周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析
周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

所以可以把所有空间力化为过一点的力和力偶. P点叫简化中心, 力的矢量和叫主矢, 力偶矩的矢量 和叫对简化中心的主矩.
主矢使刚体平动状态发生变化 主矩使刚体转动状态发生变化
2 刚体运动微分方程
如果ri代表刚体中任一质点Pi 对静止系S原点O的位 矢, rC 为质心C对O的位矢, 而ri’ 为Pi 对质心C的位矢, 动 坐标系S’随质心作平动, 其原点与质心C重合.
2
a R
T
a mg 5 m s2
mm
mM 2
h 1 at 2 2.5 m T 40 N
mg
2
例3、一质量为 m 、长为 l 的均质细杆,转轴在 O 点, 距A端 l/3 . 杆从静止开始由水平位置绕O点转动. 求: (1)水平位置的角速度和角加速度. (2)垂直位置时的角速度和角加速度.
述位置仍处于平衡状态,求棍与地面的摩擦系数
解: 受力分析知本题是一共
y
面力系的平衡问题, 取棍子所 在的平面为xy平面, 则
Fx 0, N1 sin 0 f 0
B
N1
Cl
Fy 0, N1 cos0 N2 P 0
对A点
Pl cos0 N1h / sin 0 0
h P
O
l N2
0
x
f
A
第三章 刚体力学
导读
• 空间力系和平行力系的求和 • 刚体运动微分方程和平衡方程 • 简单转动惯量的计算 •转动惯量的计算
§3.4 刚体运动方程与平衡方程
1 力系的简化
F1 F2 F3
将所有空间力作用点都迁移到一点.
力是滑移矢量
F
F
F
F
力可沿作用线移动,不能随意移动
周衍柏《理论力学教程(第三版)》电子教案 第三章1-3刚体力学

导读
• 刚体运动分类:平动、转动 • 角位移、角速度矢量 • 欧勒角和欧勒运动学方程
§3.1 刚体运动的分析
刚体: 形状和大小都不变的物体
任意两质点之间的距离保持不变的质点系
1 平动: 刚体在运动过程中, 其上任意两点的连线始 终保持平行. 可以用一个质点的运动来描述刚体的 平动.
刚体平动
质点运动
与 两个角来确定. 为系统绕 z轴转动的角.
欧勒角好处:
• 简明、单值地确定刚体地位置
• 三个角度变化相互独立
刚体绕着通过定点O某一轴线以角速度转动, 在 活动系Oxyz上的投影是x ,y和z, 则
xi y j z k
,绕ON轴的角速度 也可以认为是绕轴O的角速度 三者的矢量和. 及绕Oz轴的角速度
刚体各质元的角量相同, 线量一般不同.
§3.3 欧拉角
z
y
y
x
N
刚体定点转动时, 选定点为坐标系原点, 用三个独 立角度来确定转动轴在空间的取向和刚体绕这轴所转 过的角度. 这三个能够独立变化的角度叫做欧勒角.
1 欧勒角
(1) 取两组右手正交坐标系, 它们的原点都在定点O上.
z
第三章
刚体力学
刚体学习方法
类比法
dp F dt F ma 1 2 Ek mv 2 dA F dr P mv dL M dt M J 1 Erk J 2 2 dA Md L J
v a m J F M p L
所以微小转动的合成可以对易. 遵守矢量合成法则.
2 描述刚体转动的物理量
周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答

a 0
x2bdx
ba3
3
ma2 3
d
a2 d k 2ba4 0 / 2 d t 3kba2
I AB
dt
M AB
3
m dt
4
dt
2
0
0 4m
t
4m
3kba20
3.16)一矩形板ABCD在平行自身的平面内运动, 其角速度为定值
. 在其一瞬时, A点的速度为v, 其方向则沿对角线AC. 试求此瞬
别为a,b. 则当平衡时, AB和竖直直线所成的角满足下列关系
tan
a2
b2 2ab
解: 研究对象为ABC结构,受力分析如图. 按照题意,知道
R
A
B m1g
m1 a, m2 b
m2g C
平衡时:
n
MA 0
i1
m1g
a 2
sin
m2
g
b 2
cos
a sin
tan
(m1
m2b 2m2 )a
tan b2
(a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干?
解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子
度 .
解: 研究对象为棒, 受力分析如图. 建立直角坐标系为x轴水 平向右, y竖直向上
平衡方程
R 2l
B
Fy 0 R cos mg
大学_理论力学教程第三版(周衍柏著)课后答案下载

理论力学教程第三版(周衍柏著)课后答案下载理论力学教程第三版内容简介绪论第一章质点力学1.1 运动的描述方法1.2 速度、加速度的分量表示式1.3 平动参考系1.4 质点运动定律1.5 质点运动微分方程1.6 非惯性系动力学(一)1.7 功与能1.8 质点动力学的基本定理与基本守恒定律1.9 有心力小结补充例题思考题习题第二章质点组力学2.1 质点组2.2 动量定理与动量守恒定律2.3 动量矩定理与动量矩守恒定律 2.4 动能定理与机械能守恒定律2.5 两体问题2.6 质心坐标系与实验室坐标系2.7 变质量物体的运动2.8 位力定理小结补充例题思考题习题第三章刚体力学3.1 刚体运动的分析3.2 角速度矢量3.3 欧拉角3.4 刚体运动方程与平衡方程3.5 转动惯量3.6 刚体的平动与绕固定轴的.转动3.7 刚体的平面平行运动3.8 刚体绕固定点的转动__3.9 重刚体绕固定点转动的解 __3.10 拉莫尔进动小结补充例题思考题习题第四章转动参考系4.1 平面转动参考系4.2 空间转动参考系4.3 非惯性系动力学(二)__4.5 傅科摆小结补充例题思考题习题第五章分析力学5.1 约束与广义坐标5.2 虚功原理5.3 拉格朗日方程5.4 小振动5.5 哈密顿正则方程5.6 泊松括号与泊松定理5.7 哈密顿原理5.8 正则变换__5.9 哈密顿-雅可比理论__5.10 相积分与角变数__5.11 刘维尔定理小结补充例题思考题习题附录主要参考书目理论力学教程第三版目录本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。
本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。
本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。
高等教育出版社理论力学第三版(周衍柏)第5章习题解答

m2
x22
以 x 面为零势面,体系势能:
其中 C2 为劈势能. 拉氏函数
V = m1g(x1 − x2 ) tanθ + C2
(4)
L =T −V =
[ ] 1
2 m1
x12 + (x1 − x2 )2 tan 2 θ
+
1 2
m2
x22
①
− m1g(x1 − x2 )tanθ − C2
代入拉格郎日方程
θ
⎟⎞ 2 ⎠
=
2m2a 2
sin 2 θθ
2
( ) T = TB + TD + Tc = m1 a 2θ 2 + Ω 2a 2 sin 2 θ + 2m2a 2 sin 2 θθ 2
取 Ox 为零势,体系势能为:
V = −2ga(m1 + m2 )cosθ
故力学体系的拉氏函数为:
L =T −V
( ) = m1a 2 θ 2 + Ω2 sin 2 θ + 2m2a 2 sin 2 θθ 2 + 2ga(m1 + m2 )cosθ
2
x = ± r2 −W k4
y =W k2 R = −k 2r
5.5 解 如题 5.5.1 图
Ω
A
θθ
aa
a
x
B
D
y m1 a
m1 a
C m2 z
按题意仅重力作用,为保守系。因为已知ψ = Ω ,故可认为自由度为 1.选广义坐 标θ = q ,在球面坐标系中,质点的 动能:
由于
( ) ( ) Ti
代入①得:
Q1 = 0.
在极坐标系下:
理论力学周衍柏第三章

(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
理论力学教程周衍柏第三版课件_图文

9
§0.4 力学单位制
• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
[P]
X X a1 a2 12
X
am m
上式取对数
ln[P] a1lnX1 a 2lnX2 amlnXm
把lnX1, lnX2, …,lnXm看做m维空间的“正交基矢”,则 (a1,a2,…,am)相当于“矢量”ln[P]在基矢上的投影.
22
定理
设某物理问题内涉及n个物理量(包括物理常量) P1, P2 ,, Pn, 而我们所选的单位制中有m个基本量(n>m),则由此可以组成n-m
• 在力学中CGS和MKS单位制的基本量是长度、质量和 来自间, 它们的量纲分别为L、M和T.
• 任何力学量Q的量纲为[Q]=LαMβTγ,式中, ,
为量纲指数.
21
量纲分析—— 定理
设我们在选定单位制中的基本量数目为m,它们的量纲 为X1,X2,…,Xm. 用[P]代表导出量P的量纲,则
由A=A1+A2得
c2Φ() a2Φ() b2Φ()
消去(),即得 c2 a2 b2
a
c
b
这样我们就利用量纲分析定量的得到了勾股定理.
27
§0.6 微积分预备知识
1 常见函数的导数
y xn
y' dy dxn nx n1 dx dx
y sin x
周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答

2l
mg
B
F
n
y
0 R cos mg
A
1/ 3
Rd MA 0 lmg cos cos i 1 cos 3 d d cos 1 l l
N d
第3.2题图
3.3)两根均质棒AB、BC在B处刚性联结在一起, 且角ABC形成 一直角. 如将此棒的A点用绳系于固定点上, 棒AB和BC的长度分 别为a,b. 则当平衡时, AB和竖直直线所成的角满足下列关系
b2 tan (a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干? 解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子 y 重量p, 人重3p. 平衡时:
x 0 1 y gt 3 cos v0t 2 cos 3 1 2 z v0t gt 2
再积分,并代入初始条件得: 质点再回到地面
3
t 2v0 / g
3 4 8 h 4 v0 y cos and v 2 gh y cos 0 3 g 3 g2
4.10) 质量为m的小环M, 套在半径为a的光滑圆圈上, 并可沿着圆 圈滑动. 如圆圈在水平面内以匀角速绕圈上某点O转动, 试求小 y 环沿圆圈切线方向的运动微分方程. 解: 设坐标系如图, oxy为水平面,它绕z轴转 动,即圆圈为转动参照系 受力分析,重力和约束反力都在z轴方向, 没 有画出. 惯性离心力m2r , 科里奥利力为 FC= -2m×v
3.9)证明对角线长度为d的立方体绕其对角线转动的回转半径为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 刚体平衡方程 若刚体处于平衡状态:
F 0 M 0
如为共面力系, 且设诸力均位于xy平面内, 则平衡方 程简化为
Fx 0, Fy 0, M z 0
例1、一根均匀的棍子、重为P长为2l. 今将其一端置于 粗糙地面上,又以其上的C点,靠在墙上,墙离地面的
高度为h.当棍子与地面的角度为最小值0时, 棍子在上
f Pl cos0 sin 2 0 / h N2 P Pl cos2 0 sin 0 / h
f N2
Pl cos0 sin 2 0 / h P Pl cos2 0 sin 0 / h
§3.5 刚体转动惯量
1 刚体的动量矩
刚体以作定点转动, 其中质点Pi对定点的位矢是ri,
则质点对定点的动量矩为
i
mi i2
1 2
I 2
3 刚体的转动惯量
上式中i为Pi的位矢 ri 与角速度矢量之间的夹角, i 为自Pi至转动瞬轴的垂直距离,而 I 称为刚体绕
转动瞬轴的转动惯量.
回转半径 rG I / m
z
物体的转动惯量决定于物体的质量
分布的情况, 又决定于转动轴的位置. 转
动轴不同,即使是同一物体转动惯量也不 同. 平行轴定理
i
x mi yi2 zi2 y mi xi yi z mi xi zi
i
i
i
Ly x mi yi xi y mi zi2 xi2 z mi yi zi
i
i
i
Lz x mi zi xi y mi zi yi z mi xi2 yi2
i
i
i
引入符号
则刚体质心C的运动方程为
mrC
F (e) i
F
刚体在动坐标系S’中的相对运动对质心C 的总角动量
满足
•
J' M'
对固定坐标系中的定点O, 上式仍有效, 只需将J’改J (对定点 O的总角动量),M’改M.
刚体的运动分解随质心的平动+绕质心的转动
MMyxcc
Fx Fy
Mzc Fz
dJ x
所以可以把所有空间力化为过一点的力和力偶. P点叫简化中心, 力的矢量和叫主矢, 力偶矩的矢量 和叫对简化中心的主矩.
主矢使刚体平动状态发生变化 主矩使刚体转动状态发生变化
2 刚体运动微分方程
如果ri代表刚体中任一质点Pi 对静止系S原点O的位 矢, rC 为质心C对O的位矢, 而ri’ 为Pi 对质心C的位矢, 动 坐标系S’随质心作平动, 其点与质心C重合.
述位置仍处于平衡状态,求棍与地面的摩擦系数
解: 受力分析知本题是一共
y
面力系的平衡问题, 取棍子所 在的平面为xy平面, 则
Fx 0, N1 sin 0 f 0
B
N1
Cl
Fy 0, N1 cos0 N2 P 0
对A点
Pl cos0 N1h / sin 0 0
h P
O
l N2
0
x
f
A
盘面垂直的轴的转动惯量
I 1 mR2 2
r dr Ro
例2、质量 M = 16 kg 、半径为 R = 0.15 m 的实心滑 轮,一根细绳绕在其上,绳端挂一质量为 m=8kg 的物体. 求(1)由静止开始 1 秒钟后,物体下降的距离. (2)绳子的张力.
解: mg T ma
ri mivi
整个L刚体对定r点i 的m动iv量i 矩为
mi
ri
ri
i
mi
r
2
ri
i
ri
i
动量矩一般不与刚体角速度共线. (动量与速度总共线)
在直角坐标系下
ri
xii
yi
j
zik
xi y j zk
所以
Lx mi x xi2 yi2 zi2 xi x xi y yi z zi
第三章 刚体力学
导读
• 空间力系和平行力系的求和 • 刚体运动微分方程和平衡方程 • 简单转动惯量的计算 •转动惯量的计算
§3.4 刚体运动方程与平衡方程
1 力系的简化
F1 F2 F3
将所有空间力作用点都迁移到一点.
力是滑移矢量
F
F
F
F
力可沿作用线移动,不能随意移动
设F’为作用在刚体A点上的一个力, P为空间任意一 点, 但不在F’的作用线上.
Lx I xx x I xyy I xz z
Ly I yx x I yyy I yz z Lz I zx x I zyy I zz z
2 刚体的转动动能
刚体以作定点转动, 对定点的转动动能为
Ek
1 2
i
mivi
2
1 2
i
mivi vi
1
2
i
mi
vi
ri
A
在P点添上两个与F’的作用线
F’
平行的力F1及F2, 且
r
F2
F1
P
F1 F2 0, F1 F2 F '
这样F’可以化为过P点的力F1和F’及F2所组成的 一个力偶.
力偶 方向:永远垂直于力偶的作用面
大小:与o点无关。
因此:力偶矩是一自由矢量,可以平行于 自身任意移动位置,不影响其效应。
dt
M x
dJ y dt
M y
dJ z
dt
M z
六个独立的方程
刚体有六个独立变量. 故质心运动及绕质心转动两 组方程式恰好确定刚体的运动情况. 也可应用动能原理, 作为一个辅助方程来代替方程中的任意一个.
注意: 这时刚体内力所作元功之和为零, 故刚体动能的 微分等于刚体在运动过程中外力所作的元功之和.
1
2
i
ri
mivi
1
2
L
1 2
I xx x2 I yyy2 I zz z 2 2I yzyz 2I zxzx 2I xyxy
刚体对定点的转动动能也可以写为
Ek
1 2
i
mivi vi
1 2
i
mi
ri
ri
1 2 2
i
miri2 sin 2 i
1 2 2
I xx mi yi2 zi2 I yy i mi zi2 xi2
i
I zz mi xi2 yi2
i
刚体对各轴的转动惯量
I xy I yx mi yi xi
i
I xz I zx mi zi xi i
I yz I zy mi zi yi
i
惯量积
则刚体动量矩表达式简化为
rG
若刚体对过质心的轴的转动惯量为 Ic ,
则刚体对与该轴相距为 d 的平行轴 z 的转
动惯量 Iz 是
Iz Ic md 2
质量为 m,长为 l 的细棒绕通过其端点和质心的垂
直轴的转动惯量
z
I 1 ml2 3
IC
1 ml2 12
o
dm
x dx
x
质量为 m,半径为 R 的均匀圆盘, 通过盘中心并与