高中数学必修三: 概率的意义

合集下载

高中数学例题:概率的意义

高中数学例题:概率的意义

高中数学例题:概率的意义
例.射手甲中靶的概率是0.9,因此我们认为即使射手甲比较优秀,他射10发子弹也不可能全中,其中必有一发不中,试判断这种认识是否正确.
【答案】不正确
【解析】射手甲射击一次,中靶是随机事件,他射击10次可以看成是重复做了10次试验,而每次试验的结果都是随机的。

所以这10次试验的结果也是随机的.这10次射击可能一次也不中,也可能中一次,二次,…,十次.
虽然中靶是随机事件,但却具有一定的规律性,概率为0.9是说在大量的重复试验中,中靶的可能性稳定在0.9左右.实际上,他10发子弹全中的概率为0.910≈0.349,这是有可能发生的.
【总结升华】概率意义上的“可能性”是大量随机事件现象的客观规律,与我们日常所说的“可能”“估计”是不同的.也就是说,单独一次试验结果的不肯定性与大量重复试验积累结果的有规律性,才是概率意义上的“可能性”.事件A的概率是事件A的本质属性.举一反三:
【变式1】试解释下面情况中概率的意义.
(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖的概率为0.20;
(2)一生产厂家称,我们厂生产的产品合格的概率是0.98;
(3)天气预报中预报某地降水的概率为10%.
【解析】(1)指购买其商品的顾客中奖的可能性是20%.(2)指其厂生产的产品合格的可能性是98%.
(3)该地降水的可能性为10%.。

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点一:算法初步1:算法的概念(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

安徽省铜陵市高中数学第三章《概率》概率的意义学案新人教A版必修3

概率的意义展示课〔时段:正课时间:40分钟〔自研〕+60分钟〔展示〕〕学习主题:一、正确理解概率的意义及应用,知道随机事件发生的可能性大小是由它自身决定的,而且是客观存在的;二、通过澄清日常生活中碰到的一些错误熟悉,正确理解概率的意义.【定向导学·互动展示·当堂反应】重点:概率的正确认识板书:板书呈现概率主题一、二相关知识点;展示知识点;③注重展示板书的规划;高二班组姓名:总分值:100分得分:考察内容:概率的意义考察主题:概率的正确熟悉考察形式:封锁式训练,导师不指导、不讨论、不剽窃. 温馨提示:本次训练时间约为40分钟,请同窗们认真审题,仔细答题,安静、自主的完成训练内容.根底稳固1.以下说法正确的选项是( )A.由生物学知道生男生女的概率均为1,一对夫妇生两个孩子,那么必然生一男一女2B.一次摸奖活动中中奖概率为1,那么摸5张票,必然有一张中奖5C.做7次抛硬币的实验,结果3次出现正面,因此,出现正面的概率是37D.在同一年诞生的367人中,至少有两人生日为同一天2.以下命题中,正确的个数是( )①13个人中至少有2人的生日是同一个月是必然事件;②为了解我班学生的数学成绩,从中抽取10名学生的数学成绩是整体的一个样本;③一名篮球运发动投篮命中概率为0.7,他投篮10次,必然会命中7次;④小颖在装有10个黑、白球的袋中,多次进展摸球实验,发现摸到黑球的频率在0.6周围波动,据此估量黑球约有6个.A. 1 B. 2 C. 3 D. 43.从12件同类产品中(其中10件正品,2件次品),任意抽取6件产品,以下说法中正确的选项是( )A.抽出的6件产品必有5件正品,1件次品B.抽出的6件产品中可能有5件正品,1件次品C.抽取6件产品时,逐个不放回地抽取,前5件是正品,第6件必是次品D.抽取6件产品时,不可能抽得5件正品,1件次品1,前4个病人都未治愈,那么第5个病人的治愈率为( )5A. 1 B. C. 0 D.5.抛掷一枚质地均匀的正方体骰子(六个面上别离写有1,2,3,4,5,6),假设前3次持续抛到“6点朝上〞,那么对于第4次抛掷结果的预测,以下说法中正确的选项是( )A.必然出现“6点朝上〞 B.出现“6点朝上〞的概率大于61C.出现“6点朝上〞的概率等于61 D.无法预测“6点朝上〞的概率6.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,那么这100个铜板更可能是下面哪一种情况( )A.这100个铜板两面是一样的B.这100个铜板两面是不一样的C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的7.甲、乙两个气象台同时做天气预报,若是它们预报准确的概率别离为0.8与0.7,且预报准确与否彼此独立.那么在一次预报中这两个气象台的预报都不准确的概率是( )A. 0.06 B. 0.24 C8.在天气预报中,有“降水概率预报〞,例如,预报“明天降水概率为78%〞,这是指( )A.明天该地域有78%的地域降水,其他22%的地域不降水B.明天该地域降水的可能性大小为78%C.气象台的专家中,有78%的人以为会降水,另外22%的专家以为不降水D.明天该地域约有78%的时间降水,其他时间不降水“幸运观众〞答题有奖活动,参与者首先要求在四个答案中去掉了一个错误答案,那么他答中的概率是( )A. B. C. D. 110.一张圆桌旁有四个座位,A先坐下,如图,B选择其它三个座位中的一个坐下,那么A与B相邻的概率是( ) A. B. C. D.11.盒子里装有8个白球和假设干个黑球,通过实验知道摸出白球的概率为,那么盒子中装有( )个黑球.A. 8 B. 16 C. 24 D. 32二、填空题12.小明和小颖按如下规那么做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你以为这个游戏规那么________.(填“公平〞或“不公平〞)13.我校的天气预报说:“明天的降雨概率是80%.按照这个预报,我以为明天下雨的可能性很大.这种说法________(是/否)正确.“本市明天降雨的概率是90%〞,对预测的正确理解是________.①本市明天将有90%的地域降雨;②本市明天将有90%的时间降雨;③明天出行不带雨具肯定会淋雨;④明天出行不带雨具可能会淋雨.15.某城市一日的天气预报为:多云转小雨,29℃~18℃,降水概率80%,这一天必然会下雨.这种推断________(是/否)正确.“五水共治〞决策.某广告公司用形状大小完全一样的材料别离制作了“治污水〞、“防洪水〞、“排涝水〞、“保供水〞、“抓节水〞5块广告牌,从中随机抽取一块恰好是“治污水〞广告牌的概率是________.17.从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过实验发现钉尖着地的概率________钉帽着地的概率.(填“>〞、“<〞或“=〞)开展提升18.现共有两个卡通玩具,展展、宁宁、凯凯三个小朋友都想要.他们采取了这样的方式分派玩具,拿一个飞镖射向如下图的圆盘,假设射中区域的数字为1,2,3,那么玩具给展展和宁宁,假设射中区域的数字为4,5,6,那么玩具给宁宁和凯凯,假设射中区域的数字为7,8,那么玩具给展展和凯凯.试问这个游戏规那么公平吗?拓展提高19.一个不透明的布袋中装有红、白两种颜色的球假设干个,其中3个红球,它们除颜色外其余都一样,将它们搅匀后任意摸出一球,通过大量重复实验,发现摸出红球的频率稳定在0.75左右.(1)求布袋中白球的个数;(2)假设摸出1个球,记下颜色后就放回,并搅匀,再摸出1个球,请你用画树形图或列表的方式,求两次摸出的球恰好颜色不同的概率.。

必修三3.1.2&3概率的意义与基本性质

必修三3.1.2&3概率的意义与基本性质

3.1.2《概率的意义》导学案【学习目标】1、正确理解概率的意义,利用概率知识正确理解现实生活中的实际问题;2、通过对现实生活中问题的探究,感知应用数学知识解决数学问题的方法;3、进一步理解概率统计中随机性与规律性的关系。

【知识清单】1、随机事件在一次试验中能够发生与否是随机的,但随机性中含有,认识了这种随机性中的,就能使我们比较准确地预测随机事件发生的。

2、如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为。

3、在一次试验中的事件称为小概率事件,的事件称为大概率事件.4、概率的意义就是用概率的大小反映事件A发生的,但在一次试验中仍有两种可能,即事件A可能也可能。

【教材分析】认真阅读课本P113——P118,说明概率的意义在课本的六个实际例子中的体现。

【合作探究】题型一例1.(1)某校共有学生12000人,学校为使学生增强交通安全观念,准备随机抽查12名学生进行交通安全知识测试,其中某学生认为抽查的几率为11000,不可能抽查到他,所以不再准备交通安全知识以便应试,你认为他的做法对吗?并说明理由。

(2)若某次数学测验,全班50人的及格率为90%,若从该班任意抽取10人,其中有5人及格是可能的吗?为什么?题型二例 2. 元旦就要到了,某校将举行联欢活动,每班派一人主持节目,高二(1)班的小明、小华和小丽实力相当,都争着要去,班主任决定用抽签的方法来决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎么认为的?说说看.题型三例3.设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,问这个球是从哪个箱子中取出的?题型四例4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多少?中9环的概率约为多少?【巩固练习】1.某医院治疗一种病的治愈率是90%,这个90%指的是()A.100个病人中能治愈90个B.100个病人中能治愈10个C. 100个病人中可能治愈90个D.以上说法都正确2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是( )A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行不带雨具肯定淋雨D.明天出行不带雨具淋雨的可能性很大.3.甲乙两人做游戏,下列游戏中不公平的是()A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜.C.从一副不含大、小王的扑克中抽一张,扑克牌是红色则甲胜,是黑色乙胜.D.甲乙两人各写一个字,若是同奇或同偶则甲胜,否则乙胜.4.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为()A.160B.7840C.7998D.78005.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分()A.30分 B.0分 C.15分 D.20分6.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是。

高一数学必修3课件:3-1-2概率的意义

高一数学必修3课件:3-1-2概率的意义

30%,指随着试验次数增加,即治疗的病人数的增加,大约 有30%的人能够治愈.对于一次试验来说,其结果是随机 的,因此前7个病人没治愈是可能的,对后3个人来说其结果 仍然是随机的,即有可能治愈,也可能没有治愈.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[规律]
治愈的概率是0.3,是指如果患病的人有1
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
(2)某种病的治愈概率是0.3,那么,前7个人没有治愈, 后3个人一定能治愈吗?如何理解治愈的概率是0.3? [分析] 概率反映了事件发生可能性的大小.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
如果把治疗一个病人作为一次试验,治愈率是
公元1053年,大元帅狄青奉旨,率兵征讨侬智高.出征 前,狄青拿出一百枚“宋元通宝”铜币,向众将士殷殷许 愿:“如果钱币扔在地上,有字的一面会全部向上,那么这 次出兵可以打败敌人!”在千军万马的注目之下,狄青将铜 币用力向空中抛去,奇迹发生了:一百枚铜币,枚枚向 上.顿时,全军欢呼雀跃,将士个个认定是神灵保佑,战争 必胜无疑.事实上,铜币正反面都是一样的!同学样想一 下,如果铜币正反面不一样,那么这一百枚铜币正面全部向 上的可能性大吗?
成才之路· 数学
人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第三章
概 率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3
第三章
3.1 随机事件的概率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3

必修三 3.1.2 概率的意义

必修三  3.1.2 概率的意义

班级:姓名:小组:评价:课题必修三 3.1.2 概率的意义教学目标1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律课型课时学法指导:1.通过实例理解概率的意义.(重点、难点)2.概率在实际生活中的应用.(重点)【教学过程及内容】[上节回顾][教学过程](含各环节设计、方法指导、课堂练习等)1.知识引入1.随机事件概率的理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.2.极大似然法的概念如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么课海拾贝/反思纠错“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.3.概率的意义概率的意义就是用概率的大小反映事件A发生的可能性,但在一次试验中仍有两种可能,即事件A可能发生也可能不发生2.自主探究对概率意义的理解(1)概率是从数量上反映了随机事件发生的可能性大小的一个数学概念,它是对大量重复试验来说存在的一种统计性规律,对单次试验来说,随机事件发生与否是随机的.(2)错误认识的澄清:有人说:“既然抛掷一枚质地均匀的硬币出现正面的概率是0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面向上,一次反面向上”.这种说法显然是错误的.(3)概率是描述随机事件发生的可能性大小的度量.即:概率越大,事件A发生的可能性就越大;概率越小,事件A发生的可能性就越小.(4)随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.(5)求随机事件概率的必要性.知道事件的概率可以为人们做决策提供依据,概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.例如:如果天气预报报道:“今天降水的概率是10%”.可能绝大多数人出门都不会带雨具,而如果天气预报报道:“今天降水的概率是90%”,那么大多数人出门都会带雨具.特别提示 概率是一种可能性,只是频率在理论上的一种期望值.3.典例讲析某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?抛掷10枚硬币,全部正面向上.试就这一现象分析,这些硬币的质地是否均匀.4.变式练习下列说法正确的是( ).A .由生物学知,生男生女的概率大约都是12,则一对夫妇生了两个孩子,一定是一男一女B .10张券中有1张奖券,10个人去摸,谁先摸则谁中奖的可能性大C .昨天没有下雨,则说明昨天的天气预报“降水概率是80%”是错的D .一次摸奖,中奖率是15,则某人连摸5张券,也不一定会中奖[反馈习题]为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库中鱼的尾数.山东三吉钢木家具厂为2010年广州亚运会游泳比赛场馆生产观众座椅.质检人员对该厂所产2 500套座椅进行抽检,共抽检了100套,发现有5套次品,试问该厂所产2 500套座椅中大约有多少套次品?[学生知识结构整理归纳]。

高中数学生活性教学探究——以高中数学人教A版必修3《概率的意义》为例

高中数学生活性教学探究——以高中数学人教A版必修3《概率的意义》为例

三 、 活 性 教 学 的 实 施 生 正 确 理 解 了生 活 性 教 学 的 内涵 和理 念 后 ,才 能 在 实 际 教 学 中开 展 生 活 性 教 学 。 内涵 与 理 念 只有 真 正 应 用 到实 施 的实 践 中 , 能 达 到 了生 活 性 教 学 的 目的 , 真 正有 意 义 , 则 就 才 才 否
_ 一
高 中 数 学 生 活 性 教 学 探
以 高中数 学人教A 必修3 概 率的意义》 版 《 为例
蔡 茶 米
( 建 师 范 大学 教 育 学 院 , 建 福 州 3 0 0 ) 福 福 5 0 7

摘 要 : 者 结 合 各 种 理 论 和 自身 实践 , 生 活 性 教 学 作 从 的 内 涵 、理 念 和 实施 三 个方 面论 述 了 高 中数 学 生 活性 教 学 的 重要 性 和 必要 性 , 以及 实施 过 程 中应 注意 的 主 要 问 题 。旨在 呼 吁 高 中数 学教 学 更 多地 关 注 学 生 的 生 活 实 际 .增 强 学 生 学 习 兴趣 , 高学 习效 率 。 提 关 键 词 :高 中数 学 生 活性 教 学 内涵 理 念 实施
“ 从 数 中来 ” 实 践 的 需 要 产 生 了数 学 , 学 的 最 终 目的 数 , 数 也 是 为实 践 服 务 。新 的 《 学课 程 标 准 》 明确 指 出 :要 重 视 数 也 “ 从 学 生 的生 活 实 践 和 已有 的 知 识 中 学 习 数学 和理 解 数 学 。 因 ” 此 , 数 学 教 学 中 , 师要 从 学 生 的生 活 背 景 和 已 有 的 生 活 经 在 教 验 出发 , 系 生 活 实 际 , 学 生 从 身 边 熟 悉 的事 物 中 学 习 数 学 联 使 和 理 解 数 学 , 会 到 生 活 中 的 数 学 , 受 到数 学 的 魅 力 , 而 体 感 从 增强 对 数 学 的兴 趣 及 对 学 好 数 学 的 信 心 。 生 活 性 教 学 的 内涵 生 活 , 般 指 生 物 为生 存 、 展 而进 行 的各 种 活 动 。 人 , 一 发 对 它 包 括 满 足 基 本 生 理 需 要 的 生 活 和 有 价 值 有 意 义 的 精 神 生 活 。 为 有 意识 的 独 特存 在 体 , 更 多 的是 追 求 具 有 丰 富 内涵 作 人 的精 神 生 活 。 生 活 性 教 学 就 是 植 根 于 学 生 生活 世 界 .关 注学 生 生 活 现 实 , 导 其 不 断 超 越 现 实 生 活 , 善 当下 生存 状 态 , 高 生 活 引 改 提 质量为 主 旨的教学 。 在 《 率 的意义》 , 很多 生活 中的例 子可用 于教 学 , 概 中 有 最 常 见 的 是 抛 硬 币 , 引 用 这 样 的例 子 讲 解 概 率 的意 义 无 疑 最 容 易 为 学 生 所 接 受 。 通 过 实 验 , 导 学 生 发 现 “ 现 正 面 引 出 与反 面 的概率是 一样 的 ,即每次抛 掷硬 币时 出现正 面或 出 现 反 面 的 可 能 性 是 一 样 的 ,但 整 个 实 验 过 程 中 正 面 或 反 面 出 现 频 率 却 不 一 定 一 样 ” 让 他 们 知 道 正 反 面 出 现 的 概 率 对 , 于 每 一 次 的 抛 掷 动 作 都 是 一 样 的 , 也 就 是 说 在 每 一 次 的抛 掷 都 是 独 立 的 , 不 存 在 因 为 概 率 为 05 所 以 正 反 面 出 现 并 ., 次数 一样 的情况 。 二 、 活 性教 学的 基 本 理 念 生 人 们 一 直 关 注 教 育 与 生 活 的 关 系 。英 国教 育 家 罗 素 早 就 指 出 , 育 要 使 儿 童 过 美 好 的生 活 ,教 育 即 生 活 ” 绝 不 仅 是 教 “ , 为 未 来 生 活 做 准 备 。 我 国 教 育 家 陶 行 知 则 认 为 . 生 活 即教 “ 育 ” “ 育 即生 活 的改 造 ” 他 主 张 生 活决 定 教 育 , 育 要 通 过 、教 , 教 生 活 才 能 发 挥 力 量 而 成 为 真 正 的 教 育 ,教 学 做 合 一 ” 是 生 活 “ 法亦是教育法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茎的高度 长茎 787 短茎 277 2.84:1
遗传机理中的统计规律
亲本
YY
yy
第一代
Yy
Yy
第二代
YY
Yy
Yy
yy
黄色豌豆(YY,Yy):绿色豌豆(yy) ≈3:1
YY 表示纯黄色的豌豆 yy 表示纯绿色的豌豆
(其中Y为显性因子 y为隐性因子)
1. 从甲、乙、丙三人中任选两名代表,甲被选中 的概率为______.
2.概率在实际问题中的应用:
某中学高一年级有12个班,要从中选2个班代表学校参 加某项活动,由于某种原因,1班必须参加,另外再从2至 12班中选一个班,有人提议用如下方法:掷两个骰子得到 的点数和是几,就选几班,你认为这种方法公平吗?
1点 2点 3点 4点 5点 6点 1点 2 3 4 5 6 7 2点 3 4 5 6 7 8 3点 4 5 6 7 8 9 4点 5 6 7 8 9 10 5点 6 7 8 9 10 11 6点 7 8 9 10 11 12
2. 有100张卡片(从1号到100号),从中任取1 张,取到的卡号是7的倍数的概率为_____.
3. 从A,B,C,D四人中选3名代表,则A入选的 概率为________.
4. 从52张的一副扑克牌中随机地抽出一张,求 (1)抽出的一张是红桃8的概率; (2)抽出的一张是8的概率; (3)抽出的一张是红桃的概率。
3.1.2 概率的意义
复习: 1.概率的定义是什么?
对于给定的随机事件A,如果随着试验次数的
增加,事件A发生的频率
f
(A) 稳定在某个常数
n
上,把这个常数记作P(A),称为事件A的概率,
简称为A的概率。
2.频率与概率的有什么区别和联系? ① 频率是随机的,在实验之前不能确定;
② 概率是一个确定的数,与每次实验无关;
5. 将一枚硬币连掷3次,出现“2个正面,1个 反面”和“1个正面、2个反面”的概率分别 是多少?
6. 4张扑克牌的牌面分别为方块2、黑桃4、黑 桃5、梅花5.将扑克牌洗匀后放置在桌面上。
(1)若随机抽取1张扑克牌,求牌面数字恰好 为5的概率。
(2)规定游戏规则如下:若同时随机抽取2张 扑克牌,抽到2张的牌面数字之和是偶数为胜; 反之,则为负。你认为这个游戏公平吗?
同样他把圆形和皱皮豌豆杂 交,第一年收获的都是圆形 豌豆,连一粒。皱皮豌豆都 没有。第二年,当他把这种 杂交圆形再种下时,得到的 却既有圆形豌豆,又有皱皮 豌豆。
豌豆杂交试验的子二代结果
性状
显性
隐性 显性:隐性
子叶的颜色 黄色 6022 绿色 2001 3.01:1
种子的性状 圆形 5474 皱皮 1850 2.96:1
孟德尔小传
从维也纳大学回到布鲁恩不 久,孟德尔就开始了长达8 年的豌豆实验。孟德尔首先 从许多种子商那里,弄来了 34个品种的豌豆,从中挑选 出22个品种用于实验。它们 都具有某种可以相互区分的 稳定性状,例如高茎或矮茎、 圆料或皱科、灰色种皮或白 色种皮等。
豌豆杂交试验
孟德尔把黄色和绿色的豌豆 杂交,第一年收获的豌豆是 黄色的。第二年,当他把第 一年收获的黄色豌豆再种下 时,收获的豌豆既有黄色的 又有绿色的。
答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖 也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当 大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖
1.概率的正确理解:
随机事件在一次实验中发生与否是随机的,但随 机性中含有规律性:即随着实验次数的增加,该随机 事件发生的频率会越来越接近于该事件发生的概率。
③ 随着实验次数的增加,频率会越来越接近概率。
Байду номын сангаас
④频率是概率的近似值,概率是用来度量事件发生可能性
的大小
探究(一): 概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会 出现哪几种结果?
“两次正面朝上”,“两次反面朝 上”,“一次正面朝上,一次反面朝 上”. 思考2:抛掷—枚质地均匀的硬币,出现 正、反面的概率都是0.5,那么连续两次 抛掷一枚硬币,一定是出现一次正面和 一次反面吗?
2.概率在实际问题中的应用:
例1.在做掷硬币的实验的时候,若连续掷了100次,结果 100次都是正面朝上,对于这样的结果你会有什么看法?
例2. 在一个不透明的袋子中有两种球,一种白球,一种红 球,并且这两种球一种有99个,另一种只有1个,若一个人 从中随机摸出1球,结果是红色的,那你认为袋中究竟哪种 球会是99个?
2.概率在实际问题中的应用:
(1)概率与公平性的关系: 利用概率解释游戏规则的公平性,判断实际生活中的
一些现象是否合理。
(2)概率与决策的关系: 在“风险与决策”中经常会用到统计中的极大似然法:
在一次实验中,概率大的事件发生的可能性大。
(3)概率与预报的关系: 在对各种自然现象、灾害的研究过程中经常会用到概
率的思想来进行预测。
4.实验与发现
思考6:奥地利遗传学家孟德尔从1856年开始用豌 豆作试验,他把黄色和绿色的豌豆杂交,第一年 收获的豌豆都是黄色的.第二年,他把第一年收获 的黄色豌豆再种下,收获的豌豆既有黄色的又有 绿色的.同样他把圆形和皱皮豌豆杂交,第一年收 获的豌豆都是圆形的.第二年,他把第一年收获的 圆形豌豆再种下,收获的豌豆却既有圆形豌豆, 又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的 豌豆杂交,第一年长出来的都是长茎的豌豆. 第 二年,他把这种杂交长茎豌豆再种下,得到的却 既有长茎豌豆,又有短茎豌豆.
如果我们面临的是从多个可选答案中挑选正确答案的 决策问题,那么“使得样本出现的可能性最大”可以作为决 策的准则,这种判断问题的方法称为极大似然法。
如果我们的判断结论能够使得样本出现的可能性最大, 那么判断正确的可能性也最大,这种判断问题的方法在统计 学中被称为似然法。
2.概率在实际问题中的应用:
若某地气象局预报说,明天本地降水概率为70%,你认 为下面两个解释哪一个能代表气象局的观点? (1)明天本地有70%的区域下雨,30%的区域不下雨; (2)明天本地有70%的机会下雨。
1.概率的正确理解:
答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5, 它是大量试验得出的一种规律性结果,对具体的几次试验来讲 不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验 中,可能两次均正面向上,也可能两次均反面向上,也可能 一次正面向上,一次反面向上
1.概率的正确理解:
问题2:若某种彩票准备发行1000万张,其中有1万张可以 中奖,则买一张这种彩票的中奖概率是多少?买1000张的 话是否一定会中奖?
相关文档
最新文档