲ)投中大圆之外的概率是多少?
(图2) (图3) (图1)
Ⅳ、小结
Ⅴ、达标检测
1、如图,在三角形ABC 中,M 是BC 的中点.向三角形ABC 内随机投一粒米,则米粒落在三角形ABM 内的概率是多少?
2、在边长为2的正方形ABCD 中,E 、F 、G 、H 分别是四边中点,将米粒随机撒在正方形中,若米粒落在下列3个图中阴影部分区域的概率分别是P1、P2、P3 .则其大小关系是________
3、 在100ml 的水中有一个草履虫,现从中随机取出2ml 水样放在显微镜下观察,则发现草履虫的概率是多少?如果取5ml 水样观察呢?
4、在区间[1,3]上任意取一数,则这个数不小于1.5
的概率是多少?
Ⅵ、延伸
你了解祖冲之对圆周率π的计算方法吗?请讲一讲.用几何概型也可以估算π的值.如图,在正方形中有一个内切圆,向正方形内撒一把豆子,只要数出落在圆内和正方形内的豆子数.就可以估算,想一想为什么?怎样估算?
Ⅶ、作业
课本P142 A 组1、2 .
C A B A B C
D G
E H C G
E H B C
F E。