平差知识点总结

合集下载

测量平差知识大全

测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。

一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。

二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。

3. 粗差定义,例如观测时大数读错。

误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。

一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。

3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。

当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。

因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。

4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。

例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。

现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。

测量平差期末总结

测量平差期末总结

测量平差期末总结一、引言测量平差是地理信息系统(GIS)和工程测量领域非常重要的一部分,它涉及到对测量数据进行处理、分析和计算。

测量平差能够提高测量数据的准确性和精确度,使得测量结果更加可靠和可信。

本文将对测量平差的一些基本概念、方法和步骤进行总结和分析,以期加深对测量平差的理解和应用。

二、测量平差的基本概念1. 测量平差的定义测量平差是指通过一系列的数学模型和计算方法,对原始的测量数据进行处理和分析,以获取更加准确和精确的测量结果的过程。

测量平差的目的是消除测量误差,提高测量数据的可靠性和精度。

2. 测量平差的分类根据测量数据的性质和采集方式的不同,测量平差可以分为直接平差和间接平差。

直接平差是指对直接测量数据进行处理和分析,如经纬度测量、高程测量等;间接平差是指对间接测量数据进行处理和分析,如距离测量、角度测量等。

3. 测量平差的基本原理测量平差的基本原理是基于观测量的合理模型和模型的参数估计。

通过观测量的数学模型,利用最小二乘法或加权最小二乘法等方法,求解模型的未知参数,从而得到测量结果的最优估计。

三、测量平差的方法和步骤1. 校正平差校正平差是指对原始的测量数据进行检验和修正的过程。

校正平差的目的是通过剔除异常观测值和消除系统误差,得到更加准确和可靠的测量数据。

2. 数学模型的建立数学模型是测量平差的基础,它是通过观测量的几何关系和误差模型建立的。

数学模型可以根据测量任务的不同而定,常见的数学模型有三角形测量模型、高程测量模型等。

3. 参数估计参数估计是指根据观测量和数学模型,利用最小二乘法或其他的数学方法,求解模型的未知参数。

参数估计的目的是最小化观测量和模型的差异,得到最优估计。

4. 平差计算平差计算是指根据参数估计的结果,利用平差公式和计算方法,对测量数据进行处理和分析。

平差计算的目的是消除观测量和模型之间的差异,得到平差结果。

四、测量平差的应用1. 地理信息系统(GIS)测量平差在GIS中有广泛的应用。

平差总结(sy)

平差总结(sy)

一、填空1.误差来源:测量仪器、观测者、外界条件。

2.误差分类:偶然误差、系统误差、粗差。

3.测量平差的基本任务:是处理一系列带有偶然误差的观测值,求取未知量的最佳估值,评定测量成果的精度。

4.偶然误差的四个特性:有限性、单峰性、对称性、有偿性。

5.水准测量中,观测值权的大小主要取决于或的大小。

6.独立观测值Li(i=1,2,3...n)的权均为p,则算术平均值x=L/n的权为np 。

7.间接平差法是以为函数模型的平差方法。

8.衡量精度的指标:中误差、平均误差、然误差。

9.相对中误差的概念为(中误差与观测值之比)其表示为(1/N)二、名词解释1.偶然误差:在相同观测条件下做一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差来看该列误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差。

系统误差:在相同观测条件下做一系列的观测,如果误差在大小和符号上都表现出系统性,或者在观测过程中按照一定的规律变化,或者为某一常数,这种误差称为系统误差。

2.测量平差:依据某种最优化准则,由一系列带有观测误差的测量数据,求定未知量的最佳估值及精度的理论和方法。

3.数学期望:随机变量取值的概率平均值协方差:是描述两随机变量的相关度偶然误差的特性:在一定观测条件下,误差的绝对值有一定的限值绝对值较小的误差比绝对值较大的误差出现的概率大绝对值相等的正负值出现的概率相同偶然误差数学期望为04.精度:就是指误差分布的密度或离散程度。

✓协方差传播定律:由观测值中误差求取观测值函数的中误差或方差,解决精度问题✓协因数传播定律:由观测值协因数求取观测值函数的协因数阵权:表示各观测值方差之间比例关系的数字特征水准测量定权的方法1.根据测站的观测高差定权2.根据距离的观测高差定权2.测量上确定权的常用方法?水准测量的权、同精度观测值的算术平均值的权5.单位权中误差:权为1的观测值的中误差(与单位权对应的观测值的中误差)必要元素:能够唯一确定一个几何模型所必要的元素6.条件方程:一个几何模型的独立量个数最多为t个,除此之外,增加一个量必然要产生一个相应的函数关系式,这种函数关系式在测量平差中称为条件方程。

测量平差知识大全

测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。

一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。

二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。

3. 粗差定义,例如观测时大数读错。

误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。

一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。

3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。

当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。

因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。

4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。

例如,在一个三角形中同精度观测了3个角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。

现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要容,阐述这种关系的公式称为协方差传播律。

误差理论与测量平差基础知识点的不完全归纳

误差理论与测量平差基础知识点的不完全归纳

第一章绪论1、误差理论与测量平差基础是一门专业、基础、理论、核心课程。

2、测量数据或观测数据是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其他实体的空间分布有关信息的数据。

3、任何观测数据总是包含信息和干扰两部分(有效信息和干扰信息)。

采集数据就是为了获取有用的信息,干扰也称为误差。

4、观测数据总是不可避免带有误差。

5、误差即测量值与真值之差。

6、当对某个量进行重复观测时就会发现,这些观测值之间往往存在差异,这是由于观测值中包含有观测误差。

7、误差来源于观测条件,观测条件包括测量仪器、观测者、外界条件。

8、偶然误差即总是假定含粗差的观测值已被剔除;含系统误差的观测值已经过适当改正。

在观测误差中,仅含偶然误差或是偶然误差占主导地位。

9、在测量中产生误差是不可避免的。

10、根据观测误差对测量结果的影响性质,可分为偶然误差(Δ)、系统误差和粗差()三类。

【】11、在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而然,具有一定的统计规律,这种误差称为偶然误差。

(如估读不准确)12、系统误差包括常差、规律差、随机性系统误差。

13、在相同的观测条件下作一系列的观测,如果误差在大小、符号上表现出系统性,或者在个过程中按一定的规律变化,或者为某一常数,那么,这种误差就称为系统误差。

(如视准轴与水准管轴不平行、仪器下沉、水准尺下沉、水准尺竖立不垂直)14、系统误差的存在必然影响观测结果,具有一定的累加性,是影响巨大的。

15、粗差即粗大误差,是指比在正常观测条件下所能出现的最大误差还要大的误差。

(误差=错误,消除粗差的方法:多余观测进行发现、剔除粗差。

测量数据中一旦发现粗差,需要舍弃或重测)16、属于经典测量平差范畴。

17、如何处理由于多余观测引起观测值之间的不符值或闭合差,求出未知量的最佳估值并评定结果的精度是测量平差的基本任务(研究路线)。

平差经验总结(1)

平差经验总结(1)

管网平差管网平差一般分三个步骤:图面整理、数据准备、平差。

目前我们用的平差软件为鸿业10.5版本。

打开鸿业软件后,首先要设置工程名称及出图比例以及设置节点标注设置及管道标注设置。

(设置--工程名称、出图比例、标注设置)1、图面整理:根据已收集到的现状给水管网平面布置图,按照规划要求,整理出远期给水管网平面布置图,对其进行图面整理。

图面整理内容主要包括:清除小短线、重复管线、未连接管线等操作步骤:1)管线--定义管道-任意选择2)工具--图面整理-选择所要整理的内容。

注意事项:图形整理时需要对管网进行简化,主要是将管道节点进行简化;定义管道时选择球墨铸铁管,选择无管径。

2、数据准备图面整理完后,需要对管网进行平差前的数据准备。

数据准备包含定义真实管长、按管长分配流量(定义集中流量、定管供水类型)、自动预赋管径(定义现状管、定义环干管、自动预赋管径)、定义节点地面标高、定义节点水压等。

1)定义真实管长--如果管道是按照长度精确绘制的则不用定义。

2)按管长分配流量---按照管道长度自动分配节点流量a、定义节点流量---主要是将管道流量分为集中流量和沿线流量;集中流量包括水源供水量(输入时为负值)和集中用水点流量(输入时为正值)。

b、定管供水类型---分为不供水、单侧供水和双侧供水;一般从水厂至配水管网之间可设置成不供水管道,城市边缘的管道可设置成单侧供水,其余全部为双侧供水。

3)自动预赋管径---需在节点流量确定后进行a)定义环干管---在没有定义环干管的情况下,程序是按照最小路径的原理来定义环干管。

布置环干管按照规划及用水区域大小的原则来布置。

b)定义现状管---对于现状给水管网中的主干管,可以将其定义成现状管,定义过的管径在平差计算时管径不会变化。

c)自动预赋管径---在节点流量确定后进行3)定义节点地面标高操作步骤:平差--定义节点地面标高高程点定义时必须有带高程点的地形图,可手工输入每一点的高程点,也可建立曲面高程模型计算(原地形--标高点--文本定义)统一定义。

最新测量平差知识大全

最新测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论➢✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。

一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。

二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。

3. 粗差定义,例如观测时大数读错。

误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。

一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。

3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。

当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。

因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。

4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。

例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。

现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。

新测量平差知识大全

新测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。

一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。

二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。

3. 粗差定义,例如观测时大数读错。

误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。

一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。

3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。

当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。

因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。

4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。

例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。

现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量平差知识点
观测误差包括:粗差、系统误差、偶然误差。

粗差:即粗大误差,或者说是一种大量级的误观测差,是由观测过程中的差错造成的。

发现粗差的方法:进行必要的重复测量或多余观测,采用必要而又严格的检核、验算等,发现后舍弃或重测。

系统误差:在相同条件下进行一系列观测,如果误差在大小、符号表现出一致性,或者在观测过程中按一定的规律变化,或者为一常数,这种误差称为系统误差。

偶然误差:在相同条件下进行一系列观测,如果误差在大小、符号上表现出偶然性,即就单个误差而言,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差,或者随机误差。

最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识。

相关文档
最新文档