初三数学之相似三角形的判定(提高)
自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。
九年级数学相似三角形证明题中的解题技巧

九年级数学相似三角形证明题中的解题技巧一、证明相似三角形常见的几种类型1、' A ' 字型如图所示,在△ABC 中,若DE∥BC ,则有△ADE∽△ABC 。
2、' A' ' 型如图所示,△ADE 和△ABC 有公共角∠A ,若还有一组对应角相等,则有△ADE ∽△ABC 。
3、' 8 ' 字型如图所示,若AB∥CD ,则有△AEB∽△DEC 。
4、” 蝴蝶“ 型如图所示,若∠A = ∠C (或∠B = ∠D ),则有△AEB∽△CED 。
5、“ 双垂直” 型如图所示,若AC⊥BC ,(∠ACB = 90° )CD⊥AB ,(∠CDB = 90° ),则有三组相似三角形:① △ADC∽△ACB ;② △BDC∽△BCA ;③ △ADC∽△CDB 。
双垂直结论:射影定理:① 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;② 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
⑴ ACD∽△CDB→AD:CD=CD:BD → CD^2=AD·BD ;(2) ACD∽△ABC→AC:AB=AD:AC →AC^2=AD·AB ;(3) CDB∽△ABC→BC:AC=BD:BC →BC^2=BD·AB ;结论1:⑵ ÷ ⑶ 得 AC^2 : BC^2 = AD :BD ;结论2:面积法得AB·CD = AC·BC →比例式,证明等积式(比例式)策略。
二、证明相似三角形常见的几种方法1、直接法:找同一三角形两条边和两边的夹角;变化为等号同侧的两边是同一三角形中的两条边,“三点定形法”。
2、间接法:⑴ 3种代换:① 线段代换;② 等比代换;③ 等积代换;⑵ 创造条件:① 加平行线——创造“A”字型、“8”字型;② 先证其它三角形相似——创造边、角条件。
相似判定条件:两边成比夹角等、两角对应三边比(相等)。
2023年中考数学必考特色题型讲练【选择题】必考重点09 相似三角形的判定与性质

【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
在解相似三角形的判定与性质的有关题目时,首先要求考生掌握证明三角形相似的条件和方法,相似三角形的对应边成比例、对应角相等,对应角平分线、中线、高的比等于相似比,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
其次要能够运用相似三角形的性质,列出方程,求出相应线段的长度或者探索各线段之间的数量关系。
【2022·江苏苏州·中考母题】如图,在平行四边形ABCD 中,AB AC ⊥,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【考点分析】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.【思路分析】根据作图可得MN AC ⊥,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【2022·江苏常州·中考母题】如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部..被染色的区域面积是______.【考点分析】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.【思路分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【2022·江苏宿迁·中考母题】如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是_____.【考点分析】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H 运动的路径长为PN 长是解答本题的关键.【思路分析】根据题意知EF 在运动中始终与MN 交于点Q ,且AQM FQN ∆∆, :1:2,NQ MQ =点H 在以BQ 为直径的PN 上运动,运动路径长为PN 的长,求出BQ 及PN 的圆角,运用弧长公式进行计算即可得到结果.【2021·江苏镇江·中考母题】如图,点D ,E 分别在△ABC 的边AC ,AB 上,△ADE ∽△ABC ,M ,N 分别是DE ,BC 的中点,若AM AN =12,则ADE ABC S S =__.【考点分析】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.【思路分析】根据相似三角形对应中线的比等于相似比求出DE BC,根据相似三角形面积的比等于相似比的平方解答即可.1.(2022·江苏淮安·一模)如图,在正方形ABCD 中,8AB =,点H 在AD 上,且2AH =,点E 绕着点B 旋转,且3BE =,在AE 的上方作正方形AEFG ,则线段FH 的最小值是______.2.(2022·江苏苏州·二模)如图,在ABC 中,2AC =,AB AD CD ==,36BAD ∠=︒,则AD =________.3.(2022·江苏泰州·二模)定义:如果三角形中有两个角的差为90°,则称这个三角形为互融三角形,在Rt △ABC 中,∠BAC = 90°,AB = 4 ,BC = 5 ,点D 是 BC 延长线上一点.若 △ABD 是“互融三角形”,则 CD 的长为________.4.(2022·江苏泰州·二模)如图1,在Rt ABC 中,90B ,BA BC =,D 为AB 的中点,P 为线段AC上一动点,设PC x =,PB PD y +=,图2是y 关于x 的函数图像,且最低点E 的横坐标是AB =______.5.(2022·江苏淮安·一模)如图,在边长为1的小正方形组成的网格中,四边形ABCD 和四边形CGFE 的顶点均在格点上,则两个四边形重叠部分(阴影部分)的面积为__________.6.(2022·江苏泰州·一模)如图,直线l 与圆O 相交于A 、B 两点,AC 是圆O 的弦,OC ∥AB ,半径OC 的长为10,弦AB 的长为12,动点P 从点A 出发以每秒1个单位的速度沿射线AB 方向运动.当△APC 是直角三角形时,动点P 运动的时间t 为 _____秒.7.(2022·江苏南京·一模)如图,在ABC 中,30B ∠=︒,点D 是AC 上一点,过点D 作∥DE BC 交AB 于点E ,DF AB ∥交BC 于点F .若5AE =,4CF =,则四边形BFDE 的面积为______.8.(2022·江苏苏州·一模)如图,矩形ABCD中,点E在边CD上,AC与BE交于点F,过点F作FG BC⊥于点G,若23DEEC=,则FGAB的值为______.9.(2022·江苏南京·模拟预测)图,在▱ABCD中,对角线AC,BD交于点O,AF平分∠BAC,交BD于点E,交BC于点F,若BE=BF=2,则AD=_____.10.(2022·江苏扬州·一模)ABCD中,BE CF=,连接AE、BF交于点H,连接DH并延长交BC于点G,若2AB BH==BG=__________.11.(2022·江苏无锡·一模)如图,在ΔABC中放置5个大小相等的正方形,若BC=12,则每个小正方形的边长为____.12.(2022·江苏苏州·二模)如图,在矩形ABCD 中,1AB =,3AD =.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.13.(2022·江苏泰州·二模)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是△ABC 内部一点(不包括三条边),点F 、G 分别在AC 、AB 边上,且EF ⊥AC ,EG ⊥AB ,垂足分别为F 、G .点D 是AB 边的中点,连接ED ,若EF <EG ,则ED 长的取值范围是_________.14.(2022·江苏常州·二模)如图,正六边形ABCDEF 中,G 是边AF 上的点,113==GF AB ,连接GC ,将GC 绕点C 顺时针旋转60︒得,''G C G C 交DE 于点H ,则线段HG '的长为__________.15.(2022·江苏扬州·二模)如图,在锐角三角形ABC 中,8BC =,4sin 5A =,BN AC ⊥于点N ,CM AB ⊥于点M ,连接MN ,则△AMN 面积的最大值是______.16.(2022·江苏南通·二模)如图,正方形ABCD 的边长为5,E 为AD 的中点,P 为CE 上一动点,则AP BP +的最小值为______.17.(2022·江苏扬州·二模)定义:等腰三角形底边与腰的比叫做顶角α的正对(sad α).例如,在ABC 中,AB AC =,顶角A 的正对BC sadA AB ==底边腰.当36A ∠=︒时,36sad ︒=______________.(结果保留根号)18.(2022·江苏盐城·一模)如图,DE 是△ABC 的中位线,F 为DE 中点,连接AF 并延长交BC 于点G ,若2EFG S =△,则ABC S =___________.19.(2022·江苏无锡·一模)如图,点P 为线段AB 上一点,3AB =,2AP =,过点B 作任意一直线l ,点P关于直线l 的对称点为Q ,将点P 绕点Q 顺时针旋转90︒到点R ,连接PQ 、RQ 、AR 、BR ,则线段AR 长度的最大值为________.20.(2022·江苏盐城·一模)如图,在Rt ABC 中,CD 为斜边AB 的中线,过点D 作DE AC ⊥于点E ,延长DE 至点F ,使EF DE =,连接,AF CF ,点G 在线段CF 上,连接EG ,且180,2,3CDE EGC FG GC ∠+∠=︒==.下列结论:①12DE BC =;②四边形DBCF 是平行四边形;③EF EG =;④BC =______.(填序号)21.(2022·江苏连云港·一模)如图,以AB 为直径的半圆O 内有一条弦AC ,P 是弦AC 上一个动点,连接BP ,并延长交半圆O 于点D .若5AB =,4AC =,则DP BP 的最大值是________.22.(2022·江苏·扬州市邗江区梅苑双语学校一模)如图,在平行四边形ABCD 中,E ,F 分别是边AB ,AD 的中点,BF ,CE 交于点M ,若三角形BEM 的面积为1,则四边形AEMF 的面积为________.23.(2022·江苏南京·模拟预测)如图,在矩形ABCD 中,AB =6,E 是BC 的中点,AE 与BD 交于点F ,连接CF.若AE⊥BD,则CF的长为_____.24.(2022·江苏苏州·模拟预测)如图,矩形ABCD中,2BC=,E在边BC上运动,M、N在AB=,4+的最小值为______.对角线BD上运动,且25.(2022·江苏·连云港市新海初级中学一模)如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P从C运动到D的过程中,点M运动的路线长为_______.【填空题】必考重点09 相似三角形的判定与性质相似三角形的判定与性质一直是江苏省各地市考查的重点,难度中等或较难,常作为压轴题考查。
九年级数学上册《相似三角形的判定定理3》教案、教学设计

作业要求:
1.学生应独立完成作业,诚实守信,不得抄袭。
2.注意作业书写的规范性和整洁性,养成良好的学习习惯。
3.家长应关注学生的学习情况,协助学生按时完成作业,并对学生的学习给予鼓励和支持。
作业批改与反馈:
1.教师应及时批改作业,了解学生的学习情况,对存在的问题进行针对性辅导。
2.选取生活中的一个相似三角形的例子,画图并解释其相似关系,将所学知识应用到实际情境中,增强学生的几何直观。
3.小组合作完成一道综合性的几何证明题,要求运用相似三角形的判定定理3解决问题。通过合作交流,培养学生的团队协作能力和几何逻辑思维。
4.尝试研究相似三角形判定定理3在解决面积问题中的应用,并撰写一篇小论文,内容包括定理的应用方法、解题步骤和实际例题。
九年级数学上册《相似三角形的判定定理3》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握相似三角形的判定定理3,即两边成比例且夹角相等的两个三角形相似。
2.熟练运用相似三角形的判定定理3解决实际问题,提高解决问题的能力。
3.能够运用相似三角形的性质,解决与比例相关的问题,如线段比例、面积比例等。
4.掌握相似三角形的判定方法,形成严密的逻辑推理能力,为后续学习打基础。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论以下问题:
a.相似三角形的判定定理3的具体内容是什么?
b.如何运用判定定理3解决实际问题?
c.判定定理3在实际生活中的应用例子。
2.各小组汇报讨论成果,分享解题思路和经验。
3.教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
1.设计不同难度的习题,让学生独立完成,巩固所学知识。
数学教案三角形相似的判定(优秀3篇)

数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
沪科版数学九年级上册22.2《相似三角形的判定》(第4课时)教学设计

沪科版数学九年级上册22.2《相似三角形的判定》(第4课时)教学设计一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22章第2节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的性质等知识的基础上进行学习的。
本节课的主要内容是引导学生探究相似三角形的判定方法,让学生通过观察、操作、猜想、推理、交流等活动,体会数学的转化思想,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本概念、三角形的分类、三角形的性质等知识有一定的了解。
但是,学生对相似三角形的判定方法可能还比较陌生,需要通过实践活动来理解和掌握。
此外,学生可能对数学的转化思想、逻辑思维能力和空间想象能力等方面的要求还比较高,需要教师的引导和培养。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,能够运用相似三角形的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、推理、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:使学生体验到数学学习的乐趣,培养学生对数学的兴趣和信心。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:对相似三角形的判定方法的灵活运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、猜想、推理、交流,发现相似三角形的判定方法。
2.实践活动法:让学生通过实践活动,理解和掌握相似三角形的判定方法。
3.讲解法:教师对相似三角形的判定方法进行讲解,帮助学生理解和掌握。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.课件:相似三角形的判定方法的动画演示。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念、三角形的分类、三角形的性质等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示相似三角形的判定方法,让学生初步感知相似三角形的判定方法。
3.操练(10分钟)教师引导学生用三角板、直尺、圆规等工具进行实践活动,让学生自己发现和总结相似三角形的判定方法。
九年级数学相似三角形的判定(教师版)知识点+详细答案

九年级数学相似三⾓形的判定(教师版)知识点+详细答案相似三⾓形的判定【学习⽬标】1、了解相似三⾓形的概念,掌握相似三⾓形的表⽰⽅法及判定⽅法;2、进⼀步探索相似三⾓形的判定及其应⽤,提⾼运⽤“类⽐”思想的⾃觉性,提⾼推理能⼒.【要点梳理】要点⼀、相似三⾓形在和中,如果我们就说与相似,记作∽.k就是它们的相似⽐,“∽”读作“相似于”.要点诠释:(1)书写两个三⾓形相似时,要注意对应点的位置要⼀致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似⽐,要注意顺序和对应的问题,如果两个三⾓形相似,那么第⼀个三⾓形的⼀边和第⼆个三⾓形的对应边的⽐叫做第⼀个三⾓形和第⼆个三⾓形的相似⽐.当相似⽐为1时,两个三⾓形全等.要点⼆、相似三⾓形的判定定理1.判定⽅法(⼀):平⾏于三⾓形⼀边的直线和其他两边相交,所构成的三⾓形和原三⾓形相似.2.判定⽅法(⼆):如果两个三⾓形的三组对应边的⽐相等,那么这两个三⾓形相似. 3.判定⽅法(三):如果两个三⾓形的两组对应边的⽐相等,并且相应的夹⾓相等,那么这两个三⾓形相似.要点诠释:此⽅法要求⽤三⾓形的两边及其夹⾓来判定两个三⾓形相似,应⽤时必须注意这个⾓必需是两边的夹⾓,否则,判断的结果可能是错误的.4.判定⽅法(四):如果⼀个三⾓形的两个⾓与另⼀个三⾓形的两个⾓对应相等,那么这两个三⾓形相似.要点诠释:要判定两个三⾓形是否相似,只需找到这两个三⾓形的两个对应⾓相等即可,对于直⾓三⾓形⽽⾔,若有⼀个锐⾓对应相等,那么这两个三⾓形相似.要点三、相似三⾓形的常见图形及其变换:【典型例题】类型⼀、相似三⾓形1. 下列能够相似的⼀组三⾓形为( ).A.所有的直⾓三⾓形B.所有的等腰三⾓形C.所有的等腰直⾓三⾓形D.所有的⼀边和这边上的⾼相等的三⾓形【答案】C【解析】A中只有⼀组直⾓相等,其他的⾓是否对应相等不可知;B中什么条件都不满⾜;D中只有⼀条对应边的⽐相等;C中所有三⾓形都是由90°、45°、45°⾓组成的三⾓形,且对应边的⽐也相等.答案选C.举⼀反三:下列图形中,必是相似形的是().A.都有⼀个⾓是40°的两个等腰三⾓形B.都有⼀个⾓为50°的两个等腰梯形C.都有⼀个⾓是30°的两个菱形 D.邻边之⽐为2:3的两个平⾏四边形【答案】C类型⼆、相似三⾓形的判定2. 如图所⽰,已知中,E为AB延长线上的⼀点,AB=3BE,DE与BC相交于F,请找出图中各对相似三⾓形,并求出相应的相似⽐.【答案】∵四边形ABCD是平⾏四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似⽐;当△BEF∽△AED时,相似⽐;当△CDF∽△AED时,相似⽐.3. 梯形ABCD中,AB∥CD,AB=2CD,E、F分别为AB、BC的中点,EF与BD交于M.(1)求证:△EDM ∽△FBM;(2)若DB=9,求MB的长.【答案】(1)证明:为AB中点,,.⼜,四边形BCDE是平⾏四边形,,△EDM ∽△FBM.(2)解:由(1)知,.⼜,.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上⼀点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【答案】连接,,,是的中垂线,,,,.,.⼜,∽,,.举⼀反三:1、如图,AD 、CE 是△ABC 的⾼,AD 和CE 相交于点F ,求证:AF ·FD=CF ·FE .【答案】∵ AD 、CE 是△ABC 的⾼, ∴∠AEF=∠CDF=90°, ⼜∵∠AFE=∠CFE, ∴△AEF ∽△CDF. ∴AF EFCF FD=, 即AF ·FD=CF ·FE . 2、如图,F 是△ABC 的AC 边上⼀点,D 为CB 延长线⼀点,且AF=BD,连接DF, 交AB 于E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, ⼜∵AF=BD,∴.DE AFEF GF= ∵△AGF ∽△ABC∴AF AC GF BC=,即DE AC EF BC=.3、已知:如图正⽅形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.【答案】在正⽅形ABCD中,∵Q是CD的中点,∴=2∵=3,∴=4 ,⼜∵BC=2DQ,∴=2 ,在△ADQ和△QCP中,=,∠C=∠D=90°,∴△ADQ∽△QCP.4、如图,弦和弦相交于内⼀点,求证:.【答案】连接,.在中,,,∴∽。
中考之相似三角形方法总结

中考之相似三角形方法总结相似三角形是初中数学常见的重要知识点,掌握相似三角形的方法对于解题非常有帮助。
下面是关于相似三角形方法的总结。
一、相似三角形的定义和判定相似三角形指的是具有相同形状但可能不同大小的三角形。
两个三角形相似的判定方法为:1.AA判定法:如果两个三角形中有两对相对角度相等,则这两个三角形相似。
2.AAA判定法:如果两个三角形的三个内角相对应相等,则这两个三角形相似。
3.SSS判定法:如果两个三角形的对应边长之比相等,则这两个三角形相似。
4.SAS判定法:如果两个三角形中,一对对应角相等,且两对对应边的比值相等,则这两个三角形相似。
二、相似三角形的性质1.相似三角形的对应角相等。
2.相似三角形的对应边长比值相等。
3.相似三角形的高线、中线和角平分线所对应的长度之比相等。
4.相似三角形的周长比例等于它们的边长比例。
5.相似三角形的面积比例等于它们的边长比例平方。
三、相似三角形的计算方法1.已知两个相似三角形的边长比例,可以通过等比例关系来计算未知边长。
2.已知一个相似三角形的高线或者中线和相似比例,可以通过相似比例关系来计算另一个相似三角形的高线或者中线。
3.已知两个相似三角形的面积比例,可以通过面积比例关系来计算未知面积。
4.已知三个相似三角形的边长比例和一个相似三角形的面积,可以通过面积和边长的比例关系来计算未知面积。
四、相似三角形的应用1.根据相似三角形的性质,可以在不直接测量的情况下,计算远处的高度、长度等。
2.可以通过相似三角形的关系来解决各种几何问题,如平行线的证明、角度的计算、比例的求解等。
3.在实际生活中,相似三角形的知识经常用于建筑、测量、工程等领域的计算和设计中。
1.掌握相似三角形的定义和判定方法,能够准确判断两个三角形是否相似。
2.熟练应用AA、AAA、SSS和SAS判定法,能够根据题目给出的条件判定三角形的相似关系。
3.理解相似三角形的性质,能够应用性质计算未知边长、比例、面积等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
118相似三角形的判定(提高)
一、选择题
1. 已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为()
A. 16:15
B. 15:16
C. 3:5
D. 16:15或15:16
2.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有().
A.1条B.2条C.3条D.4条
3. 如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交
BC的延长线于D,此时BC:CD为()
A. 2:1
B. 3:2
C. 3:1
D. 5:2
4. 如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交B A的延长线于点F,则下列结论中错误的是().
A.∠AEF=∠DEC B.FA∶CD=AE∶BC C.FA∶AB=FE∶EC D.AB=DC
5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().A.4对B.3对C.2对D.1对
6. 如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP 与△ECP相似的是()
A. ∠APB=∠EPC
B. ∠APE=90°
C. P是BC的中点
D. BP:BC=2:3
二、填空题
7. 如图, ∠1=∠2=∠3, 则图中与△CDE相似三角形是________和________
8. 如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形
有_________对.
9. 如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF 的值是________.
10. 如图,点M在BC上,点N在AM上,CM=CN,,
则①△ABM∽△ACB,②△ANC∽△AMB,③△ANC∽△ACM,④△CMN∽△BCA中正确的有___________.
11. 如图,在平行四边形ABCD中,M,N为AB的三等分点,DM,DN分别交AC于P,Q两点,则AP:PQ:QC=_________.
12. 如图,正方形ABCD的边长为2,AE=EB,MN=1.线段MN的两端在CB,CD边上滑动,当CM=______时,△AED与
以M、N、C为顶点的三角形相似.
三、解答题
13. 如图,和都是等边三角形,且B、C、D共线,BE分别和AC、AD相交于点M、G,CE和AD相交于点N.
求证:(1)CG平分.(2)∽.
14.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.
(1)试说明△ABD≌△BCE;
(2)△EAF与△EBA相似吗?说说你的理由.
15. 已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB
的比例中项.当点C在圆O上运动时,求的值(结果用含m
的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径
的圆C的位置关系,并写出相应m的取值范围.
118相似三角形的判定(提高)【答案与解析】一.选择题
1.【答案】A.
2.【答案】C.
【解析】分别是过点P做AB,AC,BC的垂线.
3.【答案】A.
【解析】
如图,做CN∥AB,交ED于点N,
∵M是AC边中点,△AEM≌△CNM,即CN=AE,
∵AE=AB,∴AE:BE=1:3,即CN:BE=1:3.
∵CN∥AB,∴△DCN∽△DBE,即CD:BD= CN:BE=1:3,∴CD:BC=1:2.
4.【答案】B
5.【答案】B
【解析】△ABC∽△ACD; △ABC∽△CBD; △CBD∽△ACD.
6.【答案】C .
【解析】当P是BC的中点时,△EPC为等腰直角三角形.
二. 填空题
7.【答案】△CEA、△CAB.
8.【答案】3对.
【解析】由∠CPD=∠A=∠B,得△CPF∽△CBP,△DPG∽△DAP,得∠CPB=∠CFP,则∠APG=∠BFP,得△APG∽△BFP,有3对.
9.【答案】5:1.
【解析】
如图,连接AE,则△AEF∽△CBF,
∵点F是AB的中点,正方形ABCD,∴EF:AE=BF:BC=1:2.
设EF=K,则AE=2K,AF=K,即BF=K,BC=2K,CF=5K.
∴CF:EF=5:1.
10.【答案】②.
11.【答案】5:3:12
【解析】
∵平行四边形ABCD, M,N为AB的三等分点∴AM:CD=AP:PC=1:3,AN:CD=AQ:QC=2:3,
即AP=AC,AQ=AC,∴QP=AC,QC=AC,∴AP:PQ:QC=AC: AC: AC=5:3:12.
12.【答案】.
三综合题
13.【解析】(1)
证明:如图,作CP⊥AD于P,CQ⊥BE于Q,
∵和都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACE=∠DCE+∠ACE
即∠BCE=∠ACD,
∴△BCE≌△ACD,
∴∠BEC=∠ADC,
∵CP⊥AD,CQ⊥BE
∴∠CQE=∠CPD=90°
在△CQE和△CPD中:
∴△CQE≌△CPD,
∴CQ=CP,
∴CG平分(到角的两边距离相等的点在这个角的角平分线上。
)
(2)∵△BCE≌△ACD,
∴∠CBE=∠CAD,
又∵∠CMB=∠AMG,
∴∠BCM=∠AGM=60°,
又∵CG平分,
∴∠CGB=∠CGD=60°=∠EGP,
∴∠AGC=120°=∠CGE,
∠GCE=∠60°−∠BEC
∵∠EBC=60°-∠BEC,
∴∠GCE=∠EBC=∠CAD,
∴△ACG∽△CEG.
14.【解析】
(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;
(2)相似;∵△ABD≌△BCE,∴∠BAD=∠CBE,
∴∠BAC-∠B AD=∠CBA-∠CBE,∴∠EAF=∠EBA,
又∵∠AEF=∠BEA,∴△EAF∽△EBA.
15.【解析】
(1)利用两边的比相等,夹角相等证相似.
由已知AP=2PB,PB=BO
可推出,
∴△CAO∽△BCO
(2)设
∵是的比例中项,
∴是的比例中项
即
∴
解得
又∵
(3)∵,,即
当时,两圆内切;当时,两圆内含;当时,两圆相交.。