Neurovirulence safety testing of mumps vaccines—Historical perspective and

合集下载

阿尔兹海默症检测指标

阿尔兹海默症检测指标

阿尔兹海默症检测指标
阿尔茨海默症是一种慢性进行性神经退行性疾病,通常发生在老年人身上。

早期检测和诊断对于治疗和管理这种疾病非常重要。

以下是一些常用的阿尔茨海默症检测指标:
1. 心理学测验:例如MMSE(最小精神状态检查)和MoCA(蒙特利尔认知评估),用于评估病人的认知功能和智力水平。

2. 脑成像:例如磁共振成像(MRI)和正电子发射断层扫描(PET)扫描,用于检查是否存在脑萎缩和异常蛋白积累。

3. 生物标志物检测:例如血清和脑脊液中的β-淀粉样蛋白、tau蛋白和神经元损伤标志物,用于评估脑损伤程度和疾病进展。

4. 家族史调查:了解病人家族中是否有阿尔茨海默症病人,有助于早期诊断和治疗。

尽管这些检测指标都有其局限性和缺陷,但它们可以帮助医生诊断和治疗阿尔茨海默症,促进患者的康复和生活质量提高。

- 1 -。

干细胞治疗临床试验安全性评价

干细胞治疗临床试验安全性评价

干细胞治疗临床试验安全性评价干细胞疗法作为一种前沿的生物医学技术,引起了广泛的关注。

它具有很大的治疗潜力,可以用于治疗多种疾病,包括心血管疾病、神经系统疾病和器官移植等。

然而,由于干细胞治疗尚处于起步阶段,其安全性评价显得尤为重要。

本文将对干细胞治疗临床试验的安全性评价进行探讨。

首先,干细胞治疗的安全性评价需考虑干细胞来源的安全性。

目前,干细胞主要有胚胎干细胞、成体干细胞和诱导多能干细胞三种来源。

胚胎干细胞具有较强的分化能力,但其获取过程涉及到胚胎的破坏,引发了伦理上的争议。

成体干细胞来源于成年人的组织和器官,因此,其获取过程相对较容易,但其分化能力较弱。

诱导多能干细胞由成体细胞通过基因重编程转变而来,具有胚胎干细胞的分化潜能,同时又避免了伦理争议。

在选择干细胞来源时,安全性是至关重要的考虑因素。

其次,干细胞治疗的安全性评价还需考虑干细胞的植入方式和剂量。

植入方式包括直接注射、细胞输注和组织工程等方法。

直接注射是最简单的方式,但可能存在细胞堆集和局部炎症等问题。

细胞输注将干细胞注入到血液或淋巴系统中,然后通过循环系统到达病变部位,但可能引发栓塞等风险。

组织工程则是将干细胞培养成组织或器官,再进行移植。

在剂量选择上,过高的剂量可能导致过度分化和肿瘤形成等问题,而过低的剂量则可能无法发挥治疗效果。

因此,在干细胞植入方式和剂量的评价中,安全性是需要特别注意的因素。

此外,干细胞治疗的安全性评价还需考虑免疫排斥反应的风险。

由于干细胞治疗通常涉及异基移植,患者的免疫系统可能会对植入细胞发生排斥反应。

因此,在干细胞治疗之前,需要进行免疫配型和抗排斥治疗等措施,以降低免疫排斥反应的风险。

同时,还需要监测患者的免疫功能、炎症反应和抗体产生等指标,及时发现并处理潜在的排斥反应。

最后,干细胞治疗的安全性评价还需考虑长期随访的必要性。

虽然干细胞治疗短期内可能会取得一定的疗效,但其长期效果和安全性仍然不确定。

因此,对于接受干细胞治疗的患者,需要进行长期的随访观察,评估治疗的长期效果和潜在的副作用。

美国批准阿尔茨海默氏症测试新法

美国批准阿尔茨海默氏症测试新法

美国批准阿尔茨海默氏症测试新法
佚名
【期刊名称】《科学中国人》
【年(卷),期】2012(000)009
【摘要】美国食品与药物管理局批准用一种放射性化合物评估阿尔茨海默氏症患者的认知损伤。

这种名为Amyvid的药物能够与淀粉体斑块结合在一起,后者是阿尔茨海默氏症在大脑中的名片。

在进行正电子发射层析扫描之前.Amyvid使得医生能够看清淀粉体是否已经开始在大脑中积聚。

【总页数】1页(P51-51)
【正文语种】中文
【中图分类】F752.3
【相关文献】
1.芬兰发现阿尔茨海默氏症(老年痴呆)检测新法
2.芬兰发现阿尔茨海默氏症检测新法
3.美国FDA批准首种用于诊断生殖支原体感染的检测试剂
4.减缓阿尔茨海默氏症有新法
5.美国:加利福尼亚州新法规允许全自动驾驶汽车公路测试
因版权原因,仅展示原文概要,查看原文内容请购买。

moca和mmse的评分标准

moca和mmse的评分标准

在评估认知功能和智力状态时,医生通常会使用MOCA(蒙特利尔认知评估量表)和MMSE(最小精神状态检查)这两种标准来进行测试。

这两种评分工具在临床实践中被广泛应用,它们能够帮助医生诊断认知障碍和痴呆症等疾病,并且可以帮助进行治疗方案的制定和监测。

让我们来看看MOCA。

MOCA是一种全面评估认知功能的工具,它包括视觉-空间能力、执行功能、记忆、言语、算数能力、抽象思维、注意、定向力和工作记忆等多个领域的考核内容。

MOCA总分是30分,根据研究表明,24分及以下为异常,24-26分说明可能存在认知功能障碍,27-30分认为正常。

MOCA采用了多种方式进行测试,例如回答问题、模仿图形、复述一些信息等。

这些测试项目综合考核了受试者在不同认知领域的表现,从而全面地评估了其认知功能。

与MOCA相比,MMSE更加简洁,它只包括了定向、登记、注意和计算、回忆、语言等基本认知功能的评估。

MMSE总分是30分,通常认为24分及以下为异常,24-27分是可疑,27-30分则为正常。

由于MMSE内容相对简单,因此它可能无法准确评估受试者的部分认知领域,例如执行功能、抽象思维等。

需要注意的是,MOCA和MMSE虽然都是常用的认知评估工具,但它们并不是用于诊断认知疾病的唯一标准。

在临床实践中,医生通常会综合MOCA、MMSE以及其他临床表现、影像学检查等多个方面的资料来进行综合评估,以确定患者的认知功能状态。

MOCA和MMSE是评估认知功能和智力状态的重要工具,它们能够帮助医生全面、准确地评估患者的认知功能,并且对于疾病的诊断和治疗具有重要意义。

然而,需要注意的是,这两种评分标准都不是用于单一诊断的依据,医生还需要结合临床表现和其他检查资料来进行综合评估。

MOCA和MMSE是医生在进行认知功能和智力状态评估时常用的工具,它们能够帮助医生更全面地了解患者的认知功能状况,从而进行更加准确的诊断和治疗方案的制定。

在临床实践中,这两种工具经常被用来评估老年人、认知障碍患者和痴呆症患者的认知功能,以及监测其病情的变化。

日用化学品体外哺乳动物细胞微核试验

日用化学品体外哺乳动物细胞微核试验

日用化学品安全性评价体外哺乳动物细胞微核试验1范围本标准规定体外哺乳动物细胞微核试验的基本原理、规范性引用文件、术语及定义、试验方法、数据处理及结果评价和报告。

本标准适用于评价日用化学品及化学品原料的遗传毒性。

2规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

OECD Guidelines for the testing of chemicals:In Vitro Mammalian Cell Micronucleus Test(No.487),2016年GB/T28646-2012《化学品体外哺乳动物细胞微核试验方法》3术语及定义GB/T28646-2012界定的以及下列术语及定义适用于本文件。

为了便于使用,以下重复列出了GB/T 28646-2012中的某些术语及定义。

3.1非整倍体诱发剂aneugen任何与细胞有丝分裂和减数分裂周期中有关的成分相互作用后导致细胞出现非整倍体现象的物质或因子。

3.2染色体断裂剂clastogen任何引起细胞或生物体中染色体结构畸变的物质或因子。

3.3胞质分裂cytokinesis随着核分裂(有丝分裂和减数分裂)之后的细胞质的分裂。

3.4细胞阻滞cytostasis细胞生长被抑制。

3.5细胞毒性cytotoxicity对细胞结构或功能的有害作用,最终可导致细胞死亡。

3.6微核micronuclei独立于细胞核主核以外的小核,由有丝分裂或减数分裂末期滞后的染色体片段或整条染色体构成。

3.7胞质分裂阻断增殖指数cytokinesis-block proliferation index,CBPI使用细胞松弛素B时计算细胞毒性的方法。

处理组中二次分裂细胞数相对于对照组的比值。

3.8复制指数replication index,RI使用细胞松弛素B时计算细胞毒性的方法。

善思达说明书

善思达说明书

核准日期:2011年12月19日修改日期:2012年10月15日2013年01月28日2016年12月21日2017年06月27日2019年02月19日2021年01月28日2021年05月06日棕榈酸帕利哌酮注射液说明书请仔细阅读说明书并在医师指导下使用警示语增加患有痴呆相关精神病的老年患者的死亡率与安慰剂相比,使用非典型抗精神病药治疗患有痴呆相关精神病的老年患者时,死亡的风险会增加。

对在患有痴呆相关精神病的老年患者中进行的17项安慰剂对照临床试验(平均众数治疗时间为10周)的分析发现,药物治疗组患者死亡的危险性为安慰剂对照组的1.6-1.7倍。

在一项10周对照临床试验中,药物治疗组的死亡率为4.5%,安慰剂对照组为2.6%。

虽然死亡原因各异,但是大多数死于心血管病(如心衰、猝死)或感染(如肺炎)。

研究显示,与非典型抗精神病药物相似,采用传统抗精神病药物治疗可能增加死亡率。

观察研究中死亡率的增加归因于抗精神病药物还是患者本身的某些特性造成的,目前尚不清楚。

本品未被批准用于治疗痴呆相关的精神病患者(参见【注意事项】)。

【药品名称】通用名称:棕榈酸帕利哌酮注射液商品名称:善思达® Invega Sustenna英文名称:Paliperidone Palmitate Injection汉语拼音:Zonglvsuan Palipaitong Zhusheye【成份】主要成份:棕榈酸帕利哌酮化学名称:(±)-3-[2-[4-(6-氟-1,2-苯并异噁唑-3-基)-1-哌啶]乙基]-6,7,8,9-四氢-2-甲基-4-氧-4H-吡啶[1,2-a]嘧啶-9-基棕榈酸酯化学结构式:分子式:C39H57FN4O4分子量:664.89辅料:聚山梨醇20、聚乙二醇4000、枸橼酸、无水磷酸氢二钠、磷酸二氢钠一水合物、氢氧化钠和注射用水。

【性状】本品为白色至灰白色的混悬液。

【适应症】本品用于精神分裂症急性期和维持期的治疗。

药品非临床安全评估

药品非临床安全评估

药品非临床安全评估
药品非临床安全评估是指在动物实验前,对药物候选化合物进行的一系列非临床研究以评估其安全性。

这些研究主要包括体外研究和体内动物研究。

体外研究包括药物的化学性质评估、体外代谢研究、药物相互作用研究和药物安全性筛选。

这些研究主要通过体外实验进行,通过评估化合物在体内的药物代谢和药物相互作用情况,预测其在体内的药效和药物相互作用效应。

体内动物研究是药物非临床安全评估中的主要环节,主要通过动物实验来评估药物的毒性、药代动力学和安全剂量。

这些研究包括急性毒性研究、慢性毒性研究、生殖毒性研究和致癌性研究等。

动物实验可以评估药物在不同剂量下对动物的毒性反应,通过测量药物在体内的分布、代谢和排泄情况,预测其在人体内的动力学和安全性。

通过药品非临床安全评估,可以评估药物候选化合物的安全性,确定有效剂量范围,并制定下一步的临床实验计划。

这对于保证药物研发的科学性和安全性非常重要。

小鼠局灶性脑缺血模型中行为学测试方法的比较

小鼠局灶性脑缺血模型中行为学测试方法的比较

小鼠局灶性脑缺血模型中行为学测试方法的比较局灶性脑缺血模型是一种常用于研究脑缺血相关神经生物学机制的动物模型。

在这种模型中,通过导致小鼠一侧大脑半球的局部供血不足,可以观察到大脑缺血后小鼠不同行为的变化。

为了评估这些行为变化,行为学测试法被广泛应用,以评估脑损伤程度和功能恢复程度。

下面介绍几种小鼠局灶性脑缺血模型中的行为学测试方法。

一、Neurological severity scores神经系统严重程度评分(neurological severity scores,NSS)是一种常用的行为学测试方法,可以评估小鼠大脑缺血后的神经损伤程度。

该测试可以通过观察小鼠的姿势平衡、规律运动、步态和反应灵敏度等项指标来量化小鼠的神经功能状态。

NSS 是非常实用的测试手段,因为它能够快速获得结果,而且不需要特殊的设备。

二、旋转行为测试旋转行为测试(rotarod assay)是检测小鼠体内协调和平衡能力的一种方法。

具体来说,被测试的小鼠被放置在一个旋转的竿上,然后记录下小鼠可以坚持的时间和下落时的速度。

通过比较缺血小鼠和正常小鼠的表现,旋转行为测试能够评估其运动协调、平衡、运动学习和耐力等指标。

三、轮子走廊测试轮子走廊测试(cylinder test)是一种评估小鼠长期前肢使用程度的测试方法。

这个测试相对简单,只需要一个透明的圆柱形器皿和一些用于标记前肢触碰位置的油颜料。

被测试的小鼠被放入圆柱中,观察其触碰环境的方式和频率。

通过检测前肢使用的比例,可以间接性地评估脑缺血对小鼠行动的影响。

四、Morris水迷宫测试Morris水迷宫测试(Morris water maze assay)是一种测试小鼠在空间记忆和空间定位能力方面表现的高级测试。

该实验在一个大水池中进行,水池有一个隐藏的平台,小鼠可以通过定位平台在各个角度上寻找出路。

比较正常和脑缺血小鼠在寻找平台、记忆位置和学习水平等指标上的表现,可以评估缺血对小鼠空间记忆和定位能力的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vaccine29 (2011) 2850–2855Contents lists available at ScienceDirectVaccinej o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/v a c c i neReviewNeurovirulence safety testing of mumps vaccines—Historical perspective and current statusS.A.Rubin a,∗,M.A.Afzal b,1a Center for Biologics Evaluation and Research,United States Food and Drug Administration,Bethesda,MD20892,USAb NIBSC,South Mimms,Potters Bar,Hertfordshire,EN63QG,UKa r t i c l e i n f oArticle history:Received22December2010Received in revised form2February2011 Accepted3February2011Available online 18 February 2011Keywords:MumpsVaccineNeurovirulenceSafetyMonkeys a b s t r a c tMany live,attenuated viral vaccines are derived from wild type viruses with known neurovirulent properties.To assure the absence of residual neurotoxicity,pre-clinical neurovirulence safety testing of candidate vaccines is performed.For mumps virus,a highly neurotropic virus,neurovirulence safety testing is performed in monkeys.However,laboratory studies suggest an inability of this test to correctly discern among virus strains of varying neurovirulence potential in man,and,further,some vaccines found to be neuroattenuated in monkeys were later found to be neurovirulent in humans when administered in large numbers.Over the past decade,concerted efforts have been made to replace monkey-based neurovirulence safety testing with more informative,alternative methods.This review summarizes the current status of mumps vaccine neurovirulence safety testing and insights into models currently approved and those under development.Published by Elsevier Ltd.Contents1.Introduction (2850)2.Neurovirulence safety testing in monkeys (2851)3.Neurovirulence safety testing in small animal models (2851)4.Neurovirulence safety testing in marmosets (2851)5.Non-animal based assessment of mumps virus neurovirulence (2853)6.Perspectives and future directions (2853)Acknowledgements (2853)References (2854)1.IntroductionMumps is an acute communicable respiratory viral infection transmitted by oropharyngeal secretions.Symptoms are usually the result of secondary infection of tissues and organs following viremia,resulting in a wide array of acute inflammatory reactions. While most symptoms such as parotitis and orchitis are relatively benign,more serious reactions,such as meningitis and encephali-tis can occur[1,2].The high tropism of mumps virus for the central nervous system(CNS)was suggested by a study of a mumps epi-demic in Copenhagen in the winter of1941/42.Of255individuals presenting with uncomplicated parotitis on whom routine lum-∗Corresponding author.Tel.:+13018271974;fax:+13014805679.E-mail address:steven.rubin@(S.A.Rubin).1Current address:265-Mutton Lane,Potters Bar,Hertfordshire,EN62AT,UK.bar puncture was performed,cerebrospinalfluid pleocytosis was identified in129(51%)[3].Although symptomatic CNS infection is less frequent,occurring in approximately1–10%of cases[4,5], in the pre-vaccine era mumps virus was the leading cause of virus-induced aseptic meningitis and encephalitis in developed countries [6],a statistic maintained in countries lacking strict mumps vacci-nation programs[7–10].Given the neurotropic and neurovirulent properties of mumps virus,it is critical that candidate live-attenuated vaccine strains be assessed for neuroattenuation.The only approved method for such an assessment is based on intracerebral inoculation of mon-keys[11,12];however,the reliability of this method has been questioned following the occurrence of aseptic meningitis in recip-ients of vaccines passing monkey neurovirulence safety testing [13,14].Such a problem places public confidence in all mumps vaccines at risk,as indicated by the experience in Japan where national mumps vaccination programs were discontinued in19930264-410X/$–see front matter.Published by Elsevier Ltd. doi:10.1016/j.vaccine.2011.02.005S.A.Rubin,M.A.Afzal/Vaccine29 (2011) 2850–28552851following established links to aseptic meningitis;consequently, more than a million new mumps cases occur annually in that country[15,16].The recent resurgence of mumps outbreaks world-wide highlights the need for maintenance of robust immunization programs,and,hence,the importance of assuring the safety of mumps vaccines[17–26].In this article we review the avail-able data on mumps virus vaccine neurovirulence safety testing, including promising alternatives to the current monkey-based model.2.Neurovirulence safety testing in monkeysThe use of a monkey model is presumably based on the notion that non-human primates,due to their close relatedness to humans, would be appropriate hosts for mumps virus replication and patho-genesis.Indeed,monkey neurovirulence safety testing of some vaccines,including poliovirus and yellow fever virus,has been suc-cessful[27,28];however,this is not the case with mumps virus.The major criteria by which mumps virus neurovirulence is assessed in monkeys includes inflammation within and damage to the ven-tricular system,specifically the choroid plexus,ependymal cell lining and cells in the subependymal zone following inoculation of the CNS[29,30].In regions of extensive inflammation and nearby areas(e.g.,the hippocampal cortex and corpus collosum),dys-trophic neurons can occasionally be seen and are also considered in the analysis[29,31,32].The array of histopathological changes in monkeys following inoculation of different mumps viruses by several routes is provided in Table1,indicating that virus-induced neuropathology in monkeys appears to be poorly predictive of the attenuation phenotype of mumps viruses for humans.For example,the Jeryl Lynn vaccine strain,which has an excellent safety record and has not been causally associated with aseptic meningitis in humans[33–35]is histopathogically indistinguish-able in monkeys from wild type virus strains or vaccines known to produce aseptic meningitis in children.It is therefore perhaps not entirely surprising that certain mumps vaccines presumably passing the monkey neurovirulence safety test have produced aseptic meningitis in vaccinees,including the widely used Urabe-AM9[16,33,36–38]and Leningrad-Zagreb strains[39–42],and the less widely used Leningrad-3[43],Hoshino[35],Torii[44], and Sofia-6[45]strains.However,it is important to point out that all“wild type”viruses tested to date have beenfirst pas-saged in vitro,a process potentially leading to partial attenuation. Thus it is quite possible that the monkey model could distinguish true wild type viruses from attenuated viruses,but the model seemingly cannot reliably distinguish sufficiently vs.insufficiently attenuated viruses.This may in part be due to the limited num-ber of monkeys used in such analyses and perhaps with larger group sizes,the distinction between varying levels of attenua-tion may become apparent;however,for ethical and logistical reasons,testing of large numbers of non-human primates is not feasible.Despite this apparent shortfall,in the absence of an alternative methodology,the monkey neurovirulence safety test continues to be recommended by national regulatory authorities for the pre-clinical assessment of the neurological safety of candidate vac-cine strains.Notably,although the incidence of aseptic meningitis associated with administration of some mumps vaccines may be as high as1in1000doses,this is but a fraction of the incidence of aseptic meningitis following natural infection,suggesting a benefit of testing candidate vaccines in the monkey neurovirulence safety test.Indeed,many vaccines known to cause aseptic meningitis are still used today in several countries based on the benefit of protection outweighing the small risk of non-life threatening adverse events[46].3.Neurovirulence safety testing in small animal modelsThe best characterized small animal model for the study of mumps virus pathogenesis is the hamster;however,like the monkey model,neuropathology following infection by virulent versus attenuated strains are largely indistinguishable[47–50]. Mice were also explored as model system;however,virus repli-cation in this species is abortive[51–54].Early studies in rats indicated that productive infection required host adaptation[55], a phenomenon that would preclude the use of rats as means of assessing vaccine virus safety.However,it was later determined that non-adapted mumps viruses can productively replicate in rats if inoculated intracerebrally within thefirst24h of birth[56].The major neuropathological outcome in neonatally inoculated rats is hydrocephalus of the lateral and third ventricles,the magnitude of which was found to be a correlate of the neurovirulence potential of the virus for humans[57].The greater predictive value of the rat based assay versus the monkey based assay is clearly apparent when comparing neurovirulence scores measured in the two assays (Fig.1).Further support for the ability of the rat assay to correctly assess neuroattenuation is indicated by results of inoculation of newborn rats with passage levels8,13and17of the Jeryl Lynn mumps virus strain(kindly provided by Merck and Co).Although passage levels8and13were not tested in humans,during vac-cine development passage level12was found to be insufficiently attenuated in children whereas passage level17was of low reac-togenicity in children[58].From these data it can be inferred that virus at passage level8is the least attenuated whereas virus at pas-sage level17is the most attenuated,with passage level13being of intermediate reactogenicity in the clinic.This trend is clearly demonstrated in testing of these passage levels in rats(Fig.2).To pursue the possible use of the newborn rat-based test as a valid alternative to the monkey-based test,robustness and repro-ducibility of the former was examined in a collaborative study involving two laboratories,one at the U.S.Food and Drug Adminis-tration(FDA)and the other at the National Institute for Biological Standardization and Control(NIBSC)in the U.K.Twelve mumps virus preparations of varying human neurovirulence potential were blinded and distributed to each laboratory along with a standard operating procedure for performing the assay.Although the abso-lute measured neurovirulence scores differed between the two laboratories,the overall rank order of the scores was maintained at both study sites wherein wild-type viruses could be differentiated with statistical certainty from vaccine viruses and attenuated vac-cine viruses could be differentiated with statistical certainty from partially attenuated vaccine strains[59].The newborn rat neurovirulence safety test is currently the sub-ject of a World Health Organization sponsored validation study that will include vaccines produced by many of the current product manufacturers.4.Neurovirulence safety testing in marmosetsAs an alternative to the Cercopithecidae monkey-based test, marmosets(Callithrix jacchus)were investigated as a possible model for testing of the human neurovirulence potential of mumps viruses.Marmosets inoculated intraspinally with the wild type Odate strain or the insufficiently attenuated NK-M46or Urabe vac-cine strains developed extensive encephalitis and meningitis and virus could be readily recovered from brain tissue.In contrast,ani-mals inoculated with the Jeryl Lynn vaccine strain manifested only minor histopathological changes and virus could not be recov-ered from brain or other tissues including kidney,pancreas and parotid gland[60].In a head-to-head comparison of reactivity in the marmoset model versus the newborn rat model,the Jeryl Lynn2852S.A.Rubin,M.A.Afzal/Vaccine29 (2011) 2850–2855Table1Synopsis of the literature describing histopathological changes in monkeys following inoculation of different mumps viruses by various routes.JL:Jeryl Lynn;L-3:Leningrad-3; wt:wild type;p.attn:partially attenuated;vac.isolate:vaccine isolate from cerebrospinalfluid of patient with vaccine-induced aseptic meningitis;HAU50:heamaglutining units;TCID50:tissue culture infection dose units;PFU:plaque forming units;IT:intrathalamic;IC:intracisternal;IS:intraspinal;IM:intramuscular;IP:intraparotid.Virus strains Biological phenotype Species(dose range)Injection site Histologicalfindings and conclusions ReferenceJL p17Vaccine a Rhesus macaques(103.7−5.0HAU50)IT/IS/IM(combined)Slight cellular infiltration of choroids plexus(cp)and ependymal cells with all viruses;noqualitative or quantitative histologicaldifferences between viruses[58]JL p12p.attn JL p7wt ABC wt Farina wtL-3p21Vaccine b Rhesus macaques(104.3−4.5HAU50)IT/IS/IC(combined)Cellular infiltration of cp and periventricular(pv)areas with all viruses;neuronal dystrophywith L-3p6and Sophia6,but not L-3p21[31]L-3p6wt Sophia-6Vaccine bL-3p22Vaccine b Rhesus macaques(105.5HAU50)IT/IC(combined)Neuronal dystrophy and cellular infiltration ofcp,pv and meninges with both viruses;histological changes more extensive with L-3p22vs.p19[29]L-3p19p.attnJL p17Vaccine a Rhesus macaques and Greenmonkeys(105.0−5.8HAU50)IP;IM(separately)IP:cellular infiltration of cp and pv with allviruses following;encephalitis and neuronaldystrophy with L-3p7and Sofia-40.IM:astrogliosis and cellular infiltration of pv withall viruses[69]L-3p22Vaccine b L-3p7wtSofia-6Vaccine bJL p17Vaccine a Rhesus macaques and Greenmonkeys(104.4−4.5HAU50)IT Cellular infiltration of cp and pv with allviruses;neuronal dystrophy with Berlin andSofia-6,L-3p7,and to a lesser extent JL p17and L-3p22[32]L-3p22Vaccine b L3p7wtSofia-6vaccine b Berlin wtHoshino L-32Vaccine b Cynomolgus Macaques(105.0TCID50)IP;IM;IT;IC(separately)No histological changes in the CNS in monkeysinoculated with any of the viruses[70]Sasazaki wtS-12wtS-12p14Vaccine cJL p17Vaccine a Rhesus macaques(104.5pfu)IT Cellular infiltration of cp and pv with allviruses;no significant differences betweenviruses[71]RIT-4385vaccine aKilham wtLo1wt87-1004vac.isolateJL p17Vaccine1Cynomolgus macaques(104.4−5.0pfu)IT Cellular infiltration of cp and pv with allviruses;no significant differences betweenviruses[72]Urabe-AM9Vaccine b Lo1(wt)wtNt-5vac.isolate MJ14Vaccine aHoshinoL-32Vaccine b Green monkeys(105.0TCID50)IT/IC.(combined)Cellular infiltration of cp,pv and meningeswith Hoshino and Hoshino CA-35;nohistological changes with Hoshino L-32[73]Hoshino wtHoshino CA-35p.attna Not causally associate with meningitis.b Causally associate with meningitis.c Association with meningitis unknown.vaccine strain was found to be attenuated and the Odate and NK-M46strains were found to be neurovirulent,as expected.However, whereas the Urabe strain was found to be neurovirulent in mar-mosets,it was found to be attenuated when tested in newborn rats by Saika et al.[61].This contrasts withfindings by Rubin et al., who reported the Urabe vaccine strain to be neurovirulent in new-born rats[59].Reasons for this discrepancy are unclear;however, manufacturer-to-manufacturer as well as lot-to-lot differences in rate of Urabe vaccine virus associated aseptic meningitis have been reported,suggesting the potential for biological characteris-tics to differ between different vaccine lots[62,63].Additionally, the Urabe vaccine preparation used by Rubin et al.was unpas-saged material obtained as marketed product whereas the vaccine preparation used by Saika et al.was passaged once more in chicken embryo cells to generate a stock for testing,and,thus,mutations could have arisen in the passaged virus that could have affected itsS.A.Rubin,M.A.Afzal /Vaccine 29 (2011) 2850–28552853J L R I T (v a c )J L (v a c )L o 1 (w t )88-1961 (w t )N .a .N .J L -R I T (v a c )J L (v a c )U r -A M 9 (v a c )L o 1 (w t )M e a n L e s i o n S c o r e0.00.51.01.52.02.53.03.54.0J L -R I T (v a c )J L (v a c )L -3 (v a c )U r -A M 9-1 (v a c )U r -A M 9-2 (v a c )T e n n (w t )L o 1 (w t )N Y (w t )P e t r e n k o (w t )88-1961 (w t )N e u r o v i r u l e n c e S c o r e2468101214161820parison of neurovirulence scores measured in the rat based assay versus the monkey based assay.Neurovirulence scores determined in the rats (left panel)and monkeys (right panel).Viruses are listed in order of increasing human neurovirulence from left to right.Attenuated vaccines are shown as white bars,insufficiently attenuated vaccines as light grey bars,and wild type viruses as dark grey bars.In rats,the Jeryl Lynn-based attenuated vaccines (JL and JL-RIT)could be distinguished with statistical certainty from the wild type viruses as well as the insufficiently attenuated Leningrad-3vaccine (L-3)and Urabe-AM9vaccine (Ur-AM9-1and Ur-AM9-2,representing two different lots from the same manufacturer).In contrast,in the monkey assay,no statistically significant differences were seen between any of the viruses tested either at the FDA or at the NIBSC (left and right halves of graph,respectively)in two independent studies.Neurovirulence and mean lesion scores were determined as described previously [57,71,72].Passage LevelP17P13P8N e u r o v i r u l e n c e S c o r e123456789Fig.2.Results of inoculation of newborn rats with passage levels 8,13and 17of the Jeryl Lynn mumps virus strain showing the ability of the rat assay to correctly assess neuroattenuation.Neurovirulence scores measured in adult rats inoculated as new-borns with 100pfu of increasing passage levels of the Jeryl Lynn strain.Error bars represent the standard error of the mean.Neurovirulence scores were determined as described previously [57].Differences between each group were statistically sig-nificant (all p <0.001,Mann–Whitney rank sum test).phenotype.Although data from the marmoset model are promising,this system has not been rigorously tested.5.Non-animal based assessment of mumps virus neurovirulenceEthical concerns surrounding the use of animals in product testing,coupled with questions over the predictive value of such testing,have resulted in a concerted effort by the scientific com-munity to replace animal-based neurovirulence safety testing with more meaningful,validated alternative methods.To date,no such alternatives have been developed for mumps virus.In vitro characteristics such as the relative extent of virus-induced cyto-pathic effects (e.g.,cell-to-cell fusion,cell lysis,etc.),virus plaque morphology,or replication kinetics do not appear to reliably distin-guish neurovirulent from non-neurovirulent mumps virus strains [64–68].However,the observation that compared to attenuated mumps virus strains,non-attenuated strains possess a replication advantage in neuronal cells suggests that cell line-specific permis-siveness to mumps virus infection may be a parameter worthy of further pursuit [56].Nonetheless,such an in vitro -based test,even if validated,would more likely be approved as a screening tool,rather than as a complete replacement for animal-based testing.6.Perspectives and future directionsThe studies reviewed in this article indicate the potential for the newborn rat-based and marmoset-based models as alternatives to the monkey-based model for pre-clinical neurovirulence safety testing of mumps virus vaccines.Both alternative methods require further validation.Despite some promise for use of in vitro -based markers to assess the neurovirulence potential of mumps viruses,it is unlikely that mumps virus neurovirulence safety testing could be wholly accomplished outside of animal testing given the risk of in vitro systems not fully reflecting the complexity of the pathogen-esis of neurotropism and neurovirulence.Nonetheless,meaningful data obtained from non-animal based testing would be of immense value as a screening tool in development of vaccine candidates prior to pre-clinical animal testing,and,thus,this area deserves further investigation.AcknowledgementsThis work was supported in part by a grant from the National Vaccine Program Office and in part by an appointment to the Research Participation Program at the Center for Biologics Eval-uation and Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S.Department of Energy and the U.S.Food and Drug Admin-istration.The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.2854S.A.Rubin,M.A.Afzal/Vaccine29 (2011) 2850–2855References[1]Bruyn HB,Sexton HM,Brainerd HD.Mumps meningoencephalitis.A clinicalreview of119cases with one death.Calif Med1957;86:153–60.[2]Strussberg S,Winter S,Friedman A,Benderly A,Kahana D,Freundlich E.Noteson mumps meningoencephalitis.Some features of199cases in children.Clin Pediatr(Phila)1969;8(July(7)):373–4.[3]Bang HO,Bang J.Involvement of the central nervous system in mumps.ActaMed Scand1943;113(6):487–505.[4]Hammer SM,Connolly KJ.Viral aseptic meningtis in the United States:clinicalfeatures,viral etiologies,and differential diagnosis.Curr Clin Top Infect Dis 1992;12:1–25.[5]Immunization Practices Advisory Committee.Mumps prevention.MMWR1989;38(392):397–400.[6]Litman N,Baum SG.Mumps virus.In:Mandell GL,Bennett JE,Donlin R,edi-tors.Principles and practice of infectious diseases.7ed.Philadelphia:Churchill Livingstone;2010.p.2201–6.[7]Aygun AD,Kabakus N,Celik I,Turgut M,Yoldas T,Gok U,Guler R.Long-termneurological outcome of acute encephalitis.J Trop Pediatr2001;47(August(4)):243–7.[8]Xu ZQ,Fu SH,Zhang YP,Li XL,Gao XY,Wang L,et al.[Laboratory testing ofsepcimens from patients with viral encephalitis from some regions of China].Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi2008;22(April(2)):98–100.[9]Karmarkar SA,Aneja S,Khare S,Saini A,Seth A,Chauhan BK.A study of acutefebrile encephalopathy with special reference to viral etiology.Indian J Pediatr 2008;75(August(8)):801–5.[10]Kanra G,Isik P,Kara A,Cengiz AB,Secmeer G,Ceyhan plemen-taryfindings in clinical and epidemiologic features of mumps and mumps meningoencephalitis in children without mumps vaccination.Pediatr Int 2004;46(December(6)):663–8.[11]Anonymous.Mumps virus vaccine live.[CFR21],106-107.4-1-1996.Office ofthe Federal Register,National Archives and Records Administration.Code of Federal Regulations;1996.[12]World Health Organization.Requirements for measles,mumps and rubellavaccines and combined vaccine(live);1994.Report No.:840.[13]Balraj V,Miller plications of mumps vaccines.Rev Med Virol1995;5:219–27.[14]Furesz J.Safety of live mumps virus vaccines.J Med Virol2002;67(July(3)):299–300.[15]Nagai T,Okafuji T,Miyazaki C,Ito Y,Kamada M,Kumagai T,et al.A com-parative study of the incidence of aseptic meningitis in symptomatic natural mumps patients and monovalent mumps vaccine recipients in Japan.Vaccine 2007;25(March(14)):2742–7.[16]Sugiura A,Yamada A.Aseptic meningitis as a complication of mumps vaccina-tion.Pediatr Infect Dis J1991;10(3):209–13.[17]Centers for Disease Control,Prevention.Brief report:update:mumpsactivity—United States,January1–October7,2006.MMWR Morb Mortal Wkly Rep2006;55(October(42)):1152–3.[18]Centers for Disease Control Prevention.Mumps epidemic—United Kingdom,2004–2005.MMWR Morb Mortal Wkly Rep2006;55(Feb(7):):173–5.[19]Public Health Agency of Canada.Update on mumps outbreak in the Maritimes:national summary,October26,2007.http://www.phac-aspc gc ca/mumps-oreillons/prof e html;2007.[20]Schmid D,Pichler AM,Wallenko H,Holzmann H,Allerberger F.Mumps out-break affecting adolescents and young adults in Austria,2006.Euro Surveill 2006;11(June(6)):E060615.[21]Boxall N,Kubinyiova M,Prikazsky V,Benes C,Castkova J.An increase in thenumber of mumps cases in the Czech Republic,2005–2006.Eurosurveillance 2008;13(16).[22]Bernard H,Schwarz NG,Melnic A,Bucov V,Caterinciuc N,Pebody RG,et al.Mumps outbreak ongoing since October2007in the Republic of Moldova.Euro Surveill2008;13(March(13)):1–3.[23]Szomor K,Molnar Z,Huszti G,Ozsvarne CE.Local mumps outbreak in Hungary,2007.Euro Surveill2007;12(March(3)):E070329.[24]Kojouharova M,Kurchatova A,Marinova L,Georgieva T.Mumps outbreak inBulgaria2007a preliminary report.Euro Surveill2007;12(March(3)):E070322.[25]Spanaki A,Hajiioannou J,Varkarakis G,Antonakis T,Kyrmizakis DE.Mumpsepidemic among young British citizens on the island of Crete.Infection 2007;35(April(2)):104–6.[26]Castilla J,Garcia CM,Barricarte A,Irisarri F,Nunez-Cordoba JM,BarricarteA.Mumps outbreak in Navarre region,Spain,2006–2007.Euro Surveill2007;12(2):E070215.[27]Levenbook IS,Pelleu LJ,Elisberg BL.The monkey safety test for neuroviru-lence of yellow fever vaccines:the utility of quantitative clinical evaluation and histological examination.J Biol Stand1987;15(October(4)):305–13. [28]Furesz J,Contreras G.Some aspects of the monkey neurovirulence test used forthe assessment of oral poliovirus vaccines.Dev Biol Stand1993;78:61–70. [29]Levenbook IS,Nikolayeva MA,Chigirinsky AE,Ralf NM,Kozlov VG,VardanyanNV,et al.On the morphological evaluation of neurovirulence safety of attenu-ated mumps virus strains in monkeys.J Biol Stand1979;7:9–19.[30]Maximova O,Dragunsky EM,Taffs RE,Snoy P,Cogan J,Marsden S,et al.Monkeyneurovirulence test for live mumps vaccine.Biologicals1996;24:223–4. [31]Yuzepchuk SA,Rozina EE,Kaptsova TI,Kulish EA.Morphological differencesin the central nervous system and organs of monkeys inoculated intrac-erebrally with virulent and attenuated strains of mumps virus.Acta Virol 1975;19:305–10.[32]Rozina EE,Hilgenfeldt parative study on the neurovirulence of dif-ferent vaccine strains of parotitis virus in monkeys.Acta Virol1985;29(May(3)):225–30.[33]Miller E,Goldacre M,Pugh S,Colville A,Farrington P,Flower A,et al.Risk ofaseptic meningitis after measles,mumps,and rubella vaccine in UK children.Lancet1993;341(April(8851)):979–82.[34]Black S,Shinefield H,Ray P,Lewis E,Chen R,Glasser J,et al.Risk of hospitaliza-tion because of aseptic meningitis after measles-mumps-rubella vaccination in one-to two-year-old children:an analysis of the Vaccine Safety Datalink(VSD) Project.Pediatr Infect Dis J1997;16(May(5)):500–3.[35]Ki M,Park T,Yi SG,Oh JK,Choi B.Risk analysis of aseptic meningitis aftermeasles-mumps-rubella vaccination in Korean children by using a case-crossover design.Am J Epidemiol2003;157(January(2)):158–65.[36]Colville A,Pugh M.Mumps meningitis and measles,mumps and rubella vaccine.Lancet1992;340:786.[37]Dourado I,Cunha S,Teixeira MG,Farrington CP,Melo A,Lucena R,et al.Outbreakof aseptic meningitis associated with mass vaccination with a urabe-containing measles-mumps-rubella vaccine:implications for immunization programs.Am J Epidemiol2000;151(March(5)):524–30.[38]Hockin JC,Furesz J.Mumps meningitis,possibly vaccine-related–Ontario.CanDis Wkly Rep1988;14(November(46)):209–11.[39]da Silveira CM,Kmetzsch CI,Mohrdieck R,Sperb AF,Prevots DR.The risk ofaseptic meningitis associated with the Leningrad-Zagreb mumps vaccine strain following mass vaccination with measles-mumps-rubella vaccine,Rio Grande do Sul,Brazil,1997.Int J Epidemiol2002;31(October(5)):978–82.[40]Tesovic G,Lesnikar V.Aseptic meningitis after vaccination with L-Zagrebmumps strain—virologically confirmed cases.Vaccine2006;24(September (40–41)):6371–3.[41]da Cunha SS,Rodrigues LC,Barreto ML,Dourado I.Outbreak of asepticmeningitis and mumps after mass vaccination with MMR vaccine using the Leningrad-Zagreb mumps strain.Vaccine2002;20(January(7–8)):1106–12. [42]Arruda WO,Kondageski C.Aseptic meningitis in a large MMR vaccine campaign(590,609people)in Curitiba,Parana,Brazil,1998.Rev Inst Med Trop Sao Paulo 2001;43(September(5)):301–2.[43]Tischer A,Gerike E.Immune response after primary and re-vaccinationwith different combined vaccines against measles,mumps,rubella.Vaccine 2000;18(January(14)):1382–92.[44]Ueda K,Miyazaki C,Hidaka Y,Okada K,Kusuhara K,Kadoya R.Asep-tic meningitis caused by measles-mumps-rubella vaccine in ncet 1995;346(September(8976)):701–2.[45]Odisseev H,Gacheva N.Vaccinoprophylaxis of mumps using mumps vaccine,strain Sofia6,in Bulgaria.Vaccine1994;12:1251–4.[46]Bonnet MC,Dutta A,Weinberger C,Plotkin SA.Mumps vaccine virus strainsand aseptic meningitis.Vaccine2006;24(November(49–50)):7037–45. [47]McCarthy M,Jubelt B,Fay DB,Johnson parative studies offive strainsof mumps virus in vitro and in neonatal hamsters:evaluation of growth, cytopathogenicity,and neurovirulence.J Med Virol1980;5:1–15.[48]Ennis FA,Hopps HE,Douglas RD,Meyer Jr HM.Hydrocephalus in ham-sters:induction by natural and attenuated mumps viruses.J Infect Dis 1969;119:75–9.[49]Kilham L,Margolis G.Induction of congenital hydrocephalus in hamsters withattenuated and natural strains of mumps virus.J Infect Dis1975;132(4):462–6.[50]Wolinsky JS,Stroop WG.Virulence and persistence of three prototype strainsof mumps virus in newborn hamsters.Arch Virol1978;57:355–9.[51]Tsurudome M,Yamada A,Hishiyama M,Ito Y.Replication of mumps virus inmouse:transient replication in lung and potential of systemic infection.Arch Virol1987;97(3–4):167–79.[52]Kristensson K,Orvell C,Malm G,Norrby E.Mumps virus infection of the devel-oping mouse brain—appearance of structural virus proteins demonstrated with monoclonal antibodies.J Neuropathol Exp Neurol1984;43(March(2)): 131–40.[53]Hayashi K,Ross ME,Notkins AL.Persistence of mumps viral antigens in mousebrain.Jpn J Exp Med1976;46(June(3)):197–200.[54]Overman JR,Peers JH,Kilham L.Pathology of mumps virus meningoencephalitisin mice and hamsters.Arch Pathol1953;55:457–65.[55]Popisil L,Brycthova J.Adaptation of the mumps virus to the albino rat(Wistar).Zentralbl Bakteriol Parasitenkd Infektionskr Hyg1956;165(1):1–8.[56]Rubin SA,Pletnikov M,Carbone parison of the neurovirulence of avaccine and a wild-type mumps virus strain in the developing rat brain.J Virol 1998;72(10):8037–42.[57]Rubin SA,Pletnikov M,Taffs R,Snoy PJ,Kobasa D,Brown EG,et al.Evaluation ofa neonatal rat model for prediction of mumps virus neurovirulence in humans.J Virol2000;74(June(11)):5382–4.[58]Buynak EB,Hilleman MR.Live attenuated mumps virus vaccine. 1.Vac-cine development.Proc Soc Exp Biol Med1966;123(December(3)): 768–75.[59]Rubin SA,Afzal MA,Powell CL,Bentley ML,Auda GR,Taffs RE,et al.The rat-basedneurovirulence safety test for the assessment of mumps virus neurovirulence in humans:an international collaborative study.J Infect Dis2005;191(April(7)):1123–8.[60]Saika S,Kidokoro M,Aoki A,Ohkawa T.Neurovirulence of mumps virus:intraspinal inoculation test in marmosets.Biologicals2004;32(September(3)):147–52.[61]Saika S,Kidokoro M,Kubonoya H,Ito K,Ohkawa T,Aoki A,et al.Develop-ment and biological properties of a new live attenuated mumps p Immunol Microbiol Infect Dis2006;29(March(2–3)):89–99.。

相关文档
最新文档