数学家张益唐破译“孪生素数猜想”20130518

合集下载

石家庄市石门实验学校必修第二册第五单元《概率》检测卷(包含答案解析)

石家庄市石门实验学校必修第二册第五单元《概率》检测卷(包含答案解析)

一、选择题1.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,2013华人数学家张益唐证明了孪生素数猜想是一个弱化形式,问题可以描述为:存在无穷多个素数p,使得2p+是素数,素数对(,2)p p+称为孪生素数对,问:如果从30以内的素数组成的孪生素数对中随机抽取一对,这对孪生素数的积超过20的概率为().A.23B.34C.45D.562.甲、乙、丙、丁四位同学站成一排照相,则甲.乙两人中至少有一人站在两端的概率为()A.56B.12C.13D.233.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A.40243B.70243C.80243D.382434.某城市有连接8个小区A、B、C、D、E、F、G、H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率是()A.13B.23C.14D.345.如图茎叶图表示的是甲.乙两人在5次综合测评中的成绩,其中乙中的两个数字被污损,且已知甲,乙两人在5次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为()951036.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球” 和“恰有2个白球”D .“至多有1个白球”和“都是红球”7.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为( ) A .13B .1745C .245D .171008.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭9.将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是( )A .91216B .31216C .25216D .521610.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 11.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是( )15153512.如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999 B.0.981 C.0.980 D.0.72913.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为()A.760B.16C.1360D.14二、解答题14.某校的课外兴趣小组的同学们进行了一次关于全市“双创双修”知识答题的问卷调查活动,收集到的200张问卷统计得分汇总制成了一张频率直方图.(1)求问卷得分的中位数和平均数;(2)若得分不低于80则为优秀,按分层抽样再次回访8名参加过问卷调查并得分优秀的人,在这8人中还需随机挑选2人做深入访谈,求这两名访谈对象中至少有一人问卷得分超过90的概率.15.2021届高考体检工作即将开展,为了了解高三学生的视力情况,某校医务室提前对本校的高三学生视力情况进行调查,在高三年级1000名学生中随机抽取了100名学生的体检数据,并得到如下图的频率分布直方图.年级名次 是否近视 1~100101~1000近视 40 30 不近视1020(1)若直方图中前四组的频数依次成等比数列,试估计全年级高三学生视力的中位数(精确到0.01);(2)该校医务室发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对抽取的100名学生名次在1~100名和101~1000名的学生的体检数据进行了统计,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(3)在(2)中调查的不近视的学生中按照分层抽样抽取了6人,进一步调查他们良好的护眼习惯,求在这6人中任取2人,至少有1人的年级名次在1~100名的概率.()2P K k ≥0.10 0.05 0.025 0.010 0.005 k2.7063.8415.0246.6357.87922()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.“工资条里显红利,个税新政人民心”,随着2021年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革至2019年实施以来发挥巨大作用.个税新政主要内容包括: (1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如表:年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.假设该市该收入层级的IT从业者都独自享受专项附加扣除,将预估的该市该收入层级的IT从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:(1)求该市该收入层级的IT从业者2021年月缴个税的所有可能及其概率.(2)根据新旧个税方案,估计从2021年1月开始,经过多少个月,该市该收入层级的IT 从业者各月少缴交的个税之和就超过2019年的月收入?17.在新冠肺炎疫情期间,为了认真贯彻落实北京市教委关于做好中小学生延期开学期间“停课不停学”工作要求,各校以教师线上指导帮助和学生居家自主学习相结合的教学模式积极开展工作.为了解学生居家自主学习的情况,从某校高二年级随机抽取了100名学生,获得了他们一天中用于居家自主学习的时间分别在[)[)[)0,1,1,2,2,3,[)[)[)3,4,4,5,5,6,[)[]677,8,,(单位:小时)的数据,整理得到的数据绘制成频率分布直方图(如图).(1)由图中数据,求a 的值,并估计从该校高二年级中随机抽取一名学生,这名学生该天居家自主学习的时间在[)3,4的概率;(2)现从抽取的100名学生该天居家自主学习的时间在[)0,1和[)1,2的人中任选2人,进一步了解学生的具体情况,求其中学习时间在[)0,1中至少有1人的概率;(3)假设同一时间段中的每个数据可用该时间段的中点值代替,试估计样本中的100名学生该天居家自主学习时间的平均数.18.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法? (2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? 19.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.20.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.21.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?22.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照90,100分成6组,制成如图所示频率分布直方图. (40,50),[50,60),[60,70),…,[](1)求图中x的值.60,80的学生中按分层抽样的方法抽取5人进行(2)现从被调查的问卷满意度评分值在[)座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率. 23.在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a,b的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X,求X的分布列及数学期望.24.一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,一轮游戏中,若“摸出的两个都是红球”出现3次获得200积分,若“摸出的两个都是红球”出现1次或2次获得20积分,若“摸出的两个都是红球”出现0次则扣除10积分(即获得-10积分).(1)求每次游戏中,“摸出的两个都是红球”的概率p;(2)设每轮游戏获得的积分为X,求X的分布列与数学期望;(3)玩过这款游戏的许多人发现,若干轮游戏后,与最初的积分0相比,积分没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】列举出30以内的素数组成的孪生素数对有4个,这对孪生素数的积超过20包含的基本事件有3个,由此能求了这对孪生素数的积超过20的概率.【详解】30以内的素数组成的孪生素数对有(3,5),(5,7),(11,13),(17,19),从30以内的素数组成的孪生素数对中随机抽取—对,基本事件个数n=4,这对孪生素数的积超过20包含的基本事件有:(5,7),(11,13), (17,19),共3个,所以这对孪生素数的积超过20的概率为34 p=,故选:B【点睛】本题主要考查了概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,属于中档题.2.A解析:A【分析】本题先求基本事件总数,再求要求事件是基本事件个数,最后根据古典概型解题即可.【详解】∵甲、乙、丙、丁四位同学站成一排照相,基本事件总数4424n A==,甲、乙两人中至少有一人站在两端包含的基本事件个数42242220m A A A =-= ∴甲,乙两人中至少有一人站在两端的概率为:205246m P n ===.. 故选:A. 【点睛】本题考查古典概型,是简单题.3.C解析:C 【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.4.B解析:B 【分析】列举出所有的基本事件,记“此人经过市中心O ”为事件M ,确定事件M 所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】此人从小区A 前往H 的所有最短路径为:A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条.()4263P M ∴==,即他经过市中心的概率为23.故选:B.【点睛】本题考查概率的应用,是中等题.解题时要认真审题,仔细解答,注意列举法的灵活运用.5.A解析:A【解析】【分析】根据茎叶图分别求出甲、乙的中位数,平均数,得到模糊成绩的值,利用古典概型求解即可【详解】由题意可得:甲的成绩为:84、86、91、98、98;中位数为91,平均数为4575;乙的成绩为:86,88,90+x,90+y,99 (x≤y);∵甲,乙中位数相同;∴90+x=91⇒x=1;乙的平均数为4545y+;∵乙的平均成绩低于甲;∴1≤y<3;⇒y=1或2.∴乙的平均成绩低于甲的概率p29=;故选:A.【点睛】本题考查了茎叶图,以及中位数、平均数的性质及古典概型,考查了学生的计算能力,属于基础题.6.C解析:C【分析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A, “至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B, “至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C, “恰有1个白球”表示取出2个球1个红球1个白球, 与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D, “至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.7.B解析:B 【分析】可将中奖的情况分成第一次两球连号和第二次取出的小球与第一次取出的号码相同两种情况,分别计算两种情况的概率,根据和事件概率公式可求得结果. 【详解】中奖的情况分为:第一次取出两球号码连号和第二次取出两个小球与第一次取出的号码相同两种情况第一次取出两球连号的概率为:26513C =第二次取出两个小球与第一次取出号码相同的概率为:261121345C ⎛⎫-⨯= ⎪⎝⎭∴中奖的概率为:121734545+= 本题正确选项:B 【点睛】本题考查和事件概率问题的求解,关键是能够根据题意将所求情况进行分类,进而通过古典概型和积事件概率求解方法求出每种情况对应的概率.8.C解析:C 【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率. 【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C ⎛⎫⋅⋅ ⎪⎝⎭, 若前两局都是甲赢,所求概率为223⎛⎫ ⎪⎝⎭,因此,甲获胜的概率为22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.9.A解析:A 【解析】 【分析】事件“至少出现一次6点向上”的对立事件是“出现零次6点向上”,由此借助对立事件的概率进行求解. 【详解】由题事件“至少出现一次6点向上”的对立事件是“出现零次6点向上”所以至少出现一次6点向上的概率0303111259111166216216p C ⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭故选A. 【点睛】本题考查应用对立事件求概率,属于一般题.10.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.11.D解析:D 【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项. 【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D.【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.12.B解析:B 【分析】求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解. 【详解】由题意,开关1、2在某段时间内均正常工作的概率10.90.90.81P =⨯=, 开关3正常工作的概率20.9P =,故该系统正常工作的概率()()()()12111110.8110.90.981P P P =---=--⨯-=, 所以该系统的可靠性为0.981. 故选:B.13.C解析:C 【分析】根据题意,结合排列组合,利用插空法和特殊位置法,先排丙,再插甲乙,即可得解. 【详解】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C. 【点睛】本题考查了排列组合,考查了插空法和特殊位置法,在解题过程中注意各种情况的不重不漏,有一定的计算量,属于较难题.二、解答题14.(1)中位数是72.5,平均值为72;(2)1328. 【分析】(1)求出频率0.5对应的数值即为中位数,取各组数据中间值乘以频率相加即得平均值;(2)按分层抽样求出[80,90),[90,100]两组为抽取的人数,然后求挑选2的方法数和至少有一人问卷得分超过90的方法数后可计算出概率. 【详解】(1)由题意分数在[50,70)间的频率为(0.0150.025)100.4+⨯=, 因此中位数在[70,80]间,设中位数为x ,则700.50.4100.4x --=,解得72.5x =. 平均值为:(550.015650.025750.04850.015950.005)10⨯+⨯+⨯+⨯+⨯⨯=72;(2)由频率分布直方图知[80,90),[90,100]两组人数比为0.1530.051=,因此8人中[80,90)这组有6人,[90,100]这组有2人,∴所求概率为112622281328C C C P C +==. 【点睛】关键点点睛:本题考查频率分布直方图,由频率分布直方图求中位数,均值等,考查古典概型.解题关键是正确认识频率分布直方图,由频率分布直方图确定所有数据.然后根据各个数据特征进行计算. 15.(1)4.74;(2)能;(3)35. 【分析】(1)根据题中所给的频率分布直方图中对应的数据,可以求得第三组、第六组、第五组的频数以及前四组的频数和,结合前四组的频数成等比数列,得出相应的数据,利用中位数的特征,两边各占一半,求得结果;(2)利用题中所给的列联表,求得2K 的值,与表中所给的临界值比较,得到结论; (3)根据题意,求出满足条件的基本事件数和总的基本事件数,利用古典概型概率公式求解即可. 【详解】(1)由图可知,第三组和第六组的频数为1000.80.216⨯⨯=人 第五组的频数为100 1.20.224⨯⨯=人 所以前四组的频数和为()100241660-+=人 而前四组的频数依次成等比数列故第一组的频数为4人,第二组的频数为8人,第四组的频数为32人 所以中位数落在第四组,设为x , 因此有4.650(4816)0.232x --++=(或1.6( 4.6)0.22x -=) 解得 4.7375x = 所以中位数是4.74(2)因为22100(40203010)50507030K ⨯⨯-⨯=⨯⨯⨯所以21004.76221K =≈ 所以2 3.841K >因此在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系(3)依题意按照分层抽样在不近视的学生中抽取了6人中年级名次在1~100名和101~1000名的分别有2人和4人从6人中任意抽取2人的基本事件共15个 至少有1人来自于1~100名的基本事件有9个 所以至少有1人的年级名次在1~100名的概率为93155P ==. 【点睛】方法点睛:该题考查的是有关概率与统计的问题,解题方法如下:(1)根据频率分布直方图中所给的数据求相应的量,利用中位数的定义求得结果; (2)利用公式求得2K 的值,结合临界值得到结果; (3)利用古典概型概率公式求得概率. 16.(1)答案见解析;(2)经过12个月. 【分析】(1)计算出题中四类人群每月应纳税所得额,结合题意求出每类人群的月缴个税及其概率;(2)计算出在旧政策下,该收入阶层的IT 从业者每月应纳税所得额,可求得新政策下,每月少缴个税额,设经过x 个月该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入,根据已知条件可得出关于x 的不等式,结合x ∈N 可求得结果. 【详解】(1)由题意,既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1.①既不符合子女教育扣除又不符合赡养老人扣除的人群每月应纳税所得额为240005000100018000--=元,月缴个税为30000.0390000.160000.22190⨯+⨯+⨯=元,其概率为25; ②只符合子女教育扣除但不符合赡养老人扣除的人群每月应纳税所得额为2400050001000100017000---=元,月缴个税为30000.0390000.150000.21990⨯+⨯+⨯=元,其概率为15; ③只符合赡养老人扣除但不符合子女教育扣除的人群每月应纳税所得额为2400050001000200016000---=元,月缴个税为30000.0390000.140000.21790⨯+⨯+⨯=元,其概率为15; ④既符合子女教育扣除又符合赡养老人扣除的人群每月应纳税所得额为24000500010001000200015000----=元,月缴个税为30000.0390000.130000.21590⨯+⨯+⨯=元,其概率为15; (2)在旧政策下,该收入阶层的IT 从业者每月应纳税所得额为24000350020500-=元,故月缴个税为15000.0330000.145000.2115000.254120⨯+⨯+⨯+⨯=元, 在新政策下,该收入阶层的IT 从业者每月应纳税所得额为()212190199017901590195055⨯+++⨯=元,每月少缴个税412019502170-=元,设经过x 个月该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入,则217024000x ≥,又x ∈N ,解得()12x x N ≥∈,所以经过12个月,该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入. 【点睛】关键点点睛:解决本题第一问的关键在于理解题中个税新旧政策中的扣税方案,并依据题意计算出各类人群所扣的税额;解决本题第二问的关键在于求出新旧政策下所扣的税额,并结合题意列不等式求解. 17.(1)0.1a =;0.1;(2)710;(3)5.38小时. 【分析】(1)由频率之和等于1求出a 的值,这名学生该天居家自主学习的时间在[)3,4的概率; (2)由频率分布直方图可知自主学习时间在[)0,1和[)1,2的人分别有2人和3人,设在[)0,1的2人分别为,a b ,在[)1,2的3人分别,,A B C ,利用列举法结合古典概型的概率公式得出概率;(3)由频率分布直方图中的数据,求解平均数即可. 【详解】解:(1)因为(0.02+0.03+0.05+0.1520.20.3)11a +⨯++⨯=,所以0.1a =. 由图可得:随机抽取的100名学生中居家自主学习时间该天在[)3,4的频率为0.110.1⨯= 所以从该校高二年级中随机抽取一名学生,这名学生该天居家自主学习时间在[)3,4的概率为0.1.(2)设“抽取的2人其中学习时间在[)0,1中至少有1人”为事件A。

湖北省黄冈市高二上学期期末数学试题(解析版)

湖北省黄冈市高二上学期期末数学试题(解析版)

一、单选题1.已知直线与轴垂直,则为( ) ():1340l a x ay a +-++=y a A . B .0C .D .或01-4-1-【答案】A【分析】由直线与轴垂直得到方程和不等式,求出的值. y a 【详解】因为与轴垂直, ():1340l a x ay a +-++=y 所以直线的斜率为0,l 所以,且,解得. 10a +=30a -≠1a =-故选:A.2.已知等比数列的前项和为,,且,则( ) {}n a n n S 24S =3214S a a =+5S =A .40 B .120C .121D .363【答案】C【分析】由题目条件求出公比和首项,利用等比数列求和公式求出答案. 【详解】设公比为,由,可得, q 3214S a a =+321124a a a a a +=++所以,所以, 323a a =323a q a ==由,可得,即,所以,24S =114a a q +=144a =11a =所以. ()5515113121113a q S q--===--故选:C.3.年华人数学家张益唐证明了孪生素数(注:素数也叫做质数)猜想的一个弱化形式,孪生2013素数猜想是希尔伯特在年提出的个问题之一,可以这样描述:存在无穷多个素数使得190023p 是素数,素数对称为孪生素数.从以内的素数中任取两个,其中能构成孪生素数的2p +(),2p p +10概率为( )A .B .C .D .16131223【答案】B【分析】列举出以内的素数,以及任取两个不同的素数构成的数对,确定孪生素数的个数,利用10古典概型的概率公式可求得所求事件的概率. 【详解】以内的素数有、、、,102357任取两个不同的素数有、、、、、,共个, ()2,3()2,5()2,7()3,5()3,7()5,76其中孪生素数有、,共个,故所求概率为. ()3,5()5,722163P ==故选:B.4.如图,已知空间四边形,M ,N 分别是边OA ,BC 的中点,点满足,设OABC G 2MG GN =,,,则( ) OA a= OB b = OC c = OG =A .B .C .D .111333a b c ++ 111633a b c ++ 111366a b c ++ 111666a b c ++【答案】B【分析】根据向量的线性运算一步步将向量化为关于,,,即可整理得出答案. OGOA OB OC 【详解】, ()12122323OG OM MG OA MN OA MA AB BN =+=+=+++ , 12112322OA OA OB OA BC ⎛⎫=++-+ ⎪⎝⎭, ()12112322OA OA OB OA OC OB ⎡⎤=++-+-⎢⎥⎣⎦, 111633OA OB OC =++. 111633a b c =++ 故选:B.5.已知,,若直线上存在点,使得,则实数的取值范()1,0A -()10B ,()2y k x =-P 90APB ∠=︒k 围为( )A .B . ⎡⎢⎣⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝C .D . ⎛ ⎝,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭【答案】B【分析】根据题意分析可得直线与圆:有公共点(公共点不能是、),()2y k x =-O 221x y +=A B 结合直线与圆的位置关系分析运算.【详解】若,则点在以,为直径的圆上(点不能是、), 90APB ∠=︒P ()1,0A -()10B ,P A B ∵以,为直径的圆的圆心为,半径,则圆的方程为, ()1,0A -()10B ,()0,0O 1r =O 221x y +=即直线与圆:有公共点(公共点不能是、), ()2y k x =-O 221x y +=A B当直线与圆:,解得;()2y k x =-O 221x y +=1≤k ⎡∈⎢⎣当直线与圆:的公共点为A 或B 时,则直线即为x 轴,即()2y k x =-O 221x y +=()2y k x =-;0k =综上所述:实数的取值范围为. k ⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝ 故选:B.6.已知是双曲线右支上一点,记到双曲线左焦点的距离为,到P ()222210,0x y a b a b -=>>P 1F 1d P 双曲线一条渐近线的距离为,若的最小值等于双曲线的焦距长,则双曲线的渐近线方程为2d 12d d +( ) A .B .C .D .43y x =±34y x =±53y x =±45y x =±【答案】A【分析】由双曲线定义得到,故,数形结合得到当点为线段122d PF a =+21222PF d a d d +=++P 与双曲线的交点时,此时取得最小值,从而列出方程,求出,得到渐近线方2F M 22PF d +43a b =程.【详解】由双曲线定义可知:, 122PF PF a -=故,故, 122d PF a =+21222PF d a d d +=++过点作渐近线的垂线,垂足为,2F 1:b l y x a=M当点为线段与双曲线的交点时,此时取得最小值, P 2F M 22PF d +最小值即为,2F M,解得:,22a c =22b a c +=两边平方得:, 222444b ab a c ++=又, 222+=a b c 所以, 43a b =渐近线方程为. 43b y x x a =±=±故选:A 7.已知在大小为的二面角中,,,于点,于点,且3πl αβ--A α∈B β∈AC l ⊥C BD l ⊥D ,则直线与所成角的余弦为( )22CD DB AC ===AB CD ABCD .12【答案】B【分析】以、为邻边作平行四边形,连接,计算出、的长,证明出CD BD CDBE AE AE BE ,利用勾股定理可求得的长,即可求解BE AE ⊥AB 【详解】如下图所示,以、为邻边作平行四边形,连接,CD BD CDBE AE因为,,则,BD CD ⊥//CE BD CE CD ⊥又因为,,,故二面角的平面角为, AC CD ⊥AC α⊂CE β⊂l αβ--π3ACE ∠=因为四边形为平行四边形,则,,CDBE 2CE BD ==2BE CD ==所以在中,,则 ACE △222π2cos3AE AC CE AC CE =+-⋅AE =,则,,,平面,//BE CD BE CE ⊥BE AC ⊥AC CE C = ,AC CE ⊂ACE 故平面,BE ⊥ACE因为平面,则,故.AE ⊂ACE BE AE ⊥AB =,所以直线与所成角相当于直线与所成角,即,//BE CD AB CD AB BE ABE ∠所以, cos ABE ∠==故选:B8.已知椭圆的左、右焦点分别为,,过的直线交椭圆于A ,B 两()2222:10x y C a b a b+=>>1F 2F 2F点,,且,椭圆,则实数( )22AF F B λ= 120AF AF ⋅= C λ=A . B .2 C . D .32313【答案】D【分析】设,根据椭圆的定义求出,,利用22(0)AF B t t F λ==> 1=2AF a t -1=2aBF a λ-即可求解.12AF AF ⊥【详解】因为,设,由椭圆的定义可得:,则22AF F B λ=22(0)AF B t t F λ==> 12=2AF AF a +,因为,所以,1=2AF a t -120AF AF ⋅=12AF AF ⊥所以,即,又因为椭圆, 2221212=AF AF F F +222(2)4a t t c -+=C所以,则有,a =2222(2)42a t t c a -+==所以,则,则,t a =2a F B λ= 2F B aλ= 由,所以,因为,所以,12=2BF BF a +1=2aBF a λ-120AF AF ⋅=12AF AF ⊥所以,即,解得:,22211=AF AB BF +22221(1(2a a a a λλ++=-3λ=故选:.D二、多选题9.连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件“第一次出现3点”,“第A =B =的有( )A .A 与B 不互斥且相互独立 B .A 与D 互斥且不相互独立C .B 与C 不互斥且相互独立D .B 与D 互斥且不相互独立【答案】ABC【分析】根据给定条件,求出事件A ,B ,C ,D 的概率,再利用互斥事件、相互独立事件的定义判断作答.【详解】连续抛掷一枚质地均匀的骰子两次的试验结果有:,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),共36个不同结果,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)事件A 所含的结果有:,共6个,()()()()()()3,1,3,2,3,3,3,4,3,5,3,6事件B 所含的结果有24个,事件C 所含的结果有18个,事件D 所含的结果有:()()()4,6,5,5,6,4,共3个, 因此, 6124218131(),(),(),()3663633623612P A P B P C P D ========对于A ,事件A 与B 都含有,共4个结果,即事件A 与B 可以同时发生, (3,1),(3,2),(3,3),(3,4)而,A 与B 不互斥且相互独立,A 正确; 41()()()369P AB P A P B ===对于B ,事件A 与D 不能同时发生,,A 与D 互斥且不相互独立,B 正确; ()0()()P AD P A P D =≠对于C ,事件B 与C 都含有,共12(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),(5,2),(5,4),(6,1),(6,3)个结果,即事件B 与C 可以同时发生,,B 与C 不互斥且相互独立,C 正确; 121()()()363P BC P B P C ===对于D ,事件B 与D 都含有,即B 与D 可以同时发生,, (6,4)121()()()36312P BD P B P D =≠⨯=因此B 与D 不互斥且不相互独立,D 错误. 故选:ABC10.已知等差数列的前项和为,且,,数列的前项和为{}n a n n S 6135S S S <<121n n n n b a a a ++={}n b n nT .则下列说法正确的有( ) A .,B .当且仅当时,取得最小值 90a <80b >9n =n SC .当时,的最大值为17D .当且仅当时,取得最大值0n S <n 8n =n T【分析】由结合等差数列的角标性质判断ABC ;由裂项相消求和法判断D. 6135S S S <<【详解】对于A :设等差数列的公差为,因为,所以, {}n a d 6135S S S <<6560S S a -=<因为,所以.136789101112131070S S a a a a a a a a +-==+++++>100a >因为,所以. 1312111098711603594()0a a a a a S a a a a a S -=+++++++=+<1090a a +<由,可得,因为,所以,故A 正确;100a >1090a a +<90,0a d <>890a a d =-<8891010b a a a =>对于B :因为,,所以当且仅当时,取得最小值,故B 正确; 90,0a d <>100a >9n =n S 对于C :,即当时,的最大值不是17,故C 错误; ()()118910181818022a a a a S ++==<0n S <n 对于D :1211211112n n n n n n n n b a a a d a a a a +++++⎛⎫==- ⎪⎝⎭122323341121212111111111122n n n n n n n T d a a a a a a a a a a a a d a a a a +++++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎝⎭⎝⎭因为,所以当最小时,最大.0d >121n n a a ++n T 当时,,,此时最小,即当时,取得最大值,故D 正确;8n =90a <100a >121n n a a ++8n =n T 故选:ABD11.如图,直四棱柱的底面是边长为2的正方形,,点是棱的中1111ABCD A B CD -1CC t =Q 1CC 点,点在底面内运动(包括边界),则下列说法正确的有( )P ABCDA .存在点使得平面P 1//A P 11BCC B B .当时,存在点使得直线与平面所成的角为 2t =P 1A P ABCD π6C .当时,满足的点有且仅有两个 2t=1A P PQ ⊥P D .当的点t =1A P PQ ⊥P【分析】根据直棱柱的性质及面面平行的性质判断A ,建立空间直角坐标系,利用空间向量判断B 、C 、D.【详解】解:如图建立空间直角坐标系D -xyz ,则,,,,()12,0,A t 0,2,2t Q ⎛⎫ ⎪⎝⎭()0,0,0D ()2,2,0B 对于A :由直棱柱的性质可知平面平面,当时平面,故A 正11//A D DA 11B C CB P AD ∈1//A P 11BCC B 确;对于B :当时,设,,则, 2t =(),,0P x y [],0,2x y ∈()12,,2P x A y =--显然平面的法向量可以为,ABCD ()0,0,1n =设直线与平面所成的角为,则1A P ABCD θ11sin P nP n A A θ⋅==⋅若直线与平面所成的角为,则,1A P ABCD π61sin 2θ==4=所以,因为,所以,,()22212x y -+=[],0,2x y ∈()[]220,4x -∈[]20,4y ∈所以,故不存在使得,()[]2220,8x y -+∈[],0,2x y ∈()22212x y -+=即不存在点使得直线与平面所成的角为,故B 错误; P 1A P ABCD π6对于C :由,, ()12,,2P x A y =-- (),2,1PQ x y =--因为,所以,1A P PQ ⊥()()12220A P PQ x x y y ⋅=--+--=所以,所以,即,所以满足的点有且仅有个,故C()()22110x y -+-=11x y=⎧⎨=⎩()1,1,0P 1A P PQ ⊥P 1错误;对于D :当时,,,, t =1A⎛ ⎝12,,A P x y ⎛=- ⎝,2PQ x y ⎛=-- ⎝ 因为,所以,即,1A P PQ ⊥()()1220P PQ x x A y y ⋅=--+-= ()()224113x y -+-==又,则圆心轴、轴分别交于点、[],0,2x y ∈()1,1E x y 1M ⎛⎫ ⎪ ⎪⎝⎭⎛过点作交于点,则,所以,则,又E EF AD ⊥AD F MF =1sin 2MF MEF ME ∠==π6MEF ∠=, π4DEF ∠=所以,所以,π12MED DEF MEF ∠=∠-∠=π26MEN MED ∠=∠=圆弧的长度,所以点D 正确;MN π6l ==P故选:AD12.已知抛物线的焦点为,过的直线与抛物线交于两点,点,直线24y x =F F l ,A B ()2,0T 与抛物线的另一个交点分别为,则下列说法正确的有( ),AT BT ,C D A .直线过定点CD ()3,0B .与的面积之比为ATB A CTD△1:4C .若直线,斜率都存在,且分别为,,则 AB CD 1k 2k 2112k k =D .与的面积之和的最小值为ATF △CTD △【答案】BCD【分析】可通过特殊情况,直线斜率不存在时求得直线不过定点,排除A ,也可以通过l CD ()3,0设出的方程与抛物线方程联立,求得纵坐标关系,两点式写出方程,化简,,AC BD AB ,,,A B C D CD 整理可得方程过定点,用纵坐标表示两个三角形面积之比,直线,斜率化简()4,0,,,A B C D AB CD 可判断B ,C 正确,与的面积之和用纵坐标表示,化简后利用基本不等式CTD △,,,A B C D可求得最小值.【详解】当与垂直时,,又, l x (1,2),(1,2)A B -(2,0)T , :24=24AT y x BT y x ∴=-+-,:与抛物线方程联立,得, AT 2244y x y x =-+⎧⎨=⎩(4,4)C -与抛物线方程联立,得, BT 2244y x y x =-⎧⎨=⎩(4,4)D ,不过定点,所以A 错误.:4CD x ∴=()3,0如图:设,交轴于,11223344(,),(,)(,)(,)A x y B x y C x y D x y CD x E 设,得,222,4x ty AC x ty y x =+⎧=+∴⎨=⎩:2480y ty --=则, 131388,y y y y -=-=设,得, 222,4x my BD x my y x =+⎧=+∴⎨=⎩:2480y my --=则, 242488,y y y y -=-=设,得,211,4x ny AB x ny y x =+⎧=+∴⎨=⎩:2440y ny --=则, 121244,y y y y -=-= 123434348864()(4,16,y y y y y y y y --∴===-=-直线 CD()()()()()34444434223434344:14y y x x x x x x y y y y x x y y y y -----=-==-+-()()()()2444x x x x y y y x x y y y --++-++,443434344()1644164(4)x x x x x y y y y y y --+--===+++所以直线过定点CD ()4,0, 43123434434334438()881()11()44121()2()2164()2ATBDTCy y y y FTy y y y S S y y y y y y y y TE -----⋅⋅-⋅--======-⋅-⋅--⋅A A 所以B 正确.()()4322214343432212221143212143211414y y y y x x y y y y k x x y y k x x y y y y y y x x ------==⋅=⋅------, 214343434388281y y y y y y y y y y ++-==++⋅-==-所以C 正确.1431112()22ATF CTD S S y y y +=⨯⨯+⨯⨯-A A , 1433333318162022y y y y y y y y ---=+-=⨯+-=-333200,ATF CTD y S S y y -<∴+=-≥=A A 所以D 正确. 故选:BCD三、填空题13.是空间向量的一组基底,,,,已知点在{},,a b c 2OA a mb c =++ 2OB a b =+OC a b c =++ O 平面内,则______. ABC m =【答案】3【分析】根据空间向量共面定理可得存在与 使得,从而可求解.λμOC OA OB λμ=+【详解】因为点在平面内,所以,,共面, O ABC OA OB OC所以存在与 使得,λμOC OA OB λμ=+即,()()()()2222a b c a mb c a b a m b c λμλμλμλ++=++++=++++所以,解得.21211m λμλμλ+=⎧⎪+=⎨⎪=⎩113m λμ=⎧⎪=-⎨⎪=⎩故. 3m =故答案为:3.14.已知圆被直线所截得的两段圆弧的弧长之比为,且圆上恰有三个不同的点到直线的C l 1:2C l 距离为,则直线被圆所截得的弦长为______. 1l C 【答案】【分析】设圆的半径为,作出图形,计算出圆心到直线的距离为为,根据题意可得出关C r C l 2r于的等式,解出的值,利用勾股定理可求得直线被圆所截得的弦长.r r l C 【详解】设圆的半径为,因为圆被直线所截得的两段圆弧的弧长之比为,C r C l 1:2则劣弧所对的圆心角为,所以,圆心到直线的距离为,120C l 120cos 22rd r ==将直线平移,使得平移后的直线与直线之间的距离为,如下图所示:l l 1假设平移后的直线为、,则这两条直线一条与圆相切,一条与圆相交, 1l 2l C C 不妨设直线与圆相切,则直线与之间的距离为,可得, 1l C l 1l 12rr -=2r =所以,直线截圆所得弦长为l C=故答案为:15.已知,分别为椭圆的左、右焦点,焦距为8,过的直线与该椭圆1F 2F ()222210x y a b a b+=>>1F 交于M ,N 两点,若的最小值为,则周长为______.MN 1852F MN A 【答案】20【分析】根据焦距为8,的最小值为可得:,,结合椭圆的定义进而求解. MN 1854c =5a =【详解】由题意可知:,解得:,, 2222282185c b a a b c =⎧⎪⎪=⎨⎪=+⎪⎩4c =5a =由椭圆的定义可得:周长为, 2F MN A 420a =故答案为:.2016.已知的前项和为,,,则______.{}n a n n S ()()1221n n n n a a n +++-=50600S =12a a +=【答案】12-【分析】根据题意令和,代入整理可得43,n k k =+∈N 44,n k k =+∈N ,利用并项求和结合等差数列求和运算求解. 4645444378k k k k a a a a k ++++++=++【详解】当时,则为偶数,43,n k k =+∈N ()()()143222n n k k +=++为偶数,()()()()1222452n n k k ++=++可得,,()()4543122143k k n n n n a a a a k +++++-==++()()()122314644144n n n n k k a a a a k +++++++-+==+两式相加可得:,4645444378k k k k a a a a k ++++++=++故 ()()()()5012501234567891047484950......S a a a a a a a a a a a a a a a a a =+++=++++++++++++++,()()()()12121212795715 (956126002)a a a a a a +=+++++=++=++=解得. 1212a a +=-故答案为:.12-【点睛】方法点睛:本题中出现,故应讨论的奇偶性,根据题意把相邻的四项合()()121n n +-()12n n +并为一项,组成一个新的数列,再进行求和运算,同时注意对的处理.12a a +四、解答题17.某公司招聘考试分笔试与面试两部分进行,每部分成绩只记“合格”与“不合格”,两部分成绩都合格者则被公司录取.甲、乙、丙三人在笔试部分合格的概率分别为,,,在面试部分合格的452334概率分别为,,,所有考试是否合格相互之间没有影响.122335(1)假设甲、乙、丙三人都同时参加了笔试和面试,谁被录取的可能性最大?(2)当甲、乙、丙三人都参加了笔试和面试之后,不考虑其它因素,求三人中至少有一人被录取的概率.【答案】(1)丙 (2) 4960【分析】(1)记甲、乙、丙三人被录取分别为事件A ,B ,C ,且A ,B ,C 相互独立,甲、乙、丙三人被录取即三人即通过笔试部分又通过面试部分,由独立事件概率的乘法公式计算得出,()P A ,,比较概率的大小即可得出答案;()P B ()P C (2)记三人中至少有一人被录取为事件,则与互为对立事件,从而根据对立事件的D D A B C 计算公式与独立事件概率的乘法公式计算得出答案.【详解】(1)记甲、乙、丙三人被录取分别为事件A ,B ,C ,则A ,B ,C 相互独立,则,,,()412525P A =⨯=()224339P B =⨯=()3394520P C =⨯=,()()()P A P B P C << 丙被录取的可能性最大.∴(2)记三人中至少有一人被录取为事件, D 则与互为对立事件,D A B C .()()()()()24949111111592060P D P C P P P C A B A B ⎛⎫⎛⎫⎛⎫∴=-=-=----= ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 18.已知直线,,且. ()1:2220l a x y a ---=2:410l x ay a -+-=12l l ∥(1)求与之间的距离;1l 2l (2)一束光线从出发经反射后平行于轴射出,求入射光线所在的直线方程. ()2,3P 1l x【答案】(2) 43170x y +-=【分析】(1)由平行条件得出的值,再由距离公式求解;a (2)由关于的对称点得出反射光线的方程,并与直线联立得出入射点,进而由()2,3P 1l ()00,P x y '1l 两点式写出方程.【详解】(1)由可得:,解得:或 12l l ∥()()()22140a a -⋅---⋅=2a =1-当时,,,此时与重合,舍去1a =-1:420l x y --+=2:420l x y +-=1l 2l当时,,,此时,符合题意 2a =1:240l x y --=2:4210l x y -+=12l l ∥故与之间的距离为.1l 2ld ==(2)设关于的对称点为,则()2,3P 1l ()00,P x y ' 解得:,∴ 000032122324022y x x y -⎧⋅=-⎪-⎪⎨++⎪--=⎪⎩0022595x y ⎧=⎪⎪⎨⎪=⎪⎩229,55P '⎛⎫ ⎪⎝⎭联立,解得:,∴入射点为. 24095x y y --=⎧⎪⎨=⎪⎩291095x y ⎧=⎪⎪⎨⎪=⎪⎩299,105⎛⎫ ⎪⎝⎭故入射光线所在的直线方程为,即. 9335292210y x --=--43170x y +-=19.已知数列的前项和为,且,,数列是等差数列. {}n a n n S 11a =223a =(){}423n n nS n a ++(1)求证数列为等比数列;n a n ⎧⎫⎨⎬⎩⎭(2)求.n S 【答案】(1)证明见解析 (2) 9691443nn +⎛⎫- ⎪⎝⎭【分析】(1)根据题意结合等差数列的通项公式整理可得,由与的关系整23944n n n S a n +=-+n a n S 理得,根据等比数列的定义分析理解; ()11231n n a a n n n -=⋅≥-(2)根据等比数列通项公式可得,法一:根据题意直接代入运算;法二:利用错位相减13n n na -=法求和;法三:整理可得,利用裂项相消法求和.()19919911243243nn n a n n +⎛⎫⎛⎫⎡⎤⎛⎫=+-++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭【详解】(1)对于等差数列可得:(){}423n n nS n a ++当时,则;当时,则; 1n =11459S a +=2n =22128781518S a a a +=+=∴是以9为首项,9为公差的等差数列,(){}423n n nS n a ++则,即①, ()()4239919n n nS n a n n ++=+-=23944n n n S a n +=-+当时,②, 2n ≥1219444n n n S a n -+=-+-得:, -①②12321444n n n n n a a a n n -++=-+-整理得:,且, ()11231n n a a n n n -=⋅≥-1101a =≠∴是以为首项,为公比的等比数列.n a n ⎧⎫⎨⎬⎩⎭111a =13(2)方法一:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=∴;11239239923144434443n n n n n n n n S a n n --+++⎛⎫=-+=-⋅+=-⋅ ⎪⎝⎭方法二:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=①,()0122111111123133333n n n S n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭②, ()12311111111231333333n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得:-①②0121211111333333n nn S n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 1113131133111323322313n n n n nn n n ⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=-=--=-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-∴; 1333192312223443n n n n S n -⎡⎤+⎛⎫⎛⎫⎛⎫=-+=-⋅⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦方法三:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=设,()()111133nn n a An B A n B +⎛⎫⎛⎫⎡⎤=+-++ ⎪ ⎪⎣⎦⎝⎭⎝⎭22111333333nnAn B A n ⎛⎫⎛⎫⎛⎫=+-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭比较系数得:,解得:,23321033A B A ⎧=⎪⎪⎨⎪-=⎪⎩9294A B ⎧=⎪⎪⎨⎪=⎪⎩∴()19919911243243n n n a n n +⎛⎫⎛⎫⎡⎤⎛⎫=+-++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭∴(121223991991991991991912232432432432432432...nn n S a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎡=++⋅⋅⋅+=⨯+⨯+⨯+⨯++-+⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝-+⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣-++. 9691443nn +⎛⎫=- ⎪⎝⎭20.在如图所示的多面体中,四边形为菱形,在梯形中,,ABCDEF ABCD ABEF //AF BE ,,平面平面.AF AB ⊥22AB BE AF ===ABEF ⊥ABCD(1)证明:⊥平面;BD ACF (2)若直线与平面所成的角为60°,求平面与平面所成角的余弦值. DA ACF ACF CEF 【答案】(1)证明见解析【分析】(1)由面面垂直得到线面垂直,从而得到,结合,得到线面垂直; AF BD ⊥BD AC ⊥(2)在第一问的基础上,得到直线与平面所成的角为,故,建立空DA ACF DAO ∠60DAO ∠=︒间直角坐标系,利用空间向量求解两平面夹角的余弦值.【详解】(1)证明:∵平面平面,,平面,平面平面ABEF ⊥ABCD AF AB ⊥AF ⊂ABEF ABEF ⋂,ABCD AB =∴平面,又平面, AF ⊥ABCD BD ⊂ABCD ∴,AF BD ⊥∵四边形为菱形, ABCD ∴,BD AC ⊥又,平面, AF AC A = ,AF AC ⊂ACF ∴⊥平面;BD ACF (2)设,由(1)可知,平面,则直线在面内的射影为,AC BD O = DO ⊥ACF DA ACF OA故直线与平面所成的角为, DA ACF DAO ∠∴,60DAO ∠=︒和均为边长为2的等边三角形,ACD A ACB △以为原点,,为,轴建立空间直角坐标系,如下图:O OC OB xy由⊥平面,可得平面的法向量为,而,,BD ACF ACF ()10,1,0n =()1,0,0C ()1,0,1F-()2E ,∴,,()2,0,1CF =-()CE =- 设平面的法向量,则, CEF ()2,,n x y z =u ur 222020n CF x z n CE x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 取,可得,1x =2,z y ==()21,n = ∴平面与平面夹角的余弦值为ACF CEF 121212cos ,n n n n n n ⋅===⋅21.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上.设外围第一个正方形1111D C B A的面积为,往里第二个正方形的面积为,…,往里第个正方形的面积11a =2222A B C D 2a n n n n n A B C D 为.n a(1)求的通项公式;{}n a(2)已知满足,问是否存在最大项?若存在,求出最大项;{}n b ()2*12122N n nb b b n n n a a a ++⋅⋅⋅+=-∈{}n b 若不存在,请说明理由.【答案】(1)()1*5N 9n n a n -⎛⎫=∈ ⎪⎝⎭(2)存在, 23259b b ==【分析】(1)由图形可得即,则为等比数列,结合等222=+159n n a a +={}n a 比数列的通项公式求解即可; (2)当时,,结合题设条件可得,从而得出2n ≥()()2121121211nn b b b n n a aa --++⋅⋅⋅+=---43n nb n a =-,然后利用数列的单调性求出结果.n b 【详解】(1)由图形可得:,即222=+159n n a a +=∴是以1为首项,为公比的等比数列{}n a 59∴.()1*5N 9n n a n -⎛⎫=∈ ⎪⎝⎭(2)① 212122n nb b bn n a a a ++⋅⋅⋅+=-当时,,∴1n =111b a =11b =当时,② 2n ≥()()2121121211n n b b b n n a a a --++⋅⋅⋅+=---得,,∴ -①②43n nb n a =-()()154329n n b n n -⎛⎫=-≥ ⎪⎝⎭经检验,当时,也满足上式,1n =11b =∴()()1*543N 9n n b n n -⎛⎫=-∈ ⎪⎝⎭令,解得: ()()()()11541541919435439nn n n n n b b n n +-⎛⎫+ ⎪+⎝⎭==>-⎛⎫- ⎪⎝⎭2n <∴当时,;当时,;当时,1n =21b b >2n =32b b =3n ≥1n n b b +<∴当或3时,的最大项为. 2n =n b 23259b b ==22.已知椭圆的左、右顶点分别为,,且,椭圆的一条以()2222:10x y C a b a b+=>>1A 2A 124A A =C 为中点的弦所在直线的方程为. 11,2⎛⎫⎪⎝⎭3240x y +-=(1)求椭圆的方程;C (2)点为直线上一点,且不在轴上,直线,与椭圆的另外一个交点分别为M ,P 4x =P x 1PA 2PA C N ,设,的面积分别为,,求的最大值,并求出此时点的坐标. 12PA A △PMN A 1S 2S 12S S P 【答案】(1)22143x y +=(2), 43()4,3P ±【分析】(1)由点差法得出,进而由得出椭圆的方程; 2234b a =1224A A a ==C (2)设,,,联立直线()与椭圆方程,求出,,()()4,0P t t ≠()11,M x y ()22,N x y 1PA 2PA 1y 2y 再由面积公式结合相似三角形的性质得出,令,由二次函数的性质得()()()2212222739t t S S t ++=+29m t =+出的最大值以及点的坐标. 12S S P 【详解】(1)设,,则, ()11,A x y ()22,B x y 22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得,,()()()()12121212220x x x x y y y y a b +-+--=所以,即 2121221212y y y y b x x x x a-+⋅=--+2222AB y b k x a ⋅=-中中即,∴223122b a-⋅=-2234b a =又,所以,1224A A a ==2a =b =所以椭圆的方程为.C 22143x y +=(2)设,, ()()4,0P t t ≠()11,M x y ()22,N x y 则:,: 1PA ()26ty x =+2PA ()22t y x =-联立,消去得 22623412x y t x y ⎧=-⎪⎨⎪+=⎩x ()2212182718027t t y ty y t +-=⇒=+同理,联立,消去得 22223412x y t x y ⎧=+⎪⎨⎪+=⎩x ()222263603t t y ty y t -++=⇒=+所以 121212121sin 0021sin 2PA PA P PA PA S t t S PM PN t y t y PM PN P ∠--==⋅=⋅--∠. ()()()22222222731869273t t t t t t t t t t ++==-⎛⎫⎛⎫+-- ⎪⎪++⎝⎭⎝⎭令,则299m t =+> ()()2212221861210811110812109m m S m m S m m m m m +-+-⎛⎫⎛⎫===-++<< ⎪ ⎪⎝⎭⎝⎭当且仅当,即,即时,取得最大值. ()112110,2108189m ⎛⎫=-=∈ ⎪⨯-⎝⎭18m =3t =±12S S 43综上所述,当时,取得最大值. ()4,3P ±12S S 43。

[精华]寂寞的数学家和不孤独的素数华裔数学家张益唐

[精华]寂寞的数学家和不孤独的素数华裔数学家张益唐

[精华]寂寞的数学家和不孤独的素数华裔数学家张益唐这又是一个关于数学家的传奇故事。

5月13日下午,新坎布尔大学讲师、华裔数学家张益唐在哈佛大学做了关于自己一项研究的报告,关于素数的报告。

素数,也就是质数,是那些只能被1和自身整除的数。

根据经验,我们认为素数的分布会越来越稀少,然而,也有数学家指出,素数们没那么孤独——对大于1的整数n,在n和2n之间必然存在一个素数,这就是“伯特兰-切比雪夫”定理。

素数们的亲密关系还不止于此,也许是上世纪最伟大数学家的大卫?希尔伯特在1900年的国际数学家大会上提出了著名的23个重要数学难题和猜想,其中的一个问题提到:应该存在无穷多个相差为2的素数对,希尔伯特把这些素数对称为孪生素数,这些素数在数轴上相互偎依着,是这种神奇的数字展现在世界上的一种奇特的存在形式。

数学家们相信这个猜想是成立的,但没人能够证明它。

张益唐所做的是,证明了存在无穷多个素数对,它们的差小于7000万。

虽然7000万与2之间尚存距离,但正如美国数学家多利安?戈德菲尔的评论:从7000万到2的距离相比从无穷到7000万的距离来说是微不足道的。

今年4月,张益唐向《数学年刊》(Annuals of Mathematics)杂志提交了题为“素数间的有界距离”(Bounded gaps between primes)的文章。

5月21日,文章被接受——这几乎创了这个顶级数学期刊的一个纪录,根据常规,要在这本数学界最受敬仰的期刊上发文,必须解决很难的问题,文章要很长,更长的是审稿人苛刻以及漫长的审稿过程,这个审稿过程耗费的时间往往以年计。

张益唐文章发表后,一位审稿人、数论专家伊万尼克(Henryk Iwaniec)称,这个结论经过了自己的严格检查,这位波兰裔美国数学家是公认的当今最顶级数论专家之一,而且,这种审稿人自称身份的做法在数学界并不多见。

5月14日,《自然》杂志以“第一个无穷组素数成对出现的证明”报道了张益唐的研究,那篇文章的开头说,“这真是个只有数学家才爱得起来的结论”。

关于孪生素数猜想的一个证明

关于孪生素数猜想的一个证明
Science & Technology Vision
科技视界
关于孪生素数猜想的一个证明
张跃 渊湖南师范大学物理系袁湖南 长沙 410081冤
揖摘 要铱根据计算机的整数取值有限袁本文提出了一个基本假设遥 在此假设的基础上袁利用 C 语言编程袁证明了院对应于无穷多个素数 p袁 存在无穷多个 p+2 的素数曰即孪生素数猜想遥
3 冷再生混合料性能验证
采用 F2 配方的乳化沥青袁 按照 叶公路沥青路面再生技术规范曳 渊JTG F41-2008冤中规定的方法袁最终结果见表 5尧表 6遥
表 5 最佳乳化沥青用量及含水量试验结果
混合料类 型
最佳乳化 沥青掺量
渊%冤
最佳含水 率渊%冤
毛体积相 对密度渊g/
cm3冤
实测最大理 论相对密度
在假设中袁显然袁R(k+1)劢R(k)袁R(k+1)原R(k)=k+1袁仅仅多一个 k+1 的数字遥 如果计算机对整数的取值范围没有限制袁可以设 k 为任意大 的整数袁但是不会当 k 大到某一整数之后袁j以i袁因为素数 p 有无穷多 个袁可能成为素数的 k+1 的数也有无穷多个袁故 j逸i 的情形有无穷多遥
由于计算机的二进制运算仅与逻辑电路或者布尔代数有关系袁其 运算规则和结果不因计算机的二进制数码的位数多少而引起变化遥 因 此袁可以作以下假设遥
假设院已知计算机限制的整数的最大取值为 n袁p 为无穷多个素数 p1约p2约噎约pn噎的集合遥 任意取一个整数 k渊k约n冤袁命 R(k)={pr+2} (r=1, 噎, i; pi+2臆k)为所有小于或者等于 k 的 i 个 p+2 的素数组成的集合袁 如果 R(k+1)={pt+2}(t=1,噎,j;pj+2臆k+1)为所有小于或者等于 k+1渊k+ 1臆n冤的 j 个 p+2 的素数组成的集合袁且 j逸i 恒成立袁则表明所有 p+2 的素数组成一个无穷集合遥

数学家张益唐破译“孪生素数猜想”20130518

数学家张益唐破译“孪生素数猜想”20130518

数学家张益唐破译“孪生素数猜想”张益唐是个对数字‚极其敏感‛的人,他能把大学同班同学的出生日期背得‚滚瓜烂熟‛,并在每个人过生日时发去一封祝福邮件。

同为恢复高考后北京大学数学系第一批学生,美国普渡大学数学系教授沈捷就享受过这样的‚待遇‛。

但他发现,七八年前张益唐突然‚消失‛了。

因为,从那时起,他再没收到过张的生日祝福,‚给他发邮件也没再回过‛。

‚谢谢‛。

5月16日,张益唐的邮件突然来了,只有一个单词:在接受中国青年报记者采访时,沈捷回忆说,此前一天,他和夫人就张益唐在孪生素数方面取得的突破向他发去邮件道贺。

5月14日,《自然》(Nature)杂志在线报道张益唐证明了‚存在无穷多个之差小于7000万的素数对‛,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的‚1+2‛证明。

在此之前,‚年近6旬‛的张益唐在数学界可以说是个名不见经传的人。

多年前曾与张益唐接触过的浙江大学数学系教授蔡天新也以为‚他早从数学圈消失‛了,蔡说已经‚近30年没他的消息了‛,没曾想‚他突然向孪生素数猜想走近了一大步‛孪生素数猜想,有了重大突破素数是指正因数只有1和本身即只能被自身和1整除的正整数,‚孪生素数‛则是指两个相差为2的素数,例如3和5,17和19等。

而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,2003663613×2195000-1和2003663613×2195000+1等等。

这就是所谓的孪生素数猜想,它与黎曼猜想、哥德巴赫猜想一样让无数数论学者为之着迷。

数学家需要做的,是一个证明!然而,人们甚至不知道它的‚弱形式‛是否成立,用《数学文化》主编、香港浸会大学理学院院长汤涛的话说就是能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数,在孪生素数猜想中,这个正数就是2。

张益唐解千古数学谜题,引发素数热

张益唐解千古数学谜题,引发素数热

张益唐解千古数学谜题引发素数热记者唐嘉丽/新罕布夏州专访June 22, 2015, 6:30 am 17911 次张益唐在台北圆山饭店接受“晨兴数学成就奖”颁奖。

(本报系资料照片)麦克阿瑟天才奖(MacArthur Fellowship)得主、新罕布夏大学数学系终身教授张益唐(Yitang Zhang),2013年以“十年磨一剑”的苦行僧精神,破解“孪生素数”这一困惑了人类两千多年的数学难题,引发国内外同行关注,张益唐也因此从一位藉藉无名的大学讲师一步登天,跻身世界重量级数学家行列。

张益唐曾经一度怀才不遇,遭遇人生低谷,曾在餐馆打工、送外卖,在连锁快餐店赛百味(Subway)做临时会计等,而后隐居在新罕布夏州大学任讲师14年,一路走来,跌跌撞撞,经历许多辛酸和白眼,但他始终没有放弃自己喜爱的数学研究,多年的坚忍不拔,终于一举成名天下知,荣誉接踵而来。

现在的张益唐,却希望做回平常人,一再感叹“成名不如不成名”,表示自己不大关心金钱和荣誉,喜欢静下来做自己想做的事情,但已“人在江湖,身不由己”。

张益唐6月5日在目前任职的新罕布夏大学,接受本报专访,畅谈他如何破解千古数学之谜的传奇人生。

记者问:什么是“孪生素数猜想”?你的论文为什么被誉为“破解了千古之谜”,引起轰动?具体贡献在那一方面?张益唐答:首先要说明,我做的并非是完全解决孪生素数猜想问题,只是部分解决,但的确是重大突破,它的解决,对促进整个数论、数学方法及技巧上的发展,有很大贡献。

“孪生素数”是无穷多个、每个间隔为2的素数对,孪生素数之间的间隔应该不会超过一个常数,有很多数理家都做过这个东西,我证明的是7000万。

这个问题本身非常吸引人,素数谁都知道,而且这个猜想很早就有人观察了。

在历史上,至今没有定论,是谁最早观察和发现孪生素数的现象?现在能看到的文字纪录,可追溯到1849年法国数学家阿尔方‧波利尼亚克所写的东西,这个题目的提出甚至可能更早。

张益唐重生的数学奇才

张益唐重生的数学奇才

张益唐:重生的数学奇才博士毕业后,他做过汽车旅馆小工、送过餐馆外卖,甚至还将全部家当搬进汽车到处流浪。

57岁时,在好友家的后院里,他有了一次顿悟……作者:易速利发自美国来源:南风窗日期:2013-11-24 浏览:15335 收藏9月底的一个周三中午,普林斯顿大学数学系3楼的公共活动室内,几十位师生用过三明治加乳酪和蔬果的简单午餐后陆续就坐,准备听取一场关于孪生素数的前沿学术报告。

此时离黑板最近的主讲人餐桌前,两位华人已经就绪,其中担任主持的是普林斯顿数学系教授、美国人文与科学院院士张寿武。

另一位就是主讲人张益唐,一位来自新罕布什尔大学的讲师。

“学术午餐报告会”(Colloquium Lunch)是普林斯顿数学系的传统,相当于一种非正式而特殊的荣誉。

老教授约翰•纳什1994年获得诺贝尔经济学奖以后,另一位教授安德鲁•怀尔斯1995年攻克数学史上著名的费马大定理以后,系里给他们主办过同样的活动。

如今,破译“孪生素数猜想”的张益唐登场了。

在2米多高的落地黑板前,大约1.78米的张益唐一边用粉笔写下一行行公式,一边用略带口音的英语流利地讲述着。

台下,我虽然接受过高等数学的基本训练,但完全无法跟上世界各国奥赛优胜者们的节奏。

当然,我从华盛顿驱车3个半小时来普林斯顿,可不仅仅是为了聆听张益唐的数学讲座,还想请他讲述更多自己的故事。

横空出世的论文人们现在已经知道,曾经名不见经传的张益唐成就之突出,可以跟当年陈景润攻坚哥德巴赫猜想相提并论。

张寿武教授觉得,从人生故事来说,张益唐比陈景润要精彩,甚至比拍成电影《美丽人生》的约翰•纳什都要精彩。

他从1984年起就认识张益唐,当时两人正念数学专业的研究生。

张寿武在中国科学院数学所师从王元院士,张益唐在北京大学数学系跟着潘承彪教授。

“我偏代数一点,他偏解析一点。

”张寿武说。

普通人怎么理解代数跟解析的区别?张寿武微笑着轻轻摇头,露出无奈,“都差不多,算一个领域吧,数论。

2023-2024学年辽宁省大连市高中数学人教A版选修三随机变量及其分布强化训练-6-含解析

2023-2024学年辽宁省大连市高中数学人教A版选修三随机变量及其分布强化训练-6-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年辽宁省大连市高中数学人教A 版选修三随机变量及其分布强化训练(6)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 小明和李华在玩游戏,他们分别从1~9这9个正整数中选出一个数告诉老师,老师经过计算后得知他们选择的两个数不相同,且两数之差为偶数,那么小明选择的数是偶数的概率是()A.B.C.D.一枚是3点,一枚是1点两枚都是2点两枚都是4点一枚是3点,一枚是1点或两枚都是2点2. 投掷两枚骰子,所得点数之和记为x ,那么X=4表示的随机实验结果是( )A. B. C. D. 3. 已知随机变量的分布列如下表,若 ,则 ( )-11PA. B. C. D.34. 孪生素数猜想是希尔伯特在1900年提出的23个数学问题之一,2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,可以直观的描述为:存在无穷多个素数 ,使得 是素数.素数对 称为孪生素数对.从8个数对 ,, ,,,,,中任取3个,设取出的孪生素数对的个数为,则( )A.B.C.D. 5. 随机变量ξ的概率分布规律为P(X =n)= (n =1,2,3,4),其中a 为常数,则 的值为( )A. B. C. D.n=4,p=0.6n=6,p=0.4n=8,p=0.3n=24,p=0.16. (理)已知随机变量ξ服从二项分布,且Eξ=2.4,Dξ=1.44,则二项分布的参数n,p的值为()A. B. C. D.7. 已知P(B|A)=,P(A)=,则P(AB)=()A. B. C. D.018. 已知随机变量X的分布列是:若,则()A. B. C. D.事件A与B相互独立事件A与C为互斥事件9. 2022卡塔尔世界杯比赛场地是在卡塔尔的8座体育馆举办.将甲、乙、丙、丁4名裁判随机派往卢赛尔,贾努布,阿图玛玛三座体育馆进行执法,每座体育馆至少派1名裁判,A表示事件“裁判甲派往卢赛尔体有馆”;B表示事件“裁判乙派往卢赛尔体育馆”;C表示事件“裁判乙派往贾努布体育馆”,则()A. B. C. D.10. 某同学通过计算机测试的概率为,他连续测试3次,其中恰有2次通过的概率为()A. B. C. D.234511. 下列说法正确的个数是()①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;②已知随机变量,若.则;③以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3;④.在线性回归模型中,计算其相关指数,则可以理解为:解释变量对预报变量的贡献率约为;⑤.甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件 “4个人去的景点各不相同”,事件 “甲独自去一个景点”,则 .A. B. C. D.12. 设随机变量,若,则()A. B. C. D.阅卷人得分二、填空题(共4题,共20分)13. 若随机变量,则X的数学期望是 .14. 国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为、 .假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为.15. 已知离散型随机变量X的分布列为:X012P0.5则常数.16. 已知随机变量,则(用数字作答).17. 某班4名女生和3名男生站在一排.(1) 求4名女生相邻的站法种数;(2) 在这7人中随机抽取3人,记其中女生的人数为X,求随机变量X的分布列和期望的值.18. 漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资.(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:雕刻量n210230250270300频数12331以10天记录的各雕刻量的频率作为各雕刻量发生的概率.(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.19. 某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:项目生产成本检验费/次调试费出厂价金额(元)10001002003000(Ⅰ)求每台仪器能出厂的概率;(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润=出厂价﹣生产成本﹣检验费﹣调试费);(Ⅲ)假设每台仪器是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列和数学期望.20. 某省从2021年开始将全面推行新高考制度,新高考“ ”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为15%,35%,35%, 13% ,2%,等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法分别转换到、、、、五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:等级比例赋分区间而等比例转换法是通过公式计算:其中,分别表示原始分区间的最低分和最高分,、分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为,时,等级分分别为、假设小南的化学考试成绩信息如下表:考生科目考试成绩成绩等级原始分区间等级分区间化学75分等级设小南转换后的等级成绩为,根据公式得:,所以(四舍五入取整),小南最终化学成绩为77分.已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:成绩95939190888785人数1232322(1) 从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;(2) 从化学成绩获得A等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.21. 某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.(Ⅰ)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(Ⅱ)请分析比较甲、乙两人谁的面试通过的可能性大?答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)21.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学家张益唐破译“孪生素数猜想”
张益唐是个对数字‚极其敏感‛的人,他能把大学同班同学的出生日期背得‚滚瓜烂熟‛,并在每个人过生日时发去一封祝福邮件。

同为恢复高考后北京大学数学系第一批学生,美国普渡大学数学系教授沈捷就享受过这样的‚待遇‛。

但他发现,七八年前张益唐突然‚消失‛了。

因为,从那时起,他再没收到过张的生日祝福,‚给他发邮件也没再回过‛。

‚谢谢‛。

5月16日,张益唐的邮件突然来了,只有一个单词:
在接受中国青年报记者采访时,沈捷回忆说,此前一天,他和夫人就张益唐在孪生素数方面取得的突破向他发去邮件道贺。

5月14日,《自然》(Nature)杂志在线报道张益唐证明了‚存在无穷多个之差小于7000万的素数对‛,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的‚1+2‛证明。

在此之前,‚年近6旬‛的张益唐在数学界可以说是个名不见经传的人。

多年前曾与张益唐接触过的浙江大学数学系教授蔡天新也以为‚他早从数学圈消失‛了,蔡说已经‚近30年没他的消息了‛,没曾想‚他突然向孪生素数猜想走近了一大步‛
孪生素数猜想,有了重大突破
素数是指正因数只有1和本身即只能被自身和1整除的正整数,‚孪生素数‛则是指两个相差为2的素数,例如3和5,17和19等。

而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,2003663613×2195000-1和2003663613×2195000+1等等。

这就是所谓的孪生素数猜想,它与黎曼猜想、哥德巴赫猜想一样让无数数论学者为之着迷。

数学家需要做的,是一个证明!
然而,人们甚至不知道它的‚弱形式‛是否成立,用《数学文化》主编、香港浸会大学理学院院长汤涛的话说就是能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数,在孪生素数猜想中,这个正数就是2。

张益唐找到的正数是‚7000万‛。

尽管从2到7000万是一段很大的距离,《自然》的报道还是称其为一个‚重要的里程碑‛。

正如美国圣何塞州立大学数论教授Dan Goldston所言,‚从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。


此前,Goldston及其两位同事提出,存在无穷多个之差小于16的素数对,给这项猜想写下一个重要里程碑。

但是,该推论尚不知如何证明。

5月13日,张益唐在美国哈佛大学发表主题演讲,介绍了他的这项研究进展。

《自然》的报道称,如果这个结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。

换言之,张益唐将给孪生素数猜想证明开一个真正的‚头‛。

有人打了这样一个比方,张所做的工作,相当于1920年挪威的布朗证明了‚9+9‛,‚开启‛了哥德巴赫猜想的证明,接下来科学家们陆续证明了‚7+7‛、‚6+6‛……直到46年后的陈景润证明攻下离‚1+1‛一步之遥却或是最难的‚1+2‛。

今天,沈捷正在武汉参加国际数学模型与计算研讨会,他告诉记者,他从会上获悉的评价是‚这可以说是华人数学家有史以来证明最好的结果。


任教美国无名大学,还是个‚临时工‛
张益唐在北大的研究生导师、著名数学家潘承彪听闻这一消息后‚十分高兴‛,他随即给蔡天新发信并附上审稿人、美国科学院院士IWANICE的评价:证明无误、非常漂亮,相信不久会有很多人把‚7000万‛这个数字‚变小‛……
根据加拿大滑铁卢大学统计与精算学系助理教授王若度的说法,世界顶级数学期刊《数学年刊》(Annals of Mathematics)将准备接受张益唐作出证明的这篇文章,审稿人还评价‚其证明是对的,并且是一流的数学工作‛。

学界沉浸在一场重大发现的狂欢中。

与此同时,人们却惊讶地发现,除了这篇自然报道,不管是
通过哪种搜索引擎,都很难找到有关‚张益唐‛个人的信息‚张益唐,华人数学家。

1978年进入北京大学数学科学学院攻读本科,1982年读硕,后在美国新罕布什尔大学任教‛。

5月15日,也就是自然杂志报道发出的第二天,不知在哪位网友的编撰下,这位被称作‚一夜成名‛的科学家有了这样的百科介绍。

当天,北京大学官网证实了这一信息,并称‚北大数学科学学院78级校友张益唐在孪生素数研究方面取得突破性进展,他证明了孪生素数猜想的一个弱化形式‛。

然而,针对张个人经历的介绍也是只言片语。

很明显,张益唐从北大硕士研究生毕业,1992年在普渡攻读博士学位后,这位数学研究者去干了什么,则鲜为人知,甚至‚连他现在是哪国国籍我都不知道‛,沈捷说。

即使是在衡量基础研究的论文阵地上,张益唐也显得异常‚低调‛在国际数学领域重要的检索系统Zentralblatt MATH数据库中,他名下只有两篇文章,一篇是1985年发表在国内的《数学学报》上,另一篇是张2001年在美国时发表在《Duke Math》上。

这也被一些学者分析是‚张益唐到目前仍然没有拿到美国大学终身教职‛的原因。

今天,新罕布什尔大学向中国青年报记者证实了张益唐的教职为‚讲师‛(lecturer),并已经在该校数学系‚待了将近十年‛。

美国的‚讲师‛说白了就是临时教学职位,‚收入比起同资历教授(包括助理教授)差很多,教学任务也远远比教授们重。

‛王若度说,‚从科研上来说,则是完全得不到任何支持。

例如我所在的学校,讲师往往由不具有博士学位的教师来担任,教学任务是普通终身教职系统内教员的两三倍。

‛这意味着,张益唐的科研时间‚很难得到保证‛。

要么沉寂,要么让学术界惊艳
‚他就是执着于攻大难题,不肯干小的。

‛张益唐的另一名同班同学、著名作家王小东说,‚我认为他是唯一一个数学天分比我高的同学。

曾十分坎坷,现在终于有了成就!‛
这一点与沈捷的印象一致,他和大学时住在其隔壁宿舍的张益唐是‚非常要好的朋友‛。

据他回忆,当时,不管是上课还是考试,年龄比他大4岁的张益唐总是‚领先一截‛,‚他很爱自学,我们难题解不出来,都找他‛。

沈捷说,他虽然很有才华,但更靠自己的汗水,如果说一个天才做出这样一个成果,或许是碰巧,但他不一样,‚他可是一直在做这个!‛而且,‚他读书很多,对历史很有见解‛。

至于经历上的‚坎坷‛,则是去美国以后的事了
沈捷回忆,在普渡大学攻读博士时,张益唐师从一位代数几何方面的华人学者,‚他其实最感兴趣的还是‘纯数字’,就像数论,但他之所以选择这个专业,我猜想多半是因为出国前不太懂国外(在专业上)的安排。

‛沈捷说。

然而,在作博士论文时,‚不服输‛的张益唐还是选择了被称作代数几何领域最难攻破的‚雅克比猜想‛。

最终,他做出一个‚结果‛来,但‚并未发表‛。

沈捷告诉记者,在他的印象里,张益唐最终拿到了普渡大学的博士学位,但博士论文‚因为自己不满意而没有发表‛。

那年是1992年,是沈捷眼中张益唐最难熬的一段时间,‚找工作四处碰壁,就因为没做出短期的好成果来‛。

沈捷记得,张益唐毕业以后,把全部家当放到房车里,便开着车去多个大学一边求职,一边‚讲这个结果(指雅克比猜想的成果)‛。

其中一段时间,张益唐还来到沈捷当时任教的宾夕法尼亚州立大学。

‚他住我这边的那段时间,我能真切地感受到他追求‘完美’的性子,有一位教授评价他做出的是雅克比猜想证明中最好的一个,但因为其中一个细节未完全搞清楚,就被他看作是‘一般的成果’,死活不愿意发表。


当时,包括王小东、沈捷在内的同班同学还知道的一件事是,曾任他们数学系主任的著名数学家丁石孙‚非常看重张益唐‛,并‚力邀他回北大‛,但张最终还是没回来。

沈捷后来了解,‚有人说他是要面子,我觉得他是不甘心,自己觉得没做成一些成绩就回国,太不甘心。


他并非陈景润式‚性格孤僻‛的数学家,沈捷告诉记者:‚他尽管有一点自负,毕竟很聪明,但是他待人很亲和。

在我看来,他除了太痴迷于数字,其他和我们都一样。


事实上,在今年5月1日,新罕布什尔大学就在其官网登出了张益唐要发表孪生素数这一成果的消息,上面写着:经过多天数学界的持续关注,张益唐更愿意回到他此前‚不为人所注意‛的状态。

‚我其实是个害羞的人。

‛张益唐说。

本报北京5月17日电。

相关文档
最新文档