吉林省松原市油田高中2015-2016学年高二上学期期末考试数学(理)试卷(含答案)

合集下载

吉林省松原市数学高二上学期理数期末考试试卷

吉林省松原市数学高二上学期理数期末考试试卷

吉林省松原市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)数列{an}、{bn}满足bn=2an(n∈N*),则“数列{an}是等差数列”是“数列{bn}是等比数列”的()A . 充分但不必要条件B . 必要但不充分条件C . 充要条件D . 既不充分也必要条件2. (2分)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成.该八边形的面积为()A . 2sin α﹣2cos α+2B . sin α﹣cos α+3C . 3sin α﹣cos α+1D . 2sin α﹣cos α+13. (2分)设等比数列的前项和为,若,则()A .B .C .D .4. (2分)从地面上测一建在山顶上的建筑物,测得其视角为α,同时测得建筑物顶部仰角为β,则山顶的仰角为()A . α+βB . α﹣βC . β﹣αD . α5. (2分)设是公差不为0的等差数列的前n项和,若,则()A .B .C .D .6. (2分)(2019·太原模拟) 在平面区域,内任取一点,则存在,使得点的坐标满足的概率为()A .B .C .D .7. (2分) (2015高三上·务川期中) 若幂函数f(x)=mxα的图象经过点A(,),则它在点A处的切线方程是()A . 2x﹣y=0B . 2x+y=0C . 4x﹣4y+1=0D . 4x+4y+1=08. (2分) (2017高三下·深圳模拟) 函数的图象大致是()A .B .C .D .9. (2分)(2017·石嘴山模拟) 在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1,过C1的左顶点引C1的一条渐进线的平行线,则该直线与另一条渐进线及x轴围成的三角形的面积()A .B .C .D .10. (2分)空间中四点可确定的平面有()A . 1个B . 3个C . 4个D . 1个或4个或无数个11. (2分)(2019·石家庄模拟) 已知双曲线的左,右焦点分别为,,点为双曲线右支上一点,线段交左支于点 .若,且,则该双曲线的离心率为()A .B .C .D .12. (2分) (2019高一下·慈利期中) 若数列中, 则这个数列的第10项()A . 28B . 29C .D .二、填空题 (共4题;共4分)13. (1分)(2020·抚顺模拟) 已知点在抛物线上,则该抛物线的焦点坐标为________.14. (1分) (2019高一上·西城期中) 已知,,则的值为________.15. (1分)(2018·普陀模拟) 点,分别是椭圆的左、右两焦点,点为椭圆的上顶点,若动点满足:,则的最大值为________.16. (1分)曲线在点处的切线与坐标轴围成的三角形的面积为________.三、解答题 (共6题;共50分)17. (10分) (2018高二上·霍邱期中) 如图,某测量人员为了测量西江北岸不能到达的两点,之间的距离,她在西江南岸找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;找到一个点,从点可以观察到点,;并测量得到数据:,,,,,百米.(1)求的面积;(2)求,之间的距离的平方.18. (5分)已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若cn=an+bn ,求数列{cn}的前n项和Sn .19. (5分) (2017高一上·厦门期末) 已知函数f(x)= ,(x>0且a≠1)的图象经过点(﹣2,3).(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.20. (10分)三个平面α,β,γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.21. (15分) (2017高二上·泰州月考) 已知(为常数).(1)当时,求函数的单调性;(2)当时,求证:;(3)试讨论函数零点的个数.22. (5分)(2017·黑龙江模拟) 已知F1 , F2分别是椭圆C: =1(a>b>0)的左,右焦点,D,E分别是椭圆C的上顶点和右顶点,且S = ,离心率e=(Ⅰ)求椭圆C的方程;(Ⅱ)设经过F2的直线l与椭圆C相交于A,B两点,求的最小值.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共50分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:。

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。

学年上学期高二期末考试数学(理)试题(附答案)(2)

学年上学期高二期末考试数学(理)试题(附答案)(2)

2015-2016学年度上学期期末素质测试试卷高二数学(理科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.全卷满分150分,考试时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5 分,共12小题,满分60分) 1.已知a b >,c d >,那么一定正确的是( ) (A)ad bc >(B)ac bd >(C)a c b d ->- (D)a dbc ->-2.双曲线2221x y -=的渐近线方程是 (A )0x y ±=(B )20x y ±=(C)0x = (D)0y =3.某市有大、中、小型商店共1500家,,它们的家数之比为1:5:9,要调查商店的每日零售额情况,要求从抽取其中的30家商店进行调查,则大、中、小型商店分别抽取家数是 (A )2,10,18 (B )4,10,16 (C )10,10,10 (D )8,10,124、在如图的电路图中,“开关A 的闭合”是“灯泡B 亮”的 (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件5.在△ABC 中,15a =,10b =,60A =,则cos B =(A )13 (B(C(D)36.某程序框图如图所示,执行该程序后输出的S 的值是(A )23(B )34 (C ) 45(D ) 567.设()n f x 是等比数列21,,,,n x x x 的各项和,则()2n f 等于(A )21n- (B )121n +- (C )22n - (D )122n +-8.△ABC 的两个顶点为A(-1,0),B(1,0),△ABC 周长为6,则C 点轨迹为( )(A )22143x y +=(y ≠0) (B ) 22143y x +=(y ≠0) (C ) 22154x y += (y ≠0) (D ) 22154y x += (y ≠0) 9.设等差数列245,4,3,77的前n 和为n S ,若使得n S 最大,则n 等于(A )7 (B )8 (C )6或7 (D )7或810.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=(A )5(B )6(C )7(D )811.在△ABC 中,两直角边和斜边分别为,,a b c ,若a b cx +=,试确定实数的取值范围 (A)((B)((C))(D)12.已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++的最大值为(A )6 (B )7 (C )8 (D )92015-2016学年度上学期期末素质测试试卷高二数学(理科卷) 第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共4小题,满分20分)13.抛物线240x y +=的准线方程是___________.14.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若在[5.0,5.4]内的学生人数是2,则根据图中数据可得被样本数据在[3.8,4.2)内的人数是 .15.已知ABC ∆的一个内角为120︒,并且三边长构成公差为4的等差数列,则ABC ∆的面积为 ___ .16.在0a >,0b >的情况下,下面三个结论:①22ab a b a b ++≤; 2a b +≤; ③2a b + ④22b a a b a b ++≥. 其中正确的是_____________________.三、解答题(共6小题,满分70分) 17. (本题满分10分)已知函数6)(2++=ax x x f .(Ⅰ)当5=a 时,解不等式0)(<x f ;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.18.(本题满分12分)在△ABC 中,已知2sin cos sin()B A A C =+. (Ⅰ)求角A ;(Ⅱ)若2BC =,△ABC AB .19.(本题满分12分)设{}n a 是公比为q 的等比数列. (Ⅰ)推导{}n a 的前n 项和n S 公式;(Ⅱ)设1q ≠,证明数列n S n ⎧⎫⎨⎬⎩⎭不是等比数列.20. 国家环境标准制定的空气质量指数与空气质量等级对应关系如下表: 由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如下:(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);(Ⅱ)试根据上面的统计数据,估计甲城市某一 天空气质量等级为2级良的概率;(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.(注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数)空气质量指数 0-5051-100101-150151-200201-300300以上空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染21.(本题满分12分)如图,直三棱柱111C B A ABC -中,BC AC ⊥,21===CC BC AC ,M ,N 分别 为AC ,11C B 的中点.(Ⅰ)求证:MN // 平面11A ABB ;(Ⅱ)线段1CC 上是否存在点Q ,使⊥B A 1平面MNQ ?说明理由.22.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12(2,0),(2,0)F F -,离心率为32F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.2015-2016学年度上学期期末素质测试试卷高二数学(理科卷)参考答案一、选择题:DCAB CCBA DBAB二、填空题:13、1y =;14、5;15、16、①②③④.17、解: (Ⅰ)当5=a 时,65)(2++=x x x f .由0)(<x f ,得652++x x <0.即 (0)3)(2<++x x ,所以 32x -<<-. ------------------5分 (Ⅱ)若不等式0)(>x f 的解集为R ,则有=∆0642<⨯-a . -----------------------8分 解得6262<<-a ,即实数a 的取值范围是)62,62(-.---------------10分18、解:(Ⅰ)解:由πA B C ++=,得sin()sin(π)sin A C B B +=-=.…………2分所以原式化为B A B sin cos sin 2=. 因为(0,π)B ∈,所以 0sin >B , 所以 21cos =A . ………………5分 因为(0,π)A ∈, 所以 π3A =. ………………6分 (Ⅱ)解:由余弦定理,得 222222cos BC AB AC AB AC A AB AC AB AC =+-⋅⋅=+-⋅…………8分因为 2BC =,1πsin 23AB AC ⋅⋅= 所以 228AB AC +=. ………………10分因为 4AB AC ⋅=, 所以 2AB =. ………………12分 19.解:设{}n a 的前n 项和为n S ,当1q =时,11111n n S a a q a q na -=+++=;--------------------1分 当1q ≠时,1111n n S a a q a q -=+++. ①1111n n n qS a q a q a q -=+++, ②----------------3分①-②得()()111nn q S a q -=-,所以 ()111n n a q S q-=-.----------5分所以 ()11, 1,1, 1.1n n n a qS a q q q =⎧⎪=-⎨≠⎪-⎩----------------------------7分(Ⅱ)证:由{}n a 是公比为q 的等比数列有10a ≠,若对任意的n N +∈,数列n S n ⎧⎫⎨⎬⎩⎭是等比数列,则考虑数列n S n ⎧⎫⎨⎬⎩⎭的前三项,有()()22311111111a q a q a q q ⎡⎤--⎢⎥=⋅--⎢⎥⎣⎦,--------------------9分化简得 2210q q -+=,即()210q -=,----------------10分 但1q ≠时,()210q ->,这一矛盾说明数列n S n ⎧⎫⎨⎬⎩⎭不是等比数列.---------------------12分20.解:(Ⅰ)甲城市的空气质量指数的方差大于乙城市的空气质量指数的方差.…………2分(Ⅱ)根据上面的统计数据,可得在这五天中甲城市空气质量等级为2级良的频率为35, 则估计甲城市某一天的空气质量等级为2级良的概率为35.………………5分, (Ⅲ)设事件A :从甲城市和乙城市的上述数据中分别任取一个,这两个城市的空气质量等级相同,由题意可知,从甲城市和乙城市的监测数据中分别任取一个,共有25个结果,分别记为:(29,43),(29,41),(29,55),(29,58)(29,78) (53,43),(53,41),(53,55),(53,58),(53,78), (57,43),(57,41),(57,55),(57,58),(57,78), (75,43),(75,41),(75,55),(75,58),(75,78), (106,43),(106,41),(106,55),(106,58),(106,78).其数据表示两城市空气质量等级相同的包括同为1级优的为甲29,乙41,乙43,同为2级良的为甲53,甲57,甲75,乙55,乙58,乙78. 则空气质量等级相同的为:(29,41),(29,43),(53,55),(53,58),(53,78), (57,55),(57,58),(57,78),(75,55),(75,58),(75,78).共11个结果. 则11()25P A =.所以这两个城市空气质量等级相同的概率为1125.…………12分21.(Ⅰ)证明:取AB 中点D ,连接DM ,1DB .在△ABC 中,因为 M 为AC 中点,所以BC DM //,BC DM 21=. 在矩形11B BCC 中,因为 N 为11C B 中点,所以BC N B //1,BC N B 211=. 所以 N B DM 1//,N B DM 1=.所以 四边形N MDB 1为平行四边形,所以 1//DB MN .……………4分 因为 ⊄MN 平面11A ABB ,⊂1DB 平面11A ABB ,所以 MN // 平面11A ABB . ………………6分 (Ⅱ)解:线段1CC 上存在点Q ,且Q 为1CC 中点时,有⊥B A 1平面MNQ . ………8分证明如下:连接1BC .在正方形C C BB 11中易证 1BC QN ⊥.又⊥11C A 平面C C BB 11,所以 QN C A ⊥11,从而⊥NQ 平面11BC A . 所以 1A B QN ⊥. ………………10分 同理可得 1A B MQ ⊥,所以⊥B A 1平面MNQ .故线段1CC 上存在点Q ,使得⊥B A 1平面MNQ . ………………12分 22.解:(Ⅰ)由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. ……… 5分 (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=,------------------7分 所以21221213k x x k +=+.因为121224(4)13ky y k x x k -+=+-=+,所以AB 中点22262(,)1313k kD k k -++.-----------------------------------------9分 因此直线OD 方程为30x ky +=()0k ¹.由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=, 即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=.所以222(91)4013k k +-=+.解得k =.故直线l的方程为2)y x =-. ……… 12分。

吉林省油田高中高二上学期期末考试数学(理)试题.pdf

吉林省油田高中高二上学期期末考试数学(理)试题.pdf

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分, 考试时间为90分钟. 第Ⅰ卷(选择题 共48分) 一、选择题:(共12小题,每小题4分,共48分)在下列各小题的四个选项中, 只有一项是符合题目要求的.请将选项前的字母填入下表相应的空格内. 1.已知是虚数单位,则复数的值为 ( ) A. B. C. D.- 2.命题“如果,那么”的否命题是 ( )A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么 3.如果抛物线的准线是直线,那么它的焦点坐标是 ( ) A. B. C. D. 4.双曲线的渐近线方程是 ( ) A. B. C. D. 5.抛物线上与焦点的距离等于的点的纵坐标是 ( ) A. B. C. D. 6.过点与抛物线只有一个公共点的直线有 ( )A.条B.条C.条D.条 7.已知向量的夹角为 ( ) A. B. C. D. 8.“”是“方程表示双曲线”的 ( )A.必要不充分条件B.充分不必要条件C.充要条件D.非充分非必要条件 9.在正四棱柱中,若=,则异面直线与所成角的余弦值为( ) A. B. C. D. 10.已知向量若∥,则的值为 ( ) A. B. C. D. 11.如果直线的方向向量是,平面的法向量是,那么直线与平面所成角的正弦值为( ) A. B. C. D.不确定 12.若,则取最小值时,的值是 ( ) A. B. C. D. 第Ⅱ卷(非选择题 共72分) 二、填空题:(本题共4个小题,每小题4分,共16分)13-16对应答题板题号 13.过抛物线的焦点作直线交抛物线于 ,两点, 如果,那么= . 14.已知向量,,,若共同作用在一个物体上,使物体从点移到点,则合力所做的功为 . 15.已知则到平面的距离是 . 16.以下四个命题中,说法正确的有 .(填入所有正确答案) ①若任意向量共线,则必存在唯一实数使得成立. ②若向量组是空间一个基底,则向量组也是空间的一个基底. ③所有的平行向量都相等. ④是直角三角形的充要条件是. 三、解答题:(本题共3小题,每小题12分,共36分) 17.已知棱长为的正方体,点、分别是和的中点,建立如图所示的空间直角坐标系. (1)写出图中、的坐标; (2)求直线与所成角的余弦值. 18.已知抛物线的顶点为椭圆的中心,椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点,求抛物线与椭圆的方程. 19.如右图,一个结晶体的形状为平行六面体,以点为端点的三条棱 的长都等于,且彼此之间的夹角都是. (1)用向量表示向量. (2)求晶体的对角线长. 四、附加题:(本题共2小题,每小题10分,共20分) 20.若抛物线的顶点是双曲线的中心,焦点是双曲线的右顶点. (1)求抛物线的标准方程. (2)若直线过点交抛物线于两点,是否存在直线,使得恰为弦的中点?若存在,求出直线方程;若不存在,请说明理由. 21. 如图:已知三棱锥中,面,,, 为上一点,,分别为的中点. (1)证明:. (2)求面与面所成的锐二面角的余弦值. (3)在线段(包括端点)上是否存在一点,使平面?若存在,确定的位置;若不存在,说明理由. 吉林油田高中2011-2012学年度第一学期期末考试 高二数学理科试卷答案 一、选择题:(每小题4分,共48分) 1-5 A A A A C 6-10 C C A C C 11-12 B C 三、解答题:(本题共3小题,每小题12分,共36分) 17.解:(1)由于正方体的棱长为2. (2)答案:. 18.解:因为椭圆的准线垂直于轴且它与抛物线的准线互相平行,所以抛物线焦点在轴上, 可设抛物线的方程为. 在抛物线上 抛物线的方程为 在椭圆上 ① 又 ② 由①②可得 椭圆的方程是. 19. 略解:=四、附加题:(本题共2小题,每小题10分,共20分) 20.解:(1)抛物线的标准方程. (2)恰为弦的中的直线存在.理由如下: 由于以点为中点直线斜率必存在,设为,则方程为: 即。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

吉林省松原市油田高中高二数学上学期期末考试试题 文

吉林省松原市油田高中高二数学上学期期末考试试题 文

吉林油田高级中学2015-2016学年度上学期期末考试高二数学试题(文科)(考试时间:120分钟,满分:150分 )第Ⅰ卷一、选择题: 在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.1.设a ,b ,c ∈R ,且a >b ,则 ( ). A .ac >bc B .11<a bC .a 2>b 2D .a 3>b 3 2. 满足()()f x f x '=的函数是( ) A .()1f x x =-B .()f x x =C .()0f x =D .()1f x =3. ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23C.1D.3 4. “12x <<”是“2x <”成立的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( ). A.22134x y +=B.2214x +=C.22142x y +=D.22143x y +=6.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A. 15B. 30C. 31D. 647.若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最小值为( )A.1-B. 0C. 1D. 2 8.在下列函数中最小值是2的是( )A .)0(55≠+=x x x y B .1lg (110)lg y x x x=+<< C .x x y -+=33 D .)20(sin 1sin π<<+=x x x y 9.抛物线24x y =上与焦点的距离等于4的点的纵坐标是 ( ) A.1 B.2 C.3 D.4 10. 公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = A . 1 B. 2 C. 4 D. 811.从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( ) A.24 B. 12C . 22 D. 32 12.设函数()f x 是定义在()-∞,0上的可导函数,其导数为f ()x ',且2()f x +x ()f x '>2x , 则不等式2(2014)(2014)4(2)0x f x f ++-->的解集为( ) A .(),2014-∞- B .(),2015-∞- C .(),2016-∞- D .(),2017-∞-第Ⅱ卷(非选择题 共90分)二、填空题:(本题共4个小题,每小题5分,共20分)13.过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为_______ 14. 抛物线241x y =的准线方程是__________. 15.函数313y x x =+-的极大值为__________.16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题:(本题共6小题,17题10分,18-22每小题12分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.) 17. 设双曲线C 的两个焦点为()2,0,)2,0,一个顶点为()1,0,求双曲线C 的方程,离心率及渐近线方程。

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016第一学期高二期末考试理科数学试题及答案

2016学年度第一学期高二年级期末教学质量检测理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

2、必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =- C .16x =,32y =- D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为 A .3 BCD .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为 A.5-B.5CD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于A. BC .3D .5 二、填空题:本大题共4小题,每小题5分,满分20分11.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =12.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

(全优试卷)吉林省松原市高二数学上学期期末考试试题 理

(全优试卷)吉林省松原市高二数学上学期期末考试试题 理

吉林油田高级中学2015-2016学年度上学期期末考试高二数学试题(理科)(考试时间:120分钟,满分:150分 )第Ⅰ卷(选择题 共60分)一.选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设01<<+=a b a b 且,则下列四数中最大的是 A .22b a +B .2abC .aD .21 2. 已知向量(2,1,1),(2,4,)a x x b k =-+= ,若a 与b 共线,则A.0k = B .1k = C .2k = D .4k = 3.在ABC ∆中,a b c ,,分别为角A B C ,,所对的边,若2cos a b C =,则此三角形一定是 A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形 4. “1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.椭圆2212516x y +=上一点P 到其一个焦点的距离为3,则点P 到另一个焦点的距离为A .2B .7C .3D .56.等差数列{}n a 的前n 项和为n S ,若242,10S S ==,则6S 等于 A .12 B .18 C .24 D .427. 已知点(,)P x y 在不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域内运动,则z x y =- 的取值范围是A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8. 设0,0a b >>.是3a 与3b的等比中项,则ab 的最大值为A .8B .4C .1D.149.抛物线28y x =-中,以(1,1)-为中点的弦的方程是A .430x y ++=B .430x y ++=C .430x y +-=D .430x y --=10. 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列.若11a =,则4S 等于A .7B .8C .15D .1611. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林油田高级中学2015-2016学年度上学期期末考试高二数学试题(理科)(考试时间:120分钟,满分:150分 )第Ⅰ卷(选择题 共60分)一.选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设01<<+=a b a b 且,则下列四数中最大的是 A .22b a +B .2abC .aD .21 2. 已知向量(2,1,1),(2,4,)a x x b k =-+= ,若a 与b 共线,则A.0k = B .1k = C .2k = D .4k = 3.在ABC ∆中,a b c ,,分别为角A B C ,,所对的边,若2cos a b C =,则此三角形一定是 A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形 4. “1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.椭圆2212516x y +=上一点P 到其一个焦点的距离为3,则点P 到另一个焦点的距离为A .2B .7C .3D .56.等差数列{}n a 的前n 项和为n S ,若242,10S S ==,则6S 等于 A .12 B .18 C .24 D .427. 已知点(,)P x y 在不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域内运动,则z x y =- 的取值范围是A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8. 设0,0a b >>.33a 与3b的等比中项,则ab 的最大值为A .8B .4C .1D.149.抛物线28y x =-中,以(1,1)-为中点的弦的方程是A .430x y ++=B .430x y ++=C .430x y +-=D .430x y --=10. 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列.若11a =,则4S 等于A .7B .8C .15D .1611. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

若a AB =,=,=1则下列向量中与相等的向量是A. ++-2121 B .++2121C .+--2121D .+-212112. 已知双曲线22221x y a b-=的离心率e ⎤∈⎦.双曲线的两条渐近线构成的角中,以实轴为角平分线的角记为θ,则θ的取值范围是 A .,B .,C .,D .,π]第Ⅱ卷(非选择题,共90分)二 填空题:( 本大题共4小题,每小题5分,共20分 )13.已知ABC ∆ 的三个顶点为(3,3,2)A ,(4,3,7)B - ,(0,5,1)C ,则BC 边上的中线长为 . 14.抛物线的准线方程为 .15.在正方体1111ABCD A B C D - 中,,E F 分别为1AB CC 和 的中点,则异面直线EF 与11A C 所成角的大小是_______.16. 设1e 、2e 分别为具有公共焦点1F 、2F 的椭圆和双曲线的离心率,P 是两曲线的一个公共点,且满足1212P F P F F F +=,则的值为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.设双曲线的两个焦点为,,一个顶点,求双曲线的方程,离心率及渐近线方程。

24y x =C ())()1,0CC118.已知命题p :28200k k --≤,命题q :方程11422=-+-ky k x 表示焦点在x 轴上的双曲线.(Ⅰ)命题q 为真命题,求实数k 的取值范围;(Ⅱ)若命题“p q ∨ ”为真,命题“p q ∧”为假,求实数k 的取值范围.19. 在锐角ABC ∆中,内角,,A B C 所对的边分别为,,a b c 2sin c A =(Ⅰ)求角C 的值;(Ⅱ)若c =2ABCS=,求a b +的值.20.数列}{n a 中,cn a a a n n +==+11,2(c 是常数,*N n ∈),且321,,a a a 成公比不为1的等比数列. (Ⅰ)求c 的值; (Ⅱ)求}{n a 的通项公式.21.如图:直三棱柱111ABC A B C -中,090ACB ∠= ,12AA AC BC === ,D 为AB 中点.(Ⅰ)求证:11BC CD 平面A (Ⅱ)求二面角1D CA A --的正切值.22.过焦点在x 轴上的椭圆12222=+by a x 的右焦点F 作斜率1-=k 的直线交椭圆于A ,B 两点,且OB OA +与)31,1(= 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上任意一点,且),(R n m n m ∈+=. 证明:22n m +为定值.2015-2016学年度上学期期末考试 高二数学理科试卷参考答案一.选择题ACCAB CCDAC AC13.3 14. 15.30 16.17.解:e =离心率 y x =±渐近线方程:18. 解:(1)当命题q 为真时,由已知得4010k k ->⎧⎨->⎩,解得14k <<∴当命题q 为真命题时,实数k 的取值范围是14k << …………………5分 (2)当命题p 为真时,由28200k k --≤解得210k -≤≤ …………………7分由题意得命题p 、q 中有一真命题、有一假命题 ………………………8分当命题p 为真、命题q 为假时,则21014k k k -≤≤⎧⎨≤≥⎩或,解得21k -≤≤或410k ≤≤. …………………………………………………10分当命题p 为假、命题q 为真时,则21014k k k <->⎧⎨<<⎩或,k 无解. …………12分∴实数k 的取值范围是21k -≤≤或410k ≤≤. …………………………13分19(1)由3a =2c sin A 及正弦定理,得a c =2sin A 3=sin Asin C .∵sin A ≠0,∴sin C =32. 又∵△ABC 是锐角三角形,∴C =π3.(2)方法一 c =7,C =π3,由面积公式,得12ab sin π3=332,即ab =6.①由余弦定理,得a 2+b 2-2ab cos π3=7,即a 2+b 2-ab =7.②由②变形得(a +b )2=3ab +7.③ 将①代入③得(a +b )2=25,故a +b =5.20. (Ⅰ)c a c a a 32,2,2321+=+==,因为321,,a a a 成公比不为1的等比数列,解得 c=2;(Ⅱ))1(2,...,2112-+=+=-n a a a a n n 累加可得22+-=n n a n ,1a 也符合,所以1x =-221x y -=22+-=n n a n (*N n ∈).21.解答: (1)证明:连接AC 1交A 1C 于O 点,连接DO ,则O 为AC 1的中点, ∵D 为AB 中点,∴DO∥BC 1,又∵DO ⊂平面A 1CD ,BC 1⊄平面A 1CD , ∴BC 1∥平面A 1CD .(2)解:以CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, ∵直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AA 1=AC=BC=2,D 为AB 中点. ∴=(﹣2,2,2),设二面角D ﹣CA 1﹣A 的大小为θ,则 ∵平面ACA 1的法向量是=(0,1,0) ∴cosθ==,∴tanθ=,∴二面角D ﹣CA 1﹣A 的正切值是.22.解:(I )设AB:y x c =-+,直线AB 交椭圆于两点,()()1122,,,A x y B x y222222b x a y a b y x c⎧+=⎨=-+⎩()()22222222222222,20b x a x c a b b a x a cx a c a b ⇒+-+=+-+-=22222/121222222,,2a c a c a b x x x x a b a b -+==++()12121,1,3OA OB x x y y a ⎛⎫+=++= ⎪⎝⎭与共线,()()()()1212121230,30y y x x x c x c x x +-+=-+-+-+=22'123,3,62c c x x a b c e a +======(Ⅱ)223a b =,椭圆方程为22233,x y b +==设M(x,y)为椭圆上任意一点,OM (x,y), OM mOA nOB =+,()()()1212,,,,x y mx nx my ny M x y =++点在椭圆上 ()()222121233mx nx my ny b +++=2222222/11221212(3)(3)2(3)38m x y n x y mn x x y y b +++++=222212331,,222c x x a c b c +===,22222122238a c a b x x c a b-==+()()()2121212*********'3343339301022x x y y x x x c x c x x c x x c c c c +=+-+-+=-++=-+=2222221122222222'33,3333,112x y b x y b m b n b m n +=+=+=+=2代入得3b。

相关文档
最新文档