高考数学一轮复习专题4-2同角三角函数的基本关系及诱导公式(练)
4-2高三复习周精讲精练-同角三角函数的关系及诱导公式

三角函数
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第四章
三角函数
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第四章
三角函数
●基础知识
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第四章
三角函数
点评:本例属同角三角关系式中的基本题,关键是 掌握“先开方,后作商”的原则,先求与 sinα 的平方关 系相联系的 cosα,再由公式求 tanα.在(2)中,α 为第四象 m 限角,但 tanα= 2,原因是 m 此时小于 0,所以形 1-m 式上 tanα 的表达式前面仍不带负号.
解析:∵tan300° =tan(360° -60° )=-tan60° =- 3, ∴M(2,- 3).故位于第四象限. 答案:D
)
首页
上页
下页
末页
第四章
三角函数
1 π 已知 cosα=3,且-2<α<0, cot(-α-π)· sin(2π+α) 求 的值. cos(-α)· tanα 1 分析:从 cosα=3中可推知 sinα、cotα 的值,再用诱
3π 1 cosα- 2 =5,求
(
f(α)的值;
(3)若 α=-1860° ,求 f(α)的值.
)
首页
上页
下页
末页
高考数学专题《同角三角函数的基本关系与诱导公式》习题含答案解析

专题5.2 同角三角函数的基本关系与诱导公式1.(2021·北京二中高三其他模拟)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34,55⎛⎫⎪⎝⎭,则tan()πθ-的值为( )A .43B .34C .43-D .34-【答案】C 【解析】由题意可得角的正弦和余弦值,由同角三角函数的基本关系可求出角的正切值,结合诱导公式即可选出正确答案.【详解】解:由题意知,43sin ,cos 55θθ==,则sin 4tan cos 3θθθ==,所以4tan()tan 3πθθ-=-=-,故选:C.2.(2021·全国高三其他模拟(理))已知1tan ,2α=则()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=( )A .﹣12B .12C .2D .﹣2【答案】C 【解析】先用“奇变偶不变,符号看象限”将()cos cos 2παπα-⎛⎫+ ⎪⎝⎭化简为cos sin αα--,结合同角三角函数的基本关系来求解.【详解】因为1tan 2α=,所以()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=cos sin αα--=1tan α=2.故选:C练基础3.(2021·全国高一专题练习)已知3cos cos()2παπα⎛⎫-++= ⎪⎝⎭则1tan tan αα+=( )A .2B .-2C .13D .3【答案】A 【解析】用诱导公式化简,平方后求得sin cos αα,求值式切化弦后易得结论.【详解】3cos cos()sin cos 2παπααα⎛⎫-++=∴--= ⎪⎝⎭即21sin cos (sin cos )2,sin cos ,2αααααα+=∴+=∴=1sin cos 1tan 2tan cos sin sin cos αααααααα∴+=+==,故选:A .4.(2021·河南高三其他模拟(理))若1tan 2α=,则22sin sin cos ααα+=_______________________.【答案】45【解析】利用同角三角函数的基本关系式进行化简求值.【详解】因为12tan α=,所以222222224215sin sin cos tan tan sin sin cos sin cos tan ααααααααααα+++===++.故答案为:455.(2021·宁夏银川市·银川一中高三其他模拟(文))若3sin 2πθ⎛⎫+= ⎪⎝⎭[0,2)θπ∈,则θ=___________.【答案】116π【解析】根据三角函数的诱导公式,求得cos θ=[0,2)θπ∈,进而求得θ的值.【详解】由三角函数的诱导公式,可得3sin cos 2πθθ⎛⎫+=-= ⎪⎝⎭,即cos θ=,又因为[0,2)θπ∈,所以116πθ=.故答案为:116π.6.(2021·上海格致中学高三三模)已知α是第二象限角,且3sin 5α=,tan α=_________.【答案】34-【解析】根据角所在的象限,判断正切函数的正负,从而求得结果.【详解】由α是第二象限角,知4cos 5α===-,则sin 3tan cos 4ααα==-故答案为:34-7.(2021·上海高三二模)若sin cos k θθ=,则sin cos θθ⋅的值等于___________(用k 表示).【答案】21kk +【解析】由同角三角函数的关系得tan θk =,进而根据22sin cos sin cos sin cos θθθθθθ⋅⋅=+,结合齐次式求解即可.【详解】因为sin cos k θθ=,所以tan θk =,所以2222sin cos tan sin cos sin cos tan 11kk θθθθθθθθ⋅⋅===+++,故答案为:21k k +8.(2021·河北衡水市·高三其他模拟)函数log (3)2(0a y x a =-+>且a ≠1)的图象过定点Q ,且角a 的终边也过点Q ,则23sin α+2sin cos αα=___________.【答案】75【解析】首先可得点Q 的坐标,然后可得tan α,然后可求出答案.【详解】由题可知点Q (4,2),所以1tan ,2α=所以22223sin 2sin cos 3sin 2sin cos sin cos αααααααα++==+2211323tan 2tan 74211tan 514ααα⨯+⨯+==++故答案为:759.(2021·上海高三其他模拟)已知3sin 5x =,(,)2x ππ∈,则cos(π﹣x )=___________.【答案】45【解析】根据22sin cos 1x x += ,(,)2x ππ∈,求出cos x ,再用“奇变偶不变,符号看象限”求出cos(π﹣x ).【详解】解:因为3sin 5x =,(,)2x ππ∈,可得cos x =﹣=﹣45,所以cos(π﹣x )=﹣cos x =45.故答案为:45.10.(2020·全国高一课时练习)若2cos()3απ-=-,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.【答案】.【解析】利用诱导公式化简已知和结论,转化为给值求值的三角函数问题解决.【详解】原式=sin(2)sin(3)cos(3)cos (cos )cos παπαπαααα---+----=2sin sin cos cos cos ααααα--+=sin (1cos )cos (1cos )αααα---=-tan α,因为2cos()cos 3απα-=-=-,所以2cos 3α=,所以α为第一象限角或第四象限角.(1)当α为第一象限角时,sin α=所以sin tan cos ααα=,所以原式.(2)当α为第四象限角时,sin α=所以sin tan cos ααα=,所以原式.综上,原式=.1.(2021·全国高三其他模拟(理)(0)a a =>,则1tan 2=________(用含a 的式子表示).【解析】根据同角三角函数的相关公式,把根号下的式子变形为完全平方式,2111112sin cos sin cos 2222⎛⎫-=- ⎪⎝⎭,2111112sin cos sin cos 2222⎛⎫+=+ ⎪⎝⎭,再由11cos sin 022>>,开方即得1cos 22a =,再由22111tan 12cos 2+=即可得解.【详解】练提升=+=1111cos sin sin cos2222=-++12cos 2a ==,则1cos 22a =而22111tan 12cos 2+=,2214tan 12a∴=-又1tan 02>,1tan 2∴==.2.(2021·河北邯郸市·高三二模)当04x π<<时,函数22cos ()sin cos sin xf x x x x=-的最大值为______.【答案】-4【解析】化简函数得21()tan tan f x x x=-,再换元tan ,(0,1)t x t =∈,利用二次函数和复合函数求函数的最值.【详解】由题意得22222cos cos ()sin cos sin cos cos x x f x x x xx x =-所以21()tan tan f x x x =-,当04x π<<时,0tan 1x <<,设tan ,(0,1)t x t =∈所以2211()=11()24g t t t t =---,所以当12t =时,函数()g t 取最大值4-.所以()f x 的最大值为-4.故答案为:4-3.(2021·浙江高三其他模拟)已知πtan 34α⎛⎫+=- ⎪⎝⎭,则3πtan 4α⎛⎫-= ⎪⎝⎭______,sin cos αα=______.【答案】3 25【解析】由3ππtan tan 44αα⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭可求,由和的正切公式求出tan α,再建立齐次式即可求出.【详解】3πππtan tan πtan 3444ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,得tan 2α=,故222sin cos tan 2sin cos sin cos tan 15αααααααα===++.故答案为:3;254.(2021·全国高一专题练习)如图,单位圆与x 轴正半轴的交点为A ,M ,N 在单位圆上且分别在第一、第二象限内,OM ON ⊥.若四边形OAMN 的面积为34,则AOM ∠=___________;若三角形AMN 的面积为25,则sin AOM ∠=___________.【答案】6π 35【解析】根据四边形OAMN 的面积,列出关于M 点纵坐标M y 的方程,求出M y ;即可根据三角函数的定义求出sin AOM ∠,进而可得AOM ∠;根据三角形AMN 的面积为25,得到M y 与N y 之间关系,再结合三角函数的定义,得到1cos sin 5AOM AOM ∠-∠=,利用同角三角函数基本关系,即可求出结果.【详解】若四边形OAMN 的面积为34,则3111142222MON MOA M M S S OM ON OA y y =+=⨯⨯+⨯⨯=+V V ,解得12M y =,由三角函数的定义可得1sin 2M AOM y ∠==,因为M 为第一象限内的点,所以AOM ∠为锐角,因此6AOM π∠=;若三角形AMN 的面积为25,则21115222MON MOA AMN OAMN AON AON M N S S S S S S y y ==-=-=+-+V V V V V ,即51N M y y -=,由三角函数的定义可得,sin M AOM y ∠=,sin N AON y ∠=,又sin sin cos 2N y AON AOM AOM π⎛⎫=∠=∠+=∠ ⎪⎝⎭,所以1cos sin 5AOM AOM ∠-∠=,由221cos sin 5sin cos 1AOM AOM AOM AOM ⎧∠-∠=⎪⎨⎪∠+∠=⎩解得3in 5s AOM ∠=或4in 5s AOM ∠=-,又AOM ∠为锐角,所以3in 5s AOM ∠=.故答案为:6π;35.5.(2021·河南高一期中(文))(1)已知角α的终边经过点()43P ,-,化简并求值:221cos sin cos sin cos tan 1a ααααα-+---;(2的值.【答案】(1)15-(2)1.【解析】(1)利用三角函数定义得到3sin 5α=,4cos 5α=-,化简三角函数表达式代入即可得到结果;(2)利用同角基本关系式化简即可.【详解】(1)由题意知,3sin 5α=,4cos 5α=-.原式222sin sin cos sin sin cos 1cos ααααααα+=---2222sin sin cos sin cos sin cos cos αααααααα+=---()2222cos sin cos sin sin cos sin cos αααααααα+=---22sin cos sin cos sin cos αααααα=---22sin cos sin cos αααα-=-341sin cos 555αα=+=-=-;(2)原式=sin 40cos 40cos 40cos50︒-︒=︒-︒cos 40sin 401cos 40sin 40-==-︒︒︒︒.6.(2021·河南高一期中(文))已知sin 2cos 0αα+=.(1)求sin 2cos cos 5sin αααα--的值;(2)求33sin cos cos sin aααα+的值.【答案】(1)411-;(2)858-.【解析】(1)本题可根据sin 2cos 0αα+=得出tan 2α=-,然后根据同角三角函数关系即可得出结果;(2)本题可通过22sin cos 1αα+=求出2sin α、2cos α的值,然后通过同角三角函数关系即可得出结果.【详解】(1)因为sin 2cos 0αα+=,所以tan 2α=-,则sin 2cos tan 24cos 5sin 15tan 11αααααα--==---.(2)联立22sin 2cos 0sin cos 1αααα+=⎧⎨+=⎩,解得224sin 51cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,则3322sin cos tan 185cos sin cos sin tan 8a ααααααα+=+=-.7.(2020·武汉市新洲区第一中学高一期末)在平面直角坐标系xOy 中,以x 轴非负半轴为始边作角0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,它们的终边分别与单位圆相交于A ,B 两点,已知点A ,B,.(1)求23sin sin cos 1ααα-+的值;(2)化简并求cos 的值.【答案】(1)195;(2)1-+【解析】(1)由已知条件可知求得sin α,tan α,已知式变形为2222223sin sin cos 3tan tan 3sin sin cos 111sin cos tan 1ααααααααααα---+=+=+++,代入可得答案;(2)由已知得cos β,sin β=.【详解】解:(1)由已知条件可知:cos α=0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 0α>,sin α==,tan 7α=,2222223sin sin cos 3tan tan 3497193sin sin cos 1111sin cos tan 1505ααααααααααα--⨯--+=+=+=+=++,(2)cos β=,2πβπ⎛⎫∈ ⎪⎝⎭,所以sin 0β>,从而sin β==;1sin cos cos cos (1sin )1|cos |ββββ-===--=-+.8.(2021·全国高三专题练习(理))求函数sin cos sin cos y x x x x =+-(x ∈R )的值域.【答案】112⎡⎤-⎢⎥⎣⎦,【解析】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,根据二次函数的性质可求得值域.【详解】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,所以当t =24=-+x k ππ (k Z ∈)时,min y =12-;当1t =,即()114k x k ππ⎡⎤=++-⎣⎦(k Z ∈)时,max 1y =,因此函数y =sin cos sin cos y x x x x =+-的值域应为112⎡⎤-⎢⎥⎣⎦,.9.(2021·江苏高一月考)如图,锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点()11,A x y ,将射线OA 按逆时针方向旋转3π后与单位圆交于点()()2212,,B x y f x x α=+.(1)求()fα的取值范围;(2)若()fα=,求tan α的值.【答案】(1)32⎛⎫ ⎪ ⎪⎝⎭;(2【解析】(1)由三角函数的定义可得1cos x α=,2cos(3x πα=+,化简()f α6)πα+.根据2663πππα<+<,利用余弦函数的定义域和值域求得()f α的范围.(2)根据()f α=,求得3cos(654sin(65παπα⎧+=⎪⎪⎨⎪+=⎪⎩,再利用两角差的正弦余弦公式求出sin ,cos αα的值,从而得出结论.【详解】(1)由图知,3AOB π∠=,由三角函数的定义可得1cos x α=,2cos(3x πα=+,123()cos cos()cos cos cossin sincos 3332f x x πππαααααααα==+++-+=-=6)πα=+.角α为锐角,∴2663πππα<+<,∴1co 26s()πα-<+<∴623πα<+<,即()f α的范围是32⎛⎫⎪ ⎪⎝⎭.(2)因为()fα=,2663πππα<+<,6πα+=,3cos()65)46sin()65παπαπα⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩,431sin sin66552ππαα⎡⎤⎛⎫=+-=⨯=⎪⎢⎥⎝⎭⎣⎦341cos cos66552ππαα⎡⎤⎛⎫=+-=+⨯=⎪⎢⎥⎝⎭⎣⎦sintancosααα∴===10.(2021·河南省实验中学高一期中)(1)已知sin()cos()tan(3)()3cos2fπθπθπθθπθ-+-=⎛⎫-⎪⎝⎭,求73fπ⎛⎫- ⎪⎝⎭的值(2)已知1sin cos5αα+=-,2παπ<<,求sin(3)cos(2)sin()sin2παπαπαα--++⎛⎫-++⎪⎝⎭的值.【答案】(1(2)17.【解析】(1)利用诱导公式、同角三角函数基本关系化简()fθ,然后再代值计算即可.(2)利用同角三角函数间的关系,将1sin cos5αα+=-平方求出sin cosαα的值,从而求出cos sinαα-的值,再由诱导公式将所求式子化简,即可得出答案.【详解】(1)()()sin cos tansin()cos()tan(3)()sin3sincos2fθθθπθπθπθθθπθθ⋅-⋅--+-===--⎛⎫-⎪⎝⎭所以77sin sin2sin3333fπππππ⎛⎫⎛⎫⎛⎫-=--=+==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)由1sin cos 5αα+=-,则112sin cos 25αα+=,所以242sin cos 25αα=-由2παπ<<,则sin 0,cos 0αα><设cos sin 0t αα=-<,则2244912cos sin 12525t αα=-=+=由cos sin 0t αα=-<,所以7cos sin 5αα-=-1sin(3)cos(2)sin cos 157sin cos 7sin()sin 52παπαααπαααα---+++===-+⎛⎫--++ ⎪⎝⎭1.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .2.(2020·全国高考真题(理))已知π()0,α∈,且3cos28cos 5αα-=,则sin α=( )AB .23C .13D练真题【答案】A 【解析】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴== 故选:A.3.(2019·北京高考真题(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B 【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为+S △POB + S △POA =4β+.故选:B .APB ∠2222βππ⨯⨯1||sin()2OPOB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅4.(2017·北京高考真题(文))在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则_____.【答案】【解析】因为角与角的终边关于轴对称,所以,所以.5.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.6.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x +3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.xOy αβOx y 1sin 3α=sin β=13αβy 2,k k Z αβππ+=+∈()1sin sin 2sin 3k βππαα=+-==。
4.2同角三角函数的基本关系式及诱导公式(学案)

4.2同角三角函数的基本关系式及诱导公式(学案)知识归纳1、 同角三角函数的基本关系式(1) 平方关系 (2) 商数关系 (3) 倒数关系)记忆口诀:奇变偶不变,符号看象限(其中的奇、偶是指 的奇数倍和偶数倍,变与不变是指 的变化(2)利用诱导公式把任意的三角函数转化为锐角三角函数的基本步骤是:任意角的三角函数→正角的三角函数→00360 的角的三角函数→锐角三角函数 3、平方关系 s is α商数关系 t a nαc o t α倒数关系 s e c α 4、sin cos ,sin cos ,sin cos αααααα+-三者之间的关系()2sin cos 12sin cos αααα+=+()2sin cos 12sin cos αααα-=- ()()22sin cos sin cos 2αααα++-=()()22sin cos sin cos 4sin cos αααααα+--=5、同角三角函数关系式和诱导公式的应用主要包括三类题型:求值、化简、证明典型例题例1、(1)已知()cot 2πα-=,求3sin 2πα⎛⎫+⎪⎝⎭的值 (2) 已知()cot 0m m α=≠,求cos α例2、已知tan 1tan 1αα=--,求下列各式的值:()4sin 2cos 15cos 3sin αααα-+ ()2s i n c o s αα ()()23sin cos αα+例3、已知()()()()()3sin cos 2tan 2cot sin f ππαπααααππα⎛⎫---+ ⎪⎝⎭=----(1) 化简()f α(2) 若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值 (3) 若313πα=-,求()f α的值例4、(1)求证:tan sin tan sin tan sin tan sin αααααααα⋅+=-⋅(2)已知()()sin 2cos 2αππα-=- 求证:()()()()sin 5cos 233cos sin 5παπαπαα-+-=----例5、已知关于x的方程)2210x x m -+=的两根为sin θ和cos θ,()0,2θπ∈求(1)sin cos 1cot 1tan θθθθ+--的值(2)m 的值(3)方程的两根及此时θ的值堂清练习1、19sin 6π⎛⎫- ⎪⎝⎭的值等于( )A 、12B 、12- C2D、2-2、如果A 为锐角,()1sin 2A π+=-,那么()cos A π-=( )A 、12- B 、12C、2-D23、已知a =200sin ,则160tan 等于A、- B、C、a-D、a4cos sin 1+=-,则θ是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角5、若022x π≤≤cos 2x =成立的x 的取值范围是( )A 、0,4π⎛⎫⎪⎝⎭B 、3,4ππ⎛⎫⎪⎝⎭ C 、5,44ππ⎛⎫ ⎪⎝⎭ D 、30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦6、405cot 300tan +的值为____。
数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

4。
2同角三角函数的基本关系及诱导公式必备知识预案自诊知识梳理1。
同角三角函数的基本关系(1)平方关系:sin2α+cos2α=。
(2)商数关系:sinαcosα=(α≠π2+kπ,k∈Z)。
2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α续表公式一二三四五六口诀函数名不变,符号看象限函数名改变,符号看象限1。
特殊角的三角函数值2.同角三角函数基本关系式的常用变形(1)(sin α±cos α)2=1±2sin αcos α;(2)sin α=tan αcos αα≠π2+kπ,k∈Z;(3)sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;(4)cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)对任意的角α,β有sin 2α+cos 2β=1。
( ) (2)若α∈R ,则tan α=sinαcosα恒成立.( )(3)sin (π+α)=-sin α成立的条件是α为锐角。
( )(4)若cos(n π—θ)=13(n ∈Z ),则cos θ=13.( )2。
(2020河北衡水中学模拟一,理3)已知cos α-π2=-2√55,α∈π,3π2,则tan α=( )A 。
2B 。
32C.1D.123。
(2020河北唐山模拟,理4)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B 。
-12C 。
√32D.-√324。
函数f (x )=15sin x+π3+cos x —π6的最大值为( ) A.65B.1C.35D.15关键能力学案突破考点同角三角函数基本关系式的应用【例1】(1)若tan(α-π)=12,则sin 2α+1cos 2α-sin 2α=( )A。
2022高考数学(文)一轮通用版讲义:4.2同角三角函数的基本关系与诱导公式

第二节同角三角函数的基本关系与诱导公式1理解同角三角函数的基本关系式:sin2+cos2=1,=tan.±α,π±α的正弦、余弦、正切的诱导公式.突破点一同角三角函数的基本关系1.同角三角函数的基本关系1平方关系:sin2α+cos2α=1α∈R.2商数关系:tanα=2.同角三角函数基本关系式的应用技巧技巧解读适合题型切弦互化主要利用公式tanθ=化成正弦、余弦,或者利用公式=tanθ化成正切表达式中含有sinθ,cosθ与tanθ“11=sin2θ+cos2θ=表达式中需要利用一、判断题对的打“√”,错的打“×”1若α,β为锐角,则sin2α+cos2β=12若α∈R,则tanα=恒成立.答案:1×2×二、填空题1.已知α∈,sinα=,则tanα=________解析:∵α∈,sinα=,∴cosα=-,于是tanα=-答案:-2.已知tanα=2,则的值为________.解析:原式===3答案:3考法一知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] 12022·成都龙泉中学月考设cos-80°=,那么tan100°等于B.-D.-22022·甘肃诊断已知tan=,且角的终边落在第三象限,则cos=B.-D.-[解析] 1∵cos-80°=cos80°=,∴sin80°==,∴tan100°=-tan80°=-故选B2因为角的终边落在第三象限,所以cos<0,因为tan=,所以解得cos=-,故选D[答案] 1B 2D[易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号.考法二知切求f sinα、cosα的值[例2] 2022·保定三校联考已知tan3π+α=3,则=D.2[解析] ∵tan3π+α=3,∴tanα=3,∴===故选B [答案] B[方法技巧]利用“切弦互化”的技巧1弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有:①sinα,cosα的二次齐次式如a sin2α+b sinαcosα+c cos2α的问题常采用“切”代换法求解;②sinα,cosα的齐次分式的问题常采用分式的基本性质进行变形.2切化弦:利用公式tanα=,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.考法三sinα±cosα与sinαcosα关系的应用[例3] 1已知sinαcosα=,且<α<,则cosα-sinα的值为B.±C.-D.-2已知-<α<0,sinα+cosα=,则=[解析] 1因为sinαcosα=,所以cosα-sinα2=cos2α-2sinαcosα+sin2α=1-2sinαcosα=1-2×=,因为<α<,所以cosα<sinα,即cosα-sinα<0,所以cosα-sinα=-2∵sinα+cosα=,∴1+2sinαcosα=,∴2sinαcosα=-,cosα-sinα2=1+=又∵-<α<0,∴cosα>0>sinα,∴cosα-sinα=,∴===[答案] 1D 2B[方法技巧]正弦、余弦“sinα±cosα,sinα·cosα”的应用sinα±cosα与sinα·cosα通过平方关系联系到一起,即sinα±cosα2=1±2sinαcosα,sinαcosα=,sinαcosα=因此在解题中已知1个可求另外2个.已知α∈0,π,cosα=-,则tanα=B.-D.-解析:选D ∵cosα=-且α∈0,π,∴sinα==,∴tanα==-故选D已知sinα+cosα=,则sinαcosα的值为________.解析:∵sinα+cosα=,∴sinα+cosα2=sin2α+cos2α+2sinαcosα=1+2sinαcosα=,解得sinαcosα=-答案:-已知tanα=-,求:1的值;2的值;3sin2α+2sinαcosα的值.解:1===2=====-3sin2α+2sinαcosα====-突破点二三角函数的诱导公式组一二三四五六一、判断题对的打“√”,错的打“×”1sinπ+α=-sinα成立的条件是α为锐角.2诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍、偶数倍,变与不变指函数名称是否变化.答案:1×2√二、填空题1.已知cosπ+α=-,则sin等于________.解析:cosπ+α=-cosα=-,则cosα=,sin=-sin =-cosα=-答案:-2.已知sin=,则sin等于________.解析:sin=sin=-sin=-答案:-3.已知tan=,则tan=________解析:tan=tan=tanπ--α=-tan=-答案:-1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.”2.利用诱导公式化简三角函数的要求1化简过程是恒等变形;2结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2022·武威六中第一次阶段性检测已知fα=1化简fα;2若-<α<,且fα<,求α的取值范围.解:1fα====-sinα2由已知得-sinα<,∴sinα>-,∴2π-<α<2π+,∈Z∵-<α<,∴-<α<故α的取值范围为应用诱导公式化简求值的常见问题及注意事项1已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.2对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.1.2022·玉林陆川中学期中sin570°的值是A.-D.-解析:选A sin570°=sin720°-150°=-sin150°=-故选A2.2022·湖北八校联考已知sinπ+α=-,则tan=A.2 B.-2D.±2解析:选D ∵sinπ+α=-,∴sinα=,∴tan==±2,故选D3.2022·南充模拟设f=a sinπ+α+b cosπ+β,其中a,b,α,β都是非零实数.若f2022=-1,则f2022=A.1 B.2C.0 D.-1解析:选A ∵f2022=a sin2022π+α+b cos2022π+β=-a sinα-b cosβ=-1,∴a sinα+b cosβ=1,∴f2022=a sin2022π+α+b cos2022π+β=a sinα+b cosβ=4.化简:=________解析:原式===1答案:1[课时跟踪检测][A级基础题——基稳才能楼高]1.2022·新疆普通高中学业水平考试已知∈,cos=,则tan的值为B.-D.-解析:选B 因为∈,所以sin=-=-,所以tan==-故选B2.2022·淮南十校联考已知sin=,则cos的值是A.-D.-解析:选A ∵sin=,∴cos=cos=-sin=-,故选A3.2022·重庆一模log2的值为A.-1 B.-解析:选B log2=log2=log2=-故选B4.2022·遵义模拟若sin=-,且α∈,π,则sinπ-2α=A.-B.-解析:选A ∵sin=cosα=-,α∈,∴sinα=,∴sinπ-2α=sin2α=2sinαcosα=2××=-故选A5.2022·沈阳模拟若=2,则cosα-3sinα=A.-3 B.3C.-解析:选C ∵=2,∴cosα=2sinα-1,又sin2α+cos2α=1,∴sin2α+2sinα-12=1,5sin2α-4sinα=0,解得sinα=或sinα=0舍去,∴cosα-3sinα=-sinα-1=-故选C 6.2022·庄河高中期中已知sin=,则cos等于C.-D.-解析:选A cos=cos=sin=故选A[B级保分题——准做快做达标]1.2022·宝鸡金台区质检已知sin2α=,则tanα+=C.3 D.2解析:选C tanα+=+====2.2022·常德一中月考已知α∈R,sinα+2cosα=,则tan2α=C.-D.-解析:选C 因为sinα+2cosα=,sin2α+cos2α=1,解得或所以tanα=3或-所以tan2α===-或tan2α===-故选C3.2022·株洲醴陵二中、四中期中联考已知2sinα-cosα=0,则sin2α-2sinαcosα的值为A.-B.-解析:选A 由已知2sinα-cosα=0得tanα=,所以sin2α-2sinαcosα===-故选A4.2022·大庆四地六校调研若α是三角形的一个内角,且sin+cos=,则tanα的值是A.-B.-C.-或-D.不存在解析:选A 由sin+cos=,得cosα+sinα=,∴2sinαcosα=-<0∵α∈0,π,∴α∈,∴sinα-cosα==,∴sinα=,cosα=-,∴tanα=-,故选A5.2022·平顶山、许昌联考已知=5,则cos2α+sin2α的值是B.-C.-3 D.3解析:选A 由=5,得=5,解得tanα=2,∴cos2α+sin2α====6.2022·河南中原名校联考已知θ为第二象限角,sinθ,cosθ是关于的方程22+-1+m=0m∈R的两根,则sinθ-cosθ=D.-解析:选B ∵sinθ,cosθ是方程22+-1+m=0m∈R的两根,∴sinθ+cosθ=,sinθ·cosθ=,可得sinθ+cosθ2=1+2sinθ·cosθ=1+m=,解得m=-∵θ为第二象限角,∴sinθ>0,cosθ<0,即sinθ-cosθ>0,∵sinθ-cosθ2=1-2sinθ·cosθ=1-m=1+,∴sinθ-cosθ==,故选B 7.2022·全国卷Ⅰ已知角α的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点A1,a,B2,b,且cos2α=,则|a-b|=D.1解析:选B 由cos2α=,得cos2α-sin2α=,∴=,即=,∴tanα=±,即=±,∴|a-b|=故选B8.2022·武邑中学调研已知sinα=,0<α<π,则sin+cos=________解析:2=1+sinα=,又0<α<π,∴sin+cos>0,∴sin +cos=答案:9.2022·广西桂林等五市联考已知sinθ+cosθ=,θ∈,则tanθ=________解析:∵sinθ+cosθ=,∴sinθ+cosθ2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ=,∴sinθcosθ=-,又<θ<π,∴sinθ-cosθ>0,∴sinθ-cosθ2=sin2θ+cos2θ-2sinθcosθ=1-2sinθcosθ=,∴sinθ-cosθ=,由,解得∴tanθ==-答案:-10.2022·浙江名校协作体检测已知sin·cos=,且0<α<,则sinα=________,cosα=________解析:sincos=-cosα-sinα=sinαcosα=又∵0<α<,∴0<sinα<得sinα=,cosα=答案:11.2022·惠安惠南中学月考已知cosα-sinα=,α∈1求sinαcosα的值;2求的值.解:1∵cosα-sinα=,α∈,平方可得1-2sinαcosα=,∴sinαcosα=2sinα+cosα===,∴原式===cosα+sinα=12.在△ABC中,1求证:cos2+cos2=1;2若cossintan C-π<0,求证:△ABC为钝角三角形.证明:1在△ABC中,A+B=π-C,所以=-,所以cos=cos=sin,所以cos2+cos2=12因为cossintan C-π<0,所以-sin A-cos B tan C<0,即sin A cos B tan C<0因为在△ABC中,0<A<π,0<B<π,0<C<π且sin A >0,所以或所以B为钝角或C为钝角,所以△ABC为钝角三角形。
高考数学一轮复习 第四章 三角函数 解三角形 第2节 同角三角函数的基本关系式与诱导公式练习-人教版

第2节 同角三角函数的基本关系式与诱导公式[A 级 基础巩固]1.(多选题)若cos(π+α)=-12,则sin(α-2π)可以等于()A.12B .-12 C.32D .-32解析:由cos(π+α)=-12,得cos α=12,所以sin α=±32,故sin(α-2π)=sin α=±32. 答案:CD2.(2020·某某模拟)已知直线2x -y -1=0的倾斜角为α,则sin 2α-2cos 2α=() A.25B .-65 C .-45D .-125解析:由题意知tan α=2,所以sin 2α-2cos 2α=2sin αcos α-2cos 2αsin 2α+cos 2α=2tan α-2tan 2α+1=25. 答案:A3.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为()A .-32B.32C .-34D.34解析:因为5π4<α<3π2,所以cos α<0,sin α<0且cos α>sin α, 所以cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,所以cos α-sin α=32. 答案:B4.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A .-π6B .-π3C.π6D.π3解析:因为sin(π+θ)=-3cos(2π-θ), 所以-sin θ=-3cos θ,所以tan θ=3,又|θ|<π2,所以θ=π3.答案:D5.(2020·某某重点中学联考)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos(5π14+α),则tan ⎝⎛⎭⎪⎫15π14+α=()A .-53B .-35C.35D.53 解析:由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,得sin ⎝⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α, 所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53.答案:A6.(2020·某某一中月考)已知cos(α+π)=25,则sin(2α+π2)=()A.725B .-725C.1725D .-1725解析:由cos(α+π)=25,得cos α=-25,则sin ⎝ ⎛⎭⎪⎫2α+π2=cos 2α=2cos 2α-1=-1725.答案:D7.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是()A.35B .-35 C .-3 D .3解析:由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α= 1+tan α1+tan 2α=35. 答案:A8.(多选题)已知-π2<θ<π2,则sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是()A .-3B .-13C .-14D .-1解析:由sin θ+cos θ=a ,a ∈(0,1), 得sin ⎝ ⎛⎭⎪⎫θ+π4=22,a ∈⎝ ⎛⎭⎪⎫0,22, 又-π2<θ<π2,所以0<θ+π4<π4,从而-π4<θ<0,因此-1<tan θ<0,则满足题目的取值为-13与-14.答案:BC9.(2017·卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________.解析:由角α与角β的终边关于y 轴对称,可知α+β=π+2k π(k ∈Z),所以β=2k π+π-α(k ∈Z),所以sin β=sin α=13.答案:1310.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.解析:因为⎝ ⎛⎭⎪⎫5π6+α+⎝ ⎛⎭⎪⎫π6-α=π,所以tan ⎝⎛⎭⎪⎫5π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-3311.(2020·潍坊一中质检)若sin(α+β)=3sin(π-α+β),α,β∈⎝⎛⎭⎪⎫0,π2,则tan αtan β=________. 解析:因为sin(α+β)=3sin(π-α+β),所以sin αcos β=2cos αsin β,所以tan α=2tan β, tan αtan β=2. 答案:212.若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin α·cos α=________. 解析:由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α, 可得sin α=-2cos α,则tan α=-2, sin α·cos α=sin α·cos αsin 2α+cos 2α=tan αtan 2α+1=-25. 答案:-25[B 级 能力提升]13.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1,则f (2 020)=()A .1B .2C .0D .-1解析:因为f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,所以a sin α+b cos β=1,所以f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.答案:A14.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=()A.15B.55C.255D .1 解析:由cos 2α=23,得cos 2α-sin 2α=23,所以cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23, 所以tan α=±55,即b -a 2-1=±55, 所以|a -b |=55. 答案:B15.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 解析:由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ, 即m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,所以m ≤0或m ≥4, 所以m =1- 5. 答案:1- 5[C 级 素养升华]16.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cosα=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:3545。
2015高考数学一轮题组训练:4-2同角三角函数的基本关系式与诱导公式

第2讲同角三角函数的基本关系式与诱导公式基础巩固题组(建议用时:40分钟)一、填空题1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α=________.解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.答案 122.(2014·合肥模拟)sin 585°的值为________.解析 sin 585°=sin(360°+180°+45°)=sin(180°+45°)=-sin 45°=-22.答案 -223.(2014·郑州模拟)1-2sin (π+2)cos (π-2)=________. 解析 1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2.答案 sin 2-cos 24.若3sin α+cos α=0,则1cos 2α+sin 2α的值为________. 解析 由已知得tan α=-13,则1cos 2α+sin 2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=19+11+2×⎝ ⎛⎭⎪⎫-13=103.答案 1035.若sin α是5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=________. 解析 由5x 2-7x -6=0,得x =-35或 2.∴sin α=-35.∴原式=cos α(-cos α)·tan 2αsin α·(-sin α)·(-sin α)=1-sin α=53. 答案 536.(2014·杭州模拟)如果sin(π+A )=12,那么cos ⎝ ⎛⎭⎪⎫32π-A 的值是________. 解析 ∵sin(π+A )=12,∴-sin A =12.∴cos ⎝ ⎛⎭⎪⎫32π-A =-sin A =12. 答案 127.sin 43π·cos 56π·tan ⎝ ⎛⎭⎪⎫-43π的值是________. 解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3 =⎝ ⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3 =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 答案 -3348.(2013·江南十校第一次考试)已知sin ⎝ ⎛⎭⎪⎫π12-α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.解析 ∵sin ⎝ ⎛⎭⎪⎫π12-α=13,又-π<α<-π2,∴7π12<π12-α<13π12,∴cos ⎝ ⎛⎭⎪⎫π12-α=-1-sin 2⎝ ⎛⎭⎪⎫π12-α=-223. 答案 -223二、解答题9.化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)(k ∈Z ). 解 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α) =sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1; 当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1.10.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵sin A +cos A =15,①∴两边平方得1+2sin A cos A =125,∴sin A cos A =-1225,(2)由sin A cos A =-1225<0,且0<A <π,可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形.(3)∵(sin A -cos A )2=1-2sin A cos A =1+2425=4925,又sin A >0,cos A <0,∴sin A -cos A >0,∴sin A -cos A =75,②∴由①,②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.能力提升题组(建议用时:25分钟)一、填空题1.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=________. 解析 ∵⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2. ∴sin ⎝ ⎛⎭⎪⎫π6-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α =cos ⎝ ⎛⎭⎪⎫π3+α=13. 则cos ⎝ ⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=-79. 答案 -792.(2014·衡水质检)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1, 则sin α的值是________.解析 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,又sin 2α+cos 2α=1,α为锐角.故sin α=31010.答案 310103.sin 21°+sin 22°+…+sin 290°=________.解析 sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=45+12=912.答案 912二、解答题4.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧ sin α=2sin β,3cos α=2cos β,①②由①2+②2,得sin 2α+3cos 2α=2.∴sin 2α=12,∴sin α=±22. ∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立;当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.。
高考数学一轮复习专题训练—同角三角函数的基本关系式与诱导公式

同角三角函数的基本关系式与诱导公式考纲要求 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式 公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限 函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( )(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( )答案 (1)× (2)× (3)× (4)×解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13,当k 为偶数时,sin α=-13.2.已知tan α=2,则3sin α-cos αsin α+2cos α=( )A.54B.-54C.53D.-53答案 A解析 原式=3tan α-1tan α+2=3×2-12+2=54.3.已知α为锐角,且cos α=45,则sin(π+α)=( )A.-35B.35C.-45D.45答案 A解析 由题意得sin α=1-cos 2α=35,故sin(π+α)=-sin α=-35.4.(2021·天津南开质检)cos 480°=( ) A.-12B.12C.-32D.32答案 A解析 由诱导公式可得cos 480°=cos(540°-60°)=cos(180°-60°)=-cos 60°=-12.故选A.5.(2021·成都诊断)已知θ∈(0,π),sin θ+cos θ=15,则下列结论错误的是( )A.θ∈⎝⎛⎭⎫π2,πB.cos θ=-35C.tan θ=-34D.sin θ-cos θ=75答案 C解析 ∵sin θ+cos θ=15,①∴(sin θ+cos θ)2=⎝⎛⎭⎫152, 即sin 2θ+2sin θcos θ+cos 2θ=125,∴2sin θcos θ=-2425,∴(sin θ-cos θ)2=1-2sin θcos θ=4925,∵θ∈(0,π),∴sin θ>0,cos θ<0, ∴θ∈⎝⎛⎭⎫π2,π,sin θ-cos θ=75.② ①+②得sin θ=45,①-②得cos θ=-35,∴tan θ=sin θcos θ=45-35=-43.6.(2021·海南期末)若cos ⎝⎛⎭⎫π3-α=15,则sin ⎝⎛⎭⎫π6+α=________.答案 15解析 sin ⎝⎛⎭⎫π6+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π3-α=15.考点一 诱导公式的应用1.化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α答案 C解析 由诱导公式,得原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α,故选C.2.(2021·长春模拟)已知α为锐角,且sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=tan ⎝⎛⎭⎫α+π3,则角α=( ) A.π12 B.π6C.π4D.π3答案 C解析 由条件得sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=sin ⎝⎛⎭⎫α+π3cos ⎝⎛⎭⎫α+π3,又因为α为锐角,所以sin ⎝⎛⎭⎫α-π3=cos ⎝⎛⎭⎫α+π3,即sin ⎝⎛⎭⎫α-π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3,所以有α-π3=π2-⎝⎛⎭⎫α+π3,解得α=π4,故选C. 3.(2021·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________. 答案 -33解析 sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33. 感悟升华 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.如cos(5π-α)=cos(π-α)=-cos α. 考点二 同角三角函数基本关系及其应用角度1 切弦互化【例1】 (1)已知α是第四象限角,tan α=-815,则sin α等于( )A.1517B.-1517C.817D.-817(2)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12B.2C.35D.-38答案 (1)D (2)C解析 (1)因为tan α=-815,所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289,又α是第四象限角,所以sin α=-817.(2)由f ′(x )=2x 2,得tan α=f ′(1)=2, 故sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.角度2 sin α±cos α与sin αcos α的转化【例2】(2020·东北三省三校联考)若sin θ-cos θ=43,且θ∈⎝⎛⎭⎫34π,π,则sin(π-θ)-cos(π-θ)=( ) A.-23B.23C.-43D.43答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79,∴(sin θ+cos θ)2=1+2sin θcos θ=29,又θ∈⎝⎛⎭⎫34π,π,∴sin θ+cos θ<0, ∴sin θ+cos θ=-23, 则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A. 感悟升华 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.【训练1】 (1)已知α是第四象限角,sin α=-1213,则tan(π+α)等于( )A.-513B.513C.-125D.125(2)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________.答案 (1)C (2)43或34解析 (1)因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan(π+α)=tan α=sin αcos α=-125.(2)将sin α+cos α=75两边平方得1+2sin αcos α=4925,∴sin αcos α=1225,∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34.考点三 同角三角函数基本关系式和诱导公式的综合应用【例3】 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53B.23C.13D.59(2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. (3)已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 (1)A (2)-33(3)0 解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53.故选A. (2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π, ∴tan ⎝⎛⎭⎫5π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33.(3)∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a ,sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 感悟升华 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.【训练2】 (1)已知α是第四象限角,且3sin 2α=8cos α,则cos ⎝⎛⎭⎫α+2 021π2=( ) A.-223B.-13C.223D.13(2)(2020·上海徐汇区期中)若sin ⎝⎛⎭⎫α+π4=35,则cos ⎝⎛⎭⎫α-π4=________. 答案 (1)C (2)35解析(1)∵3sin 2α=8cos α,∴sin 2α+⎝⎛⎭⎫3sin 2α82=1, 整理可得9sin 4α+64sin 2α-64=0, 解得sin 2α=89或sin 2α=-8(舍去),又∵α是第四象限角,∴sin α=-223,∴cos ⎝⎛⎭⎫α+2 021π2=cos ⎝⎛⎭⎫α+1 010π+π2 =cos ⎝⎛⎭⎫α+π2=-sin α=223,故选C. (2)∵sin ⎝⎛⎭⎫α+π4=35, ∴cos ⎝⎛⎭⎫α-π4=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π2 =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=35.A 级 基础巩固一、选择题 1.tan 420°=( ) A.- 3 B. 3 C.33D.-33答案 B解析 tan 420°=tan(360°+60°)=tan 60°= 3. 2.若角α的终边在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A.3B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知3s in(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( )A.-π6B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ), ∴-3sin θ=cos θ,∴tan θ=-33, ∵|θ|<π2,∴θ=-π6.4.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝⎛⎭⎫432=-79. 5.1-2sin (π+2)cos (π-2)=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 2答案 A 解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 6.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B.-35C.-3D.3答案 A 解析sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.7.(2021·四川名校联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( )A.-32B.-52C.52D.±32答案 B解析 ∵在△ABC 中,sin A ·cos A =-18,∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2 =-cos 2A +sin 2A -2sin A cos A =-1-2×⎝⎛⎭⎫-18=-52. 8.已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( ) A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0. 消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 二、填空题9.(2021·西安调研)sin(-570°)+cos(-2 640°)+tan 1 665°=________.答案 1解析 原式=sin(-570°+720°)+cos(-2 640°+2 880°)+tan(1 665°-1 620°)=sin 150°+cos 240°+tan 45°=sin 30°-cos 60°+1=12-12+1=1. 10.若sin ⎝⎛⎭⎫θ+π4=35,则sin ⎝⎛⎭⎫3π4-θ=________. 答案 35解析 sin ⎝⎛⎭⎫3π4-θ=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+θ =sin ⎝⎛⎭⎫θ+π4=35. 11.已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________.答案 -43解析 由(sin θ+3cos θ)2=1=sin 2θ+cos 2θ,得6sin θcos θ=-8cos 2θ,又因为θ为第四象限角,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-43. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5, 又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.B 级 能力提升13.已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15B.55C.33D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α,因为α∈⎝⎛⎭⎫0,π2,cos α≠0,所以 2sin α=cos α.又因为sin 2α+cos 2α=1,所以5sin 2α=1,sin 2α=15,sin α=55.故选B. 14.已知α∈[0,2π),cos α+3sin α=10,则tan α=( )A.-3B.3或13C.3D.13 答案 C解析 因为(cos α+3sin α)2=10,所以cos 2α+6sin αcos α+9sin 2α=10,所以cos 2α+6sin αcos α+9sin 2αcos 2α+sin 2α=10,所以1+6tan α+9tan 2α1+tan 2α=10,所以tan α=3. 15.(2021·嘉兴联考)已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=________,cos ⎝⎛⎭⎫α-π4=________.答案 -74 34 解析 sin ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=cos ⎝⎛⎭⎫π4+α, ∵α为钝角,∴34π<π4+α<54π. ∴cos ⎝⎛⎭⎫π4+α<0.∴cos ⎝⎛⎭⎫π4+α=-1-⎝⎛⎭⎫342=-74.cos ⎝⎛⎭⎫α-π4=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫π4+α=34. 16.已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59, 所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z . 所以k π<θ<π4+k π,k ∈Z . 所以0<tan θ<1.所以tan θ=22.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习专题4-2同角三角函数的基本关系及诱导
公式(练)
A 基础巩固训练
1.【浙江省温州新力量联盟期中联考】()
A. B. C. D.
【答案】A
【解析】分析:首先要明确余弦函数的诱导公式,或者记住特殊角的三角函数值,注意其符号.
详解:,故选A.
2.已知则(
)
A. B. C. D.
【答案】D
【解析】由题意可得:.
本题选择D选项.
3.【2017届浙江省台州市高三上期期末】已知,则
( )
A. B. C. D.
【答案】C
【解析】因为,所以,应选答案C。
1 / 5
2 / 5
4.已知,则的值为(
)
A .
B .
C . D
.
【答案】C
【解析】因为,所以,
所以.选C .
5.已知,则(
)
A .
B . C. D
.
【答案】D
【解析】=,故选D
.
B 能力提升训练
1. 已知为锐角,且,则的值是(
)
A .
B .
C . D
.
【答案】C 【
解
析
】
∵
,
∴
,
∵为锐角,。