高二数学下学期5月月考试题文新人教A版

合集下载

广东省惠州市华罗庚中学2013-2014学年高二数学下学期月考试题(一)文 新人教A版

广东省惠州市华罗庚中学2013-2014学年高二数学下学期月考试题(一)文 新人教A版

高 二 数 学 (文科) 试 题2014年3月一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数(1)z i i =+ (i 为虚数单位),则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.不等式2320x x -+<的解集是( )A .{}21x x x <->-或 B .{}12x x x <>或 C .{}21x x -<<- D .{}12x x << 3. “14m <”是“一元二次方程20x x m ++=有实数解”的 ( )A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件4.已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是( ) A.ˆ 1.234yx =+ B. ˆ 1.230.08y x =- C. ˆ 1.230.8y x =+ D. ˆ 1.230.08yx =+5.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊂/平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是 ( )A.4+8iB.8+2iC.2+4iD.4+i7.如图所示,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为( )A .π4B .π3C .π2D .π238.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A.-2 B.2 C.-4 D.49.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110由2222()110(40302030)7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:2()P K k ≥ 0.050 0.010 0.001k3.841 6.635 10.828参照附表,得到的正确结论是( )有99%以上的把握认为“爱好该项运动与性别有关” 有99%以上的把握认为“爱好该项运动与性别无关”在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 10. 设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2015()=f x ( )A.sin xB.-sin xC.cos xD.-cos x二、填空题:本大题共4小题,每小题5分,满分20分.11. 已知),1(),1,3(x =-=,若b a ⊥,则x 等于 .12.如图所示,程序框图(算法流程图)的输出结果为 .13.巳知等比数列{}n a 满足*,0N n a n ∈>,且25252(3)n n a a n -⋅=≥,则当1n ≥时,_______a =n .14. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:第1个第2个第3个。

人教A版高中数学选修一高二月考试题.docx

人教A版高中数学选修一高二月考试题.docx

高中数学学习材料唐玲出品高二数学月考试题学校:___________班级:___________姓名:___________考号:___________题号一二三总分得分评卷人得分一、选择题(共60分)1.(5分)给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对原命题、逆命题、否命题、逆否命题而言,真命题的个数是( )A.0B.2C.3D.42.(5分)“tanα=1”是“α=”的…( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)x2+(y-2)2=0是x(y-2)=0的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.(5分)已知全集S=R,A S,B S,若命题p:∈(A∪B),则命题“p”是…()A. AB.∈BC.A∩BD.∈(A)∩(B)5.(5分)命题“原函数与反函数的图象关于y=x对称”的否定是()A.原函数与反函数的图象关于y=-x对称B.原函数不与反函数的图象关于y=x对称C.存在一个原函数与反函数的图象不关于y=x对称D.存在原函数与反函数的图象关于y=x对称6.(5分)方程x2+xy=x的曲线是( )A.一个点B.一条直线C.两条直线D.一个点和一条直线7.(5分)已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则P点的轨迹方程是( )A.8x2+8y2+2x-4y-5=0B.8x2+8y2-2x-4y-5=0C.8x2+8y2+2x+4y-5=0D.8x2+8y2-2x+4y-5=08.(5分)方程表示焦点在y轴上的椭圆,则m的取值范围是( )A.-16<m<25B.C.D.9.(5分)已知一椭圆的对称轴为坐标轴且与椭圆有相同的焦点,并且经过点(3,-2),则此椭圆的方程为( )A.B.C.D.10.(5分)已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是().A. B.C. D.11.(5分)设F1、F2是椭圆的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是()A.钝角三角形B.锐角三角形C.斜三角形D.直角三角形12.(5分)(文科做)过椭圆=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为( )A. B. C.D.(理科做)设a>1,则双曲线的离心率e的取值范围是().A. B. C.(2,5) D.评卷人得分二、填空题(共20分)13.(5分)命题“xR,x0≤1或”的否定为____________________________.14.(5分)已知命题p:x2-x≥6,q:x Z,“p且q”与“非q”同时为假命题,则x的取值为________.15.(5分)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.16.(5分)已知椭圆+ =1上一点P与椭圆两焦点F1、F2连线的夹角为直角,则|PF1|·|PF2|=____________.评卷人得分三、解答题(共70分)17.(10分)已知p、q都是r的必要条件,s 是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)r是q的什么条件?(3)p是q的什么条件?18.(12分)在直角坐标系中,求点(2x+3-x2,)在第四象限的充要条件.19.(12分)椭圆过(3,0)点,离心率e=,求椭圆的标准方程.20.(12分)椭圆ax2+by2=1与直线x+y-1=0相交于A、B,C是AB的中点,若|AB|=2,OC 的斜率为,求椭圆的方程.21.(12分)如图,已知椭圆的中心在原点,它在x轴上的一个焦点F与短轴的两个端点B1、B2的连线互相垂直,且这个焦点与较近的长轴的端点A的距离为,求这个椭圆的方程.22. (文科做)(12分)椭圆(a,b>0)的两个焦点为F1、F2,点P在椭圆C上,且PF1⊥F1F2,,.求椭圆C的方程.(理科做)已知直线y=ax+1与双曲线3x2-y2=1交于A、B两点,(1)若以AB为直径的圆过坐标原点,求实数a的值;(2)是否存在这样的实数a,使A、B两点关于直线对称?若存在,请求出a的值;若不存在,请说明理由.高二数学参考答案一、选择题1.答案:B解析:原命题为真,逆否命题为真,逆命题,否命题为假.“a=b,c=d”的否定为“a≠b或c≠d”.2.答案:B解析:若“tanα=1”,则α=kπ+,α不一定等于;而若“α=”,则tanα=1,∴“tanα=1”是“α=”的必要而不充分条件,选B.3.答案:B解析:若x2+(y-2)2=0x=0且y-2=0x(y-2)=0,但当x(y-2)=0时x2+(y-2)2=0,如x=0,y=3.4.答案:D解析:因为p:2∈(A∪B),所以p:2(A∪B),即2A且2 B.所以2∈SA且2∈ B.故2∈(A)∩(B).5.答案:C解析:原函数与反函数的图象关于y=x对称的否定是存在一个原函数与反函数的图象不关于y=x对称.6.答案:C解析:由x2+xy=x,得x(x+y-1)=0.∴x=0或x+y-1=0,它们表示两条直线.7.答案:A解析:设P点的坐标为(x,y),则,整理,得8x2+8y2+2x-4y-5=0.8.答案:B解析:∵方程表示焦点在y轴上的椭圆,∴∴.9.答案:C解析:由题设,知椭圆的方程为(a>b>0),则故所求的椭圆方程为10.答案:A解析:方程可化为,故椭圆焦点在y轴上,又,,所以,故.11.答案:D解析:由椭圆的定义,知|PF1|+|PF2|=2a=8.由题可得|PF1|-|PF2|=2,则|PF1|=5,|PF2|=3.又|F1F2|=2c=4,∴△PF1F2为直角三角形.12.答案:B解析:由P,再由∠F1PF2=60°,有=2a,从而可得e=,故选B.答案:B解析:.∵a>1,∴,∴,∴,故选B.二、填空题13.答案:x R,x>1且x2≤414.答案:-1,0,1,2解析:∵“非q”为假命题,则q为真命题;又“p且q”为假命题,则p为假命题,∴x2-x<6,即x2-x-6<0且.解得-2<x<3且,∴x=-1,0,1,2.15.答案:.解析:由条件知4b=2a+2C.∴2b=a+c,4b2=a2+c2+2ac,4(a2-c2)=a2+c2+2ac,即5c2+2ac-3a2=0,解得.16.答案:48解析:两焦点的坐标分别为F1(-5,0)、F2(5,0),由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=100.而|PF1|+|PF2|=14,∴(|PF1|+|PF2|)2=196,100+2|PF1|·|PF2|=196,|PF1|·|PF2|=48.三、解答题17.答案:解:(1)由图知:∵q s.s r q.∴s是q的充要条件.(2)∵p q,q s r,∴p是q的充要条件.(3)∵q s r p,∴p是q的必要不充分条件.解析:将已知r、p、q、s的关系作一个“”图(如图).18.答案:解:该点在第四象限或2<x<3.所以该点在第四象限的充要条件是或2<x<3.解析:第四象限点的横、纵坐标都小于零.19.答案:解:当椭圆的焦点在x轴上时,∵a=3,,∴c=.从而b2=a2-c2=9-6=3,∴椭圆的方程为当椭圆的焦点在y轴上时,∵b=3,,∴.∴a2=27.∴椭圆的方程为.∴所求椭圆的方程为20.答案:解法一:设A(x1,y1)、B(x2,y2),代入椭圆方程并作差得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y)=0.2而,=k=,OC代入上式可得b=a.再由|AB|=|x2-x1|=2,其中x1、x2是方程(a+b)x2-2bx+b-1=0的两根,故()2-4·=4,将b=a代入得a=,∴b=.∴所求椭圆的方程是x2+y2=3.解法二:由得(a+b)x2-2bx+b-1=0.设A(x1,y1)、B(x2,y2),则∵|AB|=2,∴.①设C(x,y),则x==,y=1-x=,∵OC的斜率为,∴=.代入①,得a=,b=.∴椭圆方程为.解析:点评:解法一利用了设点代入、作差,借助斜率的解题方法,称作“差点法”,解法二是圆锥曲线弦长的基本求法,是利用两点间的距离公式求得.21.答案:如题图,由椭圆中心在原点,焦点在x轴上知,椭圆方程的形式是(a>b >0),再根据题目条件列出关于a、b的方程组,求出a、b的值.解:设椭圆方程为(a>b>0).由椭圆的对称性知,|B1F|=|B2F|,又B1F⊥B2F,因此△B1FB2为等腰直角三角形.于是|OB2|=|OF|,即b=c.又|FA|=,即a-c=,且a2=b2+c2.将以上三式联立,得方程组解得所求椭圆方程是.解析:点评:要熟练掌握将椭圆中的某些线段长用a、b、c表示出来,例如焦点与各顶点所连线段的长等.这将有利于提高解题能力.22. 答案:(文科)解:因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,,故椭圆的半焦距,从而b2=a2-c2=4,所以椭圆C的方程为.(理科)答案:解:(1)由消去y,得(3-a2)x2-2ax-2=0.①依题意即且. ②设A(x1,y1),B(x2,y2),则∵以AB为直径的圆过原点,∴OA⊥OB.∴x1x2+y1y2=0.但y1y2=a2x1x2+a(x1+x2)+1,由③④,,.∴.解得a=±1且满足②.(2)假设存在实数a,使A、B关于对称,则直线y=ax+1与垂直,∴a,即a=-2.直线l的方程为y=-2x+1.将a=-2代入③得x1+x2=4.∴AB中点横坐标为2,纵坐标为y=-2×2+1=-3.但AB中点(2,-3)不在直线上,即不存在实数a,使A、B关于直线对称.。

广东省顺德市勒流中学2012-2013学年高二数学下学期期中试题 文 新人教A版

广东省顺德市勒流中学2012-2013学年高二数学下学期期中试题 文 新人教A版

(1)(2)(3)(4) (6)2012~2013学年度第二学期期中考试高二文科数学试题参考公式:22()()()()()n ad bcKa b c d a c b d-=++++, 12211ni iinix y nx yb a y bxx nx==-==--∑∑,.临界值表:一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求.)1、表示旅客搭乘火车的流程正确的是()A.买票→侯车→上车→检票B.侯车→买票→上车→检票C.买票→侯车→检票→上车D.侯车→买票→检票→上车2、抛物线2x y=的焦点坐标是()A.)0,41( B.)41,0( C.)0,21( D.)21,0(3、要描述一家工厂某种产品的生产步骤,应用()A.产品结构图 B.材料结构图 C.程序框图 D.工序流程图4、“0x≠”是“0x>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、用反证法证明命题“三角形的内角至少有一个不大于60”时,反设正确的是()A.假设三内角都不大于60; B.假设三内角至多有一个大于60;C.假设三内角都大于60; D.假设三内角至多有两个大于60;6、椭圆116922=+yx上一动点P到其两焦点距离之和为()A、6B、8C、18 D.327、根据下列图案中的圆圈排列规则,猜想第6个图形中的圆圈个数是()A.20B.25C.31D.368、曲线13+=xy在1=x处的切线方程是()A. 1=x B. 13-=xy C. 22-=xy D. 24-=xy9、自然数都是整数,而-2是整数,所以-2是自然数.以上三段论推理错在()P k≥2(K)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828A.大前提不正确B.小前提不正确C.省略了大前提D.推理形式不正确 10、函数ln xy x=的最大值是( ) A .e B .1e - C .2e D .2e-二、填空题:(本大题共4小题,每小题5分,满分20分.) 11、复数(2)i i +的虚部为12、命题“2,10x R x ∀∈+>”的否定是13、双曲线1322=-y x 的离心率为 13、已知 0(=1,2,3...)ka k >,,考察下列3个不等式:1111a a ⋅≥①;121211()()4a a a a ++≥②;123123111()()9a a a a a a ++++≥③.那么第n 个不等式为 . 三、解答题(本大题共6小题,满分80分,解答须写出文字说明,证明过程和演算步骤) 15、(12分)实数m 取什么值时,复数2(32)(2)z m m m i =-++-表示 (1)实数?(2)虚数?(3)纯虚数?(4)点在第四象限?16、(12分)用分析法证明:7632-<-17、(14分) 某镇预测2010年到2014年中心城区人口总数与年份的关系如下表:(1)请画出上表数据的散点图;(5分)(2)请根据上表提供的数据,用最小二乘法求出线性回归方程ˆybx a =+.(7分) 年份201x (年) 0 1 2 3 4 人口数y (万) 5 7 8 11 19(参考数值:0×5+1×7+2×8+3×11+4×19=132,222220123430++++=,公式见卷首)18、(14分)为了研究失重状态下男女航天员晕飞船的情况,抽取了105名被试者,得到下面2×2列联表部分数据. (1)完成该列联表(5分)(2)根据独立性假设检验的方法,有百分之几的把握认为“在失重状态下男性比女性更容易晕飞船?”(9分)19、(14分)已知函数32(),f x x x x a =-+++,3()2(,)g x a x x R a R =-∈∈(1)求函数()f x 的单调区间.(5分) (2)求函数()f x 的极值.(4分)(3)若任意[]0,1x ∈,不等式()()g x f x ≥恒成立,求a 的取值范围.(5分) 晕船 不晕船 合计 男性 30 女性 10 55 合计 7520、(14分)已知二次函数22()f x ax bx c =++(0c >)的导函数的图象如图所示: (Ⅰ)求a ,b 的值;(4分) (Ⅱ)令()()f x g x x=,求()y g x =在[1,2]上的最大值.(10分)2012~2013学年第二学期期中考试高二级文科数学答卷一. 选择题(共50分)二、填空题(共20分)11、 12、13、 14、题号 选择 填空 15 16 1718 19 20 总分得分题号 12 3 4 5 6 7 8 9 10 得分 选项座位号第20题图三、解答题(6小题,满分80分,解答须写出文字说明,证明过程和演算步骤) 15、(12分)实数m 取什么值时,复数2(32)(2)z m m m i =-++-表示 (1)实数?(2)虚数?(3)纯虚数?(4)点在第四象限?16、(本小题满分12分)用分析法证明:7632-<-17、(本小题满分14分)18、(本小题满分14分)19、(本小题满分14分) 年份201x(年)0 1 2 3 4人口数y(万) 5 7 8 11 19晕船不晕船合计男性30女性10 55合计75O xy1 2173 41557119131920、(本小题满分14分)2012~2013学年第二学期期中考试 高二级文科数学参考答案与评分标准1~5、CBDBC 6~10、BCBDB11、2 12、200,10x R x ∃∈+≤ 13、2 14、21231231111(...)(...)n na a a a n a a a a ++++++++≥15、(12分)实数m 取什么值时,复数2(32)(2)z m m m i =-++-表示 (1)实数?(2)虚数?(3)纯虚数?(4)点在第四象限?[略解](1)2m =(2)2m ≠(3)1m =(4)1m < ...........................各问3分 16、(本小题满分12分)用分析法证明:7632-<-7632-<-证明:要证7+26+3<只需证 ......................................................2分227+26+3<只需证()()...............................................4分 9+2149+218<即证 . (6)分1418<即证 ........................................................................8分1418<即证 ...............................................................................10分 1418<而是成立的,7632∴-<- ..............................................................12分17、(本小题满分14分)解:(1)散点图如图所示......................................5分(2)2,10x y == .....................................................7分51132,5100i ii x yxy ===∑ ....................................8分年份201x (年) 0 1 2 3 4人口数y (万) 5 7 8 11 19y171519522130,520i i x x ===∑ .....................................9分5152215132100323.23020105i ii i i x y x yb x x∧==--====--∑∑ ...........10分10 3.22 3.6a y b x ∧∧=-=-⨯= (11)分3.2+3.6y x ∧=∴回归方程为 (12)分(3)到2020年底x=11,所以 3.211+3.638.8y ∧=⨯=202038.8.∴估计年该镇人口总数为万 .......................................14分18、(本小题满分14分)解:(1)如表所示. ..................................................................................................................5分(2)假设“在失重状态下男性比女性更容易晕飞船” 这一结论是不对的 ,...........6分2K 则的观测值应该很小,认为“在失重状态下男性比女性更容易晕飞船”这一结论犯错的概率应该很大。

(新教材人教A版)高二数学选择性必修第三册同步提升训练 分类加法计数原理与分步乘法计数原理 (2)

(新教材人教A版)高二数学选择性必修第三册同步提升训练 分类加法计数原理与分步乘法计数原理 (2)

专题26 分类加法计数原理与分步乘法计数原理一、单选题1.(2020·湖北省高二期中)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有()A.12种B.9种C.8种D.6种2.(2020·山东省高二期中)现有高一学生5名,高二学生4名,高三学生3名.从中任选1人参加市团委组织的演讲比赛,有多少种不同的选法()A.60 B.45 C.30 D.123.(2020·广东省湛江二十一中高二开学考试)有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.153种D.143种4.(2020·浙江省宁波诺丁汉附中高二期中)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.52种C.25种D.42种5.(2020·天津大钟庄高中高二月考)四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为()A.54B.45C.·45C D.45A6.(2020·宁夏回族自治区宁夏育才中学高二开学考试(理))如图,某城市中,M、N两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M到N不同的走法共有()A.10 B.13 C.15 D.257.(2020·吉林省长春市实验中学高二期中(理))某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种8.(2020·江苏省高二期中)由0,1,2,3,5组成的无重复数字的五位偶数共有()A.36个B.42个C.48个D.120个9.(2020·北京十二中高二月考(理))将数字1,1,2,2,3,3排成三行两列,要求每行的数字互不相同,每列的数字也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种10.(2020·江西省高三三模(理))在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算.算筹实际上是一根根相同长度的小木棍,算筹有纵式和横式两种,如图是利用算筹表示1~9的数字,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,例如,137可以用7根小木棍表示“”,则用6根小木棍(要求用完6根)能表示不含“0”且没有重复数字的三位数的个数是()A.12B.18C.24D.2711.(2020·北京市鲁迅中学高二月考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为()A.46B.44C.42D .4012.(2018·浙江省高三三模)三位数中,如果百位数字、十位数字、个位数字刚好能构成等差数列,则称为“等差三位数”,例如:147,642,777,420等等.等差三位数的总个数为( )A .32B .36C .40D .45二、填空题13.(2020·四川省泸县第二中学高二期中(理))已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是A ,B ,C ,D ,E 这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).14.(2020·汪清县汪清第六中学高二期中(理))现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为__________.15.(2018·浙江省高三月考)用黑白两种颜色随机地染如图所示表格中6个格子,每格子染一种颜色,并且从左往右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法种数为________.16.(2020·山东省高二期中)用0,1,2,3,4,5六个数字,可以组成没有重复数字的三位数的个数是________;可以组成有重复数字的三位数的个数为________.三、解答题17.小明同学要从教学楼的一层到四层,已知从第一层到第二层有4个扶梯可走,从第二层到第三层有3个扶梯可走,从第三层到第四层有2个扶梯可走,那么小明同学从第一层到第四层有多少种不同的走法? 18.(2020·唐山市第十一中学高二期中)某班有男生28名、女生20名,从该班选出学生代表参加校学代会. (1)若学校分配给该班1名代表,则有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?19.(2020·宜昌市人文艺术高中(宜昌市第二中学)高二月考)已知集合{}3,2,1,0,1,2M =---,若a ,b ,c ∈M ,则:(1)2y ax bx c =++可以表示多少个不同的二次函数?(2)2y ax bx c =++可以表示多少个图象开口向上的二次函数?20.(2019·甘南藏族自治州合作第一中学高二期中(理))一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋中任取一封信,有多少种不同的取法?(2)从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的投法?21.(2020·南京市中华中学高二月考)现有3名医生,5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?22.(2020·武汉市钢城第四中学高二期中)某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?。

2022-2023学年人教A版高二上数学月考试卷(含解析)

2022-2023学年人教A版高二上数学月考试卷(含解析)

2022-2023学年高中高二上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 点关于轴的对称点的坐标为( )A.B.C.D.2. 直线在两坐标轴上的截距之和为( )A.B.C.D.3. 已知双曲线:的右焦点为,以双曲线的实轴为直径的圆与其渐近线在第一象限交于点,若直线的斜率为,则双曲线的渐近线方程为 A.B.C.D.4. 已知和为圆的两条互相垂直的弦,垂足为求四边形的面积最大值 A.B.C.D.A(1,2,3)x (−1,2,3)(1,−2,3)(1,−2,−3)(1,2,−3)3x −5y −15=08−32−2C −=1x 2a 2y 2b 2(a >0,b >0)F C P PF −b aC ()y =±xy =±2xy =±3xy =±4xAC BD O :+=4x 2y 2M (1,)2–√ABCD ()34565. 设数列前项和为,已知,则 A.B.C.D.6. 如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角是( )A.B.C.D. 7. 已知数列的首项,其前项和为,且满足,若对任意,恒成立,则的取值范围是A.B.C.D.8. 过点作抛物线的切线,,切点分别为,,若的重心坐标为,且在抛物线上,则的焦点坐标为 A.B.{}a n n S n S n =3−n a n =a 3()98158198278ABCD −A 1B 1C 1D 1A =AB =2A 1AD =1E F G DD 1AB CC 1E A 1GF π6π4π3π2{}a n =a a 1n S n +=4(n ≥2,n ∈)S n S n−1n 2N +n ∈N +<a n a n+1a ()(3,5)(4,6)[3,5)[4,6)P C :=2y x 2l 1l 2M N △PMN (1,1)P D :=mx y 2D ()(,0)14(,0)12,0)–√C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 对于直线:和圆:,下列结论中正确的是( )A.当时,与相交B.,与相交C.存在,使得与相切D.如果与相交,则截得的弦长既有最大值,也有最小值10. 在平行四边形中, , 则下列选项正确的是( )A.的最小值是B.的最小值是—C.的最大值是D.的最大值是11. 已知椭圆的左、右焦点分别为,,点在椭圆上,点是圆关于直线对称的曲线上任意一点,若的最小值为,则下列说法正确的是( )A.椭圆的焦距为B.曲线过点的切线斜率为C.若,为椭圆上关于原点对称的异于顶点和点的两点,则直线与斜率之积为D.的最小值为12. “杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平行线,从上往下每条线上各数之和依次为:,,,,,,,…,把这列数记作数列,其前项和记作,则( )(,0)2–√4(,0)2–√2l (t +2)x +(2t −3)y −5t −3=0C +=9(x −1)2(y +1)2t =−2l C ∀t ∈R l C t ∈R l C l C ABCD AB =2,AD =2,⋅=−6,=λ3–√AB −→−AD −→−AM −→−AD−→−λ∈[0,1]⋅MB −→−MC −→−−3⋅MB −→−MC −→−2⋅MB −→−MC −→−10⋅MB −→−MC −→−25C :+=1(0<b <)x 25y 2b 25–√F 1F 2P Q +=1x 2(y −4)2x −y =0E |PQ|−|P |F 25−25–√C 2E F 2±3–√3A B C P PA PB −15|PQ|+|P |F 2211235813{}a n n S nA.在第条斜线上,各数之和为B.在第条斜线上,最大的数是C.…D.卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. ,,如果与为共线向量,则________.14. 设圆,定点,若圆上存在两点到的距离为,则的取值范围________.15. 若数列是等差数列,首项,,.,则使前项和最大时,自然数是_______.16. 数学中有许多寓意美好的曲线,曲线被称为“幸运四叶草曲线”(如图所示).给出下列四个结论:①曲线与直线交于不同于原点的两点,则;②存在一个以原点为中心、边长为的正方形,使得曲线在此正方形区域内(含边界);③存在一个以原点为中心、半径为的圆,使得曲线在此圆面内(含边界);④曲线上至少有一个点,使得点到两坐标轴的距离之积大于.其中,正确结论的序号是________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 ) 17. 已知直线过点和两点.(1)求出该直线的直线方程(用点斜式表示);105510C 27(−)(−)(−)a 1a 3a 22a 2a 4a 23a 3a 5a 24(−)=1a 2019a 2021a 22020=−1S 2019a 2021=(2x,1,3)a →=(1,−2y,9)b →a →b →x +y =O :+=(r >0)x 2y 2r 2A(3,4)O A 2r {}a n >0a 1+>0a 2003a 2004a 2003<0a 2004n S n n C :=4(+)x 2y 23x 2y 2C y =ax (a ≠0)O A (,),B (,)x 1y 1x 2y 2+++=0x 1x 2y 1y 21C 1C C M M 12A(2,1)B(6,−2)(2)将(1)中直线方程化成斜截式,一般式以及截距式且写出直线在轴和轴上的截距.18. 已知等差数列的公差,,且,,成等比数列.求数列的通项公式;令,求数列的前项和.19. 在直角梯形中,,,(如图).把沿翻折,使得二面角的平面角为(如图)(1)若,求证:;(2)是否存在适当的值,使得,若存在,求出的值,若不存在说明理由;(3)取中点,中点,、分别为线段与上一点,使得.令与和所成的角分别为和.求证:对任意.,总存在实数,使得均存在一个不变的最大值.并求出此最大值和取得最大值时与的关系.20. (湖南雅礼中学月考八)已知点到点的距离与它到直线的距离之和等于.求点的轨迹的方程;设过点的直线与轨迹相交于,两点,求线段长度的最大值.21. 在等比数列中,,且),且,,成等差数列.求数列的通项公式;若,求数列的前项和.22. 求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程.x y {}a n d ≠0=10a 4a 3a 6a 10(1){}a n (2)=(−1b n )n a n {}b n n T n ABCD AD //BC BC =2AD =2AB =22–√∠ABC =90∘1△ABD BD A −BD −C θ2θ=π2CD ⊥AB θAC ⊥BD θBD M BC N P Q AB DN ==λ(λ∈R)AP PB NQQD PQ BD AN θ1θ2θ∈(0π)λsin +sin θ1θ2θλP F (0,1)y =34P C F l C M N MN {}a n =8(n ≥4a n a n−3n ∈N ∗4a 1a 22a 3(1){}a n (2)=(n ∈)b n ()log 2a n+12N ∗{}(−1)n b n n S n 9−16=144y 2x 2参考答案与试题解析2022-2023学年高中高二上数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】空间直角坐标系空间中的点的坐标【解析】在空间直角坐标系中,一个点关于坐标轴对称,则这个点的坐标只有这个对称轴对应的坐标不变,其他的要变化成相反数【解答】解:∵在空间直角坐标系中,一个点关于坐标轴对称,则这个点的坐标只有这个对称轴对应的坐标不变,其他的要变化成相反数,∴点关于轴的对称点的坐标为故选.2.【答案】C【考点】直线的截距式方程【解析】将直线转化为直线截距方程,求出截距即可得到答案.【解答】解:由题意得直线方程转化为,所以直线方程在坐标轴上的截距依次为,所以截距之和为.故选.3.【答案】AA(1,2,3)x (1,−2,−3)C −=1x 5y 35,−32C【考点】双曲线的渐近线【解析】此题暂无解析【解答】解:得或据题设知,点,故,解得,所以所求渐近线方程为.故选.4.【答案】C【考点】圆的综合应用【解析】设圆心到、的距离分别为、,则,代入面积公式,使用基本不等式求出四边形的面积的最大值.【解答】解:如图,连接,作垂足分别为,,∵,∴四边形为矩形,已知,,设圆心到,的距离分别为,,+=,x 2y 2a 2y =x ,b ax =,a2c y =,ab cx =−,a 2c y =−.ab c P (,)a 2c ab c =−−0ab c−c a 2c b a =1b 2a 2y =±x A AC BD d 1d 2+=3d 21d 22S =|AC ||BD |12ABCD OA OD OE ⊥AC ,OF ⊥BD E F AC ⊥BD OEMF OA =OC =2OM =3–√O AC BD d 1d 2+=O =3d 2d 2M 2则,四边形的面积为:,从而:,当且仅当时取等号,故选.5.【答案】C【考点】数列递推式【解析】利用数列的递推关系式,逐步求解即可.【解答】解:当时,,整理得,.又,得,∴,得,∴,得.故选.6.【答案】D【考点】异面直线及其所成的角【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【解答】解:以为原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,+=O =3d 21d 22M 2ABCD S =⋅|AC |(|BM |+|MD |)12S =|AC ||BD |12=2≤8−(+)=5(4−)(4−)d 21d 22−−−−−−−−−−−−−√d 21d 22=d 21d 22C n ≥2=−a n S n S n−1=3−n −[3−(n −1)]a n a n−12=3+1a n a n−1==3−1S 1a 1a 1=a 1122=3+1=+1a 2a 132=a 2542=3+1=+1a 3a 2154=a 3198C D DA x DC y DD 1z E A 1GF D DA x DC y DD 1z则,,,,,.设异面直线与所成角为,则,∴异面直线与所成角为.故选.7.【答案】A【考点】数列与函数的综合数列递推式【解析】由化简可得,从而可得,由知,,,从而解得.【解答】解:∵,,∴,即,即,故,,且,∴,,;若对任意,恒成立,只需使,即,解得,,故选.8.【答案】(1,0,2)A 1E(0,0,1)G(0,2,1)F(1,1,0)=(−1,0,−1)E A 1−→−=(1,−1,−1)GF −→−E A 1GF θcos θ=|cos <,>|E A 1−→−GF −→−=|⋅E A 1−→−GF −→−||⋅||E A 1−→−GF −→−|=|=0−1×1+(−1)×(−1)||⋅||E A 1−→−GF −→−|E A 1GF π2D +=4S n S n−1n 2−=8n +4S n+1S n−1−=8a n+2a n =a a 1=16−2=16−2a a 2a 1=4+2a a 3=24−2a a 4+=4S n S n−1n 2+=4(n +1S n+1S n )2−=8n +4S n+1S n−1+=8n +4a n+1a n +=8n +12a n+2a n+1−=8a n+2a n +=+2=16S n+1S n a 2a 1=a a 1=16−2=16−2a a 2a 1=8×2+4−(16−2a)=4+2a a 3=24−2a a 4n ∈N +<a n a n+1<<<a 1a 2a 3a 4a <16−2a <4+2a <24−2a 3<a <5AA【考点】抛物线的应用【解析】此题暂无解析【解答】解:设,,由,得,所以,故直线的方程为,即,同理直线的方程为,联立,的方程可得,.设的重心坐标为(),则,,即则的坐标为,从而,即,故的焦点坐标为.故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,B,D【考点】直线与圆的位置关系【解析】由直线恒经过圆内一定点,可知正确,错误;如果与相交,则截得的弦长既有最大值,也有最小值,最长弦为圆的直径,最短弦为与垂直的弦,故正确.M (,)x 1x 212N (,)x 2x 222=2y x 2y =x 22=x y ′l 1y −=(x −)x 212x 1x 1y =x −x 1x 212l 2y =x −x 2x 222l 1l 2x =+x 1x 22y =x 1x 22△PMN ,x 0y 0==1x 0++x 1x 2+x 1x 223==1y 0++x 212x 222x 1x 223{⇒{+=2,x 1x 2++=6,x 21x 22x 1x 2+=2,x 1x 2=−2,x 1x 2P (1,−1)=m ×1(−1)2m =1D (,0)14A ABC l C CP D解:对于直线:,可化为,由可得∴直线恒经过定点,∵在圆:内部,∴直线与圆相交,故正确,错误;如果与相交,则截得的弦长既有最大值,也有最小值,最长弦为圆的直径,最短弦为与垂直的弦,故正确.故选.10.【答案】B,C【考点】向量在几何中的应用数量积表示两个向量的夹角【解析】此题暂无解析【解答】解:,则最大值为,最小值为.故选.11.【答案】B,C【考点】直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义和性质【解析】由题意得,的最小值为,结合椭圆的性质可判断,根据直线与圆的位置关系可判断;设出点,,坐标,代入椭圆的方程可判断;结合图像判断.l (t +2)x +(2t −3)y −5t −3=0(x +2y −5)t +(2x −3y −3)=0{x +2y −5=0,2x −3y −3=0,{x =3,y =1,P (3,1)P (3,1)C +=9(x −1)2(y +1)2l C AB C l C CP D ABD ⋅=(+)(+)MB −→−MC −→−MA −→−AB −→−MD −→−DC −→−=(−λ+)((1−λ)+)AD −→−AB −→−AD −→−AB −→−=12−2λ210−2BC |PQ|⋅|P |F 25−25–√A B P A B C D由题意得,,即,则,由曲线和圆关于直线对称,得曲线的方程为.,由的最小值为,得,即,当且仅当点位于椭圆的右顶点,且点位于圆与轴的左交点时,等号成立,此时,即 ,所以,所以椭圆的方程为,故椭圆的焦距为,故错误;,由,得点坐标为,由题意知,曲线过点的切线的斜率必然存在,设直线方程为,则点到直线距离为,即 ,解得 ,故正确;,设点,,坐标分别为,, ,得,故正确;,当且仅当点位于椭圆的右顶点,且点位于圆与轴的左交点时,取得最小值,易知,故错误.故选.12.【答案】A,B,D【考点】数列的求和数列的应用【解析】由上往下每条线上各数之和为,由此可得规律为,然后再对选项一一进行分析判断即可得.2a =25–√|P |+|P |=2F 1F 25–√|P |=2−|P |F 25–√F 1E +=1x 2(y −4)2x −y =0E +=1(x −4)2y 2A |PQ|−|P |F 25−25–√|PQ|−|P |=F 2|PQ|+|P |−2≥5−2F 15–√5–√|PQ|+|P|≥5F 1P Q E x c +3=5c =2b =1+=1x 25y 2C 2c =4A B c =2F 2(2,0)E F 2y =k (x −2)E 1=1|2k|1+k 2−−−−−√k =±3–√3B C P A B (,)x P y P (,)x 0y 0(−,)x 0y 0(≠0,≠0,≠)x 0y 0x 0x P ⋅=⋅k PA k PB −y P y 0−x P x 0+y P y 0+x P x 0==−y 2P y 20−x 2P x 20=−(1−)−(1−)x 2P 5x 205−x 2P x 2015CD P QE x |PQ|+|P |F 2[|PQ|+|P |=3−2=1F 2]min D BC1,1,2,3,4,8,13,21,34,55+=a n a n+1an+2ABCD解:由上往下每条线上各数之和为,,,,,,,…,由此可得规律为,所以可得在第条斜线上,各数之和为,故正确;在第条斜线上的数有:所以在第条斜线上的数有,所以最大的数为,故正确;对于每相邻三项,都有,当为偶数时,,当为奇数时,,所以,故错误.因为,所以,所以正确 .故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】共线向量与共面向量【解析】利用向量共线的充要条件即可求出.【解答】解:∵与为共线向量,∴存在实数使得,∴解得∴.故答案为:.14.【答案】【考点】圆与圆的位置关系及其判定11235813+=a n a n+1a n+21055A n ,,,...,,,C 0n−1C 1n−2C 2n−3C k−1n−k C k n−(k+1)10,,,,...C 09C 18C 27C 36C 27B ⋅−=±1a n a n+2a 2n+1n ⋅−=−1a n a n+2a 2n+1n ⋅−=1a n a n+2a 2n+1(⋅−)(⋅−)...(⋅−)=−1a 1a 3a 22a 2a 4a 23a 2019a 2021a 22020C =+++⋯+S n a 1a 2a 3a n =(−)+(−)+(−)+⋯+(−)a 3a 2a 4a 3a 5a 4a n+2a n+1=−1a n+2=−1S 2019a 2021D ABD −43a →b →λ=λa →b →2x =λ,1=−2λy ,3=9λ, x =,16y =−,32λ=,13x +y =−=−163243−43(3,7)根据题意,设以为圆心,半径为的圆为圆,分析圆的圆心、半径,求出圆心距,分析可得圆与圆相交,据此可得,解可得的取值范围,即可得答案.【解答】根据题意,设以为圆心,半径为的圆为圆,圆,其圆心为,半径为,则,若圆上存在两点到的距离为,则圆与圆相交,则有,解可得,即的取值范围为;15.【答案】【考点】等差数列的通项公式等差数列的前n 项和等差数列的性质【解析】对于首项大于零的递减的等差数列,第项与项的和大于零,积小于零,说明第项大于零且项小于零,且项的绝对值比项的要大,由等差数列前项和公式可判断结论.【解答】解:∵,,∴和两项中有一正数一负数.又,∴公差为负数,否则各项总为正数,∴,即,,∴前项和最大,即.故答案为:.16.【答案】①③【考点】两点间的距离公式基本不等式在最值问题中的应用曲线与方程【解析】A 2A O O A r −2<5<r +2r A 2A O :+=(r >0)x 2y 2r 2(0,0)r |OA |==59+16−−−−−√O :+=(r >0)x 2y 2r 2A 2O A r −2<5<r +23<r <7r (3,7)2003200320042003200420032004n +>0a 2003a 2004⋅<0a 2003a 2004a 2003a 2004>0a 1>a 2003a 2004>0a 2003<0a 20042003S n n =20032003解:曲线关于原点对称,所以,所以①正确;由,所以,即: ,当时取等号,此时,点在曲线上,而,所以②错误,③正确;因为,所以④错误;综上所述,①③正确.故答案为:①③.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】∵直线过点和,∴直线的斜率为,故直线的点斜式方程为:.把直线的方程化为斜截式:,一般式:=,截距式:,故直线在轴上的截距为;在轴上的截距为.【考点】直线的点斜式方程【解析】此题暂无解析【解答】此题暂无解答18.【答案】解:等差数列的公差为,又,可得,,,由,,成等比数列,得,解得(舍去)或.当时,则,.故;∵,∴,O +=+=0x 1x 2y 1y 24≤4=x 2y 2()+x 2y 222(+)x 2y 22≤(+)x 2y 23(+)x 2y 22+≤1x 2y 2==x 2y 212P (,)2–√22–√2|PO|=1|x|⋅|y|≤≤+x 2y 2212A(2,1)B(7AB AB l 3x +6y −100l x y (1){}a n d =10a 4=10−d a 3=10+2d a 6=10+6d a 10a 3a 6a 10(10+2d =(10−d)(10+6d))2d =0d =1d =1=−3d =10−3×1=7a 1a 4=+(n −1)d =n +6a n a 1=n +6a n (2)=(−1b n )n a n =(−1⋅(n +6)b n )n当为偶数时:,当为奇数时:.【考点】数列的求和等差数列的通项公式【解析】(1)设出等差数列的公差为,又,把,,用表示,结合,,成等比数列求得,则等差数列的通项公式可求;(2)把(1)中求得的代入,然后利用等比数列的前项和公式求得数列的前项和.【解答】解:等差数列的公差为,又,可得,,,由,,成等比数列,得,解得(舍去)或.当时,则,.故;∵,∴,,当为偶数时:,当为奇数时:.19.【答案】(1)证明:由已知条件可得,,.∵平面平面,平面平面,∴平面.又∵平面,∴.(2)解:不存在.∵,,,∴平面,∵平面,∴,与矛盾,故不存在;(3)证明:在线段取点使得n =⋅1=T n n 2n 2n =1⋅+(−1⋅(n +6)T n n −12)n =−1⋅(n +6)n −12==−−n −132n +132{}a n d =10a 4a 3a 6a 10d a 3a 6a 10d a n =(n ∈)b n 2a n N ∗n {}b n n S n (1){}a n d =10a 4=10−d a 3=10+2d a 6=10+6d a 10a 3a 6a 10(10+2d =(10−d)(10+6d))2d =0d =1d =1=−3d =10−3×1=7a 1a 4=+(n −1)d =n +6a n a 1=n +6a n (2)=(−1b n )n a n =(−1⋅(n +6)b n )n =++⋯+T n b 1b 2b n =−1×7+(−1×8+⋯+(−1(n +6))2)n n =⋅1=T n n 2n 2n =1⋅+(−1⋅(n +6)T n n −12)n =−1⋅(n +6)n −12==−−n −132n +132BD =2CD =2CD ⊥BD ABD ⊥BCD ABD∩BCD =BD CD ⊥ABD AB ⊂ABD CD ⊥AB AC ⊥BD CD ⊥BD AC ∩CD =C BD ⊥ACD AD ⊂ACD BD ⊥AD ∠ABC =90∘BN R ===λ(λ∈R)AP PB NR RB NQ QD∵,,,∴,∵,,∴,从而有,∴当且仅当,即时取得最大值.此时有,又∵,,∴…【考点】与二面角有关的立体几何综合题【解析】(1)先证明,利用平面平面,可得平面,利用线面垂直的性质可得;(2)不存在.由,,,可得平面,,与矛盾;(3)线段取点使得,从而易得且,,,确定,利用基本不等式,即可求的最大值.此时有,利用比例关系,结合余弦定理,即可得出取得最大值时与的关系.【解答】(1)证明:由已知条件可得,,.∵平面平面,平面平面,∴平面.又∵平面,∴.(2)解:不存在.∵,,,∴平面,∵平面,∴,与矛盾,故不存在;(3)证明:在线段取点使得从而易得且,,另一方面,,,从而.∵,,,∴,∵,,∴,从而有,AM ⊥BD MN ⊥BD AM ∩MN =M BD ⊥AN PR //AN RQ //BD ∠PRQ =π2+=⇒+=1θ1θ2π2sin 2θ1sin 2θ2sin +sin ≤=θ1θ22(+)sin 2θ1sin 2θ2−−−−−−−−−−−−−−−√2–√sin =sin θ1θ2=θ1θ2PR =QR ==⇒PR =AN ==PR AN BP BA 11+λ11+λ11+λA +M −2MN ⋅AN cos θM 2N 2−−−−−−−−−−−−−−−−−−−−−−−−−−√11+λ2−2cos θ−−−−−−−−√==⇒QR =BD =⋅2=QR BD NQ ND λ1+λλ1+λλ1+λ2λ1+λPR =QR ⇒=⇒=2λ⇒λ==sin 11+λ2−2cos θ−−−−−−−−√2λ1+λ2−2cos θ−−−−−−−−√1−cos θ2−−−−−−−−√θ2CD ⊥BD ABD ⊥BCD CD ⊥ABD CD ⊥AB AC ⊥BD CD ⊥BD AC ∩CD =C BD ⊥ACD BD ⊥AD ∠ABC =90∘BN R ===λ(λ∈R)AP PB NR RB NQ QD PR //AN RQ //BDA =∠PQR θ1=∠QPR θ2+θ1θ2sin +sin θ1θ2PR =QR θλBD =2CD =2CD ⊥BD ABD ⊥BCD ABD∩BCD =BD CD ⊥ABD AB ⊂ABD CD ⊥AB AC ⊥BD CD ⊥BD AC ∩CD =C BD ⊥ACD AD ⊂ACD BD ⊥AD ∠ABC =90∘BN R ===λ(λ∈R)AP PB NR RB NQ QDPR //AN RQ //BDA =∠PQR θ1=∠QPRθ2AM ⊥BD MN ⊥BD θ=∠AMN AM ⊥BD MN ⊥BD AM ∩MN =M BD ⊥AN PR //AN RQ //BD ∠PRQ =π2+=⇒+=1θ1θ2π2sin 2θ1sin 2θ2−−−−−−−−−−−−−−−又∵,,∴…20.【答案】故点的轨迹是抛物线在直线的下方部分(包括它与直线的交点)与抛物线在直线的上方部分所组成的曲线,如图所示.【考点】圆锥曲线的综合问题轨迹方程【解析】此题暂无解析【解答】解:设点的坐标为,则,①当时,由①得,②化简得;当时,由①得,③化简得,故点的轨迹是抛物线在直线的下方部分(包括它与直线的交点)与抛物线在直线的上方部分所组成的曲线,如图所示.==⇒PR =AN ==PR AN BP BA 11+λ11+λ11+λA +M −2MN ⋅AN cos θM 2N 2−−−−−−−−−−−−−−−−−−−−−−−−−−√11+λ2−2cos θ−−−−−−−−√==⇒QR =BD =⋅2=QR BD NQ ND λ1+λλ1+λλ1+λ2λ1+λPR =QR ⇒=⇒=2λ⇒λ==sin 11+λ2−2cos θ−−−−−−−−√2λ1+λ2−2cos θ−−−−−−−−√1−cos θ2−−−−−−−−√θ2P C :=4y C 1x 2y =3y =3:y =−+4C 2112x 2y =31163P (x ,y)+|y −3|=4+x 2(y −1)2−−−−−−−−−−√y ≤3=1+y +x 2(y −1)2−−−−−−−−−−√=4y x 2y >3=7−y +x 2(y −1)2−−−−−−−−−−√y =−+4112x 2P C :=4y C 1x 2y =3y =3:y =−+4C 2112x 2y =31【名师指导】【名师指导】本题考查曲线与方程、抛物线的定义及标准方程、直线与抛物线的位置关系.利用两点间的距离公式,再分类讨论求解,注意对曲线方程化简;如图所示,易知直线与的交点是,,直线,的斜率分别为.当点在上时,由②知;④当点在上时,由③知,⑤若直线的斜率存在,则直线的方程为,(1)当,即时,直线与轨迹的两个交点都在上,此时由④知,,由得,则,所以,当且仅当时,等号成立.(2)当或,即或时,直线与轨迹的两个交点分别在上,不妨设点在上,点在上,则由④⑤知.设直线与的另一交点为,则,,,所以.而点,都在上,且,由(1)知,所以.若直线的斜率不存在,则,此时.综上所述,线段长度的最大值为.【名师指导】【名师指导】本题考查曲线与方程、抛物线的定义及标准方程、直线与抛物线的位置关系.分类讨论直线的斜率,再设出直线的方程,代入抛物线的方程,利用抛物线的定义、韦达定理和放缩法求解.21.2y =3C A (2,3)3–√B(−2,3)3–√AF BF =,=−k AF 3–√3k BF 3–√3P C 1|PF|=1+y P C 2|PF|=7−y l k l y =kx +1≤k ≤k BF k AF −≤k ≤3–√33–√3l C M (,),N (,)x 1y 1x 2y 2C 1|MN|=|MF|+|NF|=(1+)+(1+)=2+(+)y 1y 2y 1y 2{y =kx +1,=4y x 2−4kx −4=0x 2+=4k x 1x 2|MN|=2+(+)=k (+)+4y 1y 2x 1x 2=4+4≤+4=k 243163k =±3–√3k <k BF k >k AF k <−3–√3k >3–√3l C M(,),N(,)x 1y 1x 2y 2,C 1C 2M C 1N C 2|MF|=1+,|NF|=7−y 1y 2AF C 1E (,)x 0y 0>,>3y 0y 1y 2|MF|=1+<1+=|EF|y 1y 0|NF|=7−<7−3=|AF|y 2|MN|=|MF|+|NF|<|EF|+|AF|=|AE|A E C 1=k AE 3–√3|AE|=163|MN|<163l =0,=4y M y N |MN|=4<163MN 163l l解:设公比为,则,解得因为,,成等差数列,所以 .所以,即,解得(舍去)或,所以.,所以当为偶数时,;当为奇数时,,所以【考点】数列递推式等差中项等比数列的通项公式数列的求和【解析】此题暂无解析【解答】解:设公比为,则,解得因为,,成等差数列,所以 .所以,即,解得(舍去)或,所以.,所以当为偶数时,;当为奇数时,,所以(1){}a n q (q ≠0)==8a n a n−3q 3a n−3q =2.4a 1a 22a 32=4+a 22a 1a 32=4+×(×2)a 12a 1a 1228−8=0a 21a 1=0a 1=1a 1=a n 2n−1(2)===b n ()log 2a n+12()log 22n 2n 2=−+−++⋯+⋅S n 12223242(−1)n n 2n =(2+1)(2−1)+(4+3)(4−3)+⋯+S n [n +(n −1)][n −(n −1)]=1+2+3+4+⋯+(n −1)+n =+n n 22n =(2+1)(2−1)+(4+3)(4−3)+⋯+S n [(n −1)+(n −2)][(n −1)−(n −2)]−n 2=[1+2+3+4+⋯+(n −2)+(n −1)]−n 2=−+n n 22=S n −,n 为奇数,+n n 22,n 为偶数.+n n 22(1){}a n q (q ≠0)==8a n a n−3q 3a n−3q =2.4a 1a 22a 32=4+a 22a 1a 32=4+×(×2)a 12a 1a 1228−8=0a 21a 1=0a 1=1a 1=a n 2n−1(2)===b n ()log 2a n+12()log 22n 2n 2=−+−++⋯+⋅S n 12223242(−1)n n 2n =(2+1)(2−1)+(4+3)(4−3)+⋯+S n [n +(n −1)][n −(n −1)]=1+2+3+4+⋯+(n −1)+n =+n n 22n =(2+1)(2−1)+(4+3)(4−3)+⋯+S n [(n −1)+(n −2)][(n −1)−(n −2)]−n 2=[1+2+3+4+⋯+(n −2)+(n −1)]−n 2=−+n n 22=S n −,n 为奇数,+n n 22+n n 2【答案】解:把双曲线方程化为由此可知实半轴长,虚半轴长,,焦点坐标,,离心率,渐近线方程为.【考点】双曲线的标准方程【解析】把双曲线方程化为,由此利用双曲线的性质能求出结果.【解答】解:把双曲线方程化为由此可知实半轴长,虚半轴长,,焦点坐标,,离心率,渐近线方程为.9−16=144y 2x 2−=1y 216x 29a =4b =3c ==5+a 2b 2−−−−−−√(0,−5)(0,5)e ==c a 54y =±x 439−16=144y 2x 2−=1y 216x 299−16=144y 2x 2−=1y 216x 29a =4b =3c ==5+a 2b 2−−−−−−√(0,−5)(0,5)e ==c a 54y =±x 43。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数2.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.3.如图,输入时,则输出的________.【答案】【解析】由算法流程图提供的算法程序可知:当时,输出,应选答案C。

4.二项式的展开式中常数项是()A.-28B.-7C.7D.28【答案】C【解析】常数项,故选B.【考点】二项式的展开式.5.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.6.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)当时,||+||,利用零点分段法解不等式或者利用图象解不等式;(2)若不等式的对一切恒成立,则,因为时,,故恒成立,,.试题解析:(1)解:||+||,即或或或或所以原不等式的解集为[](2)||+||对一切恒成立,,恒成立,即恒成立,当时,,【考点】1、绝对值不等式解法;2、函数的最值.7.已知函数,设为的导函数,根据以上结果,推断_____________.【答案】【解析】.8.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.9.若,则的值是()A.6B.4C.3D.2【答案】D【解析】略10.某长方体的三视图如右图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.B.C.6D.10【答案】B【解析】由三视图设长方体中同一顶点出发的三条棱长为、、,则有,解方程组得到,所以该长方体的面积为,故选B.【考点】1、空间几何体的三视图;2、空间几何体的表面积.11.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项B.项C.项D.项【答案】D【解析】由题意得,当时,不等式的左侧为,当时,不等式的左侧为,所以变成时,左边增加了,共有项,故选D.【考点】数学归纳法.12.已知圆与圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为.(1)求的方程;(2)证明直线恒过定点,并求定点的坐标.【答案】(1);(2)证明见解析,.【解析】(1)确定,可得曲线是长轴长,焦距的椭圆,即可求解椭圆的方程;(2)分类讨论,设出直线的方程,代入椭圆的方程,利用韦达定理,结合直线的斜率之积为,即可证直线恒过定点,并求出定点的坐标.试题解析:(1)设⊙,⊙的公共点为,由已知得,,故,因此曲线是长轴长,焦距的椭圆,所以曲线;(2)由曲线的方程得,上顶点,记,若直线的斜率不存在,则直线的方程为,故,且,因此,与已知不符,因此直线AB的斜率存在,设直线,代入椭圆:①因为直线与曲线有公共点,所以方程①有两个非零不等实根,故,又,,由,得即所以化简得:,故或,结合知,即直线恒过定点.【考点】椭圆的标准方程;直线与椭圆的位置关系的应用.【方法点晴】本题主要考查了椭圆的标准方程、直线与椭圆的位置关系的应用、判定直线过定点问题等知识点的综合考查,解答中设出直线的方程,代入椭圆的方程,利用判别式和根与系数的关系及韦达定理,结合直线的斜率之积为是解答本题的关键,注重考查了分析问题和解答问题的能力及转化与化归思想的应用,试题有一定的难度,属于中档试题.13.在△ABC中,角A,B,C的对边分别为a,b,c,cos=.(1)求cos B的值;(2)若,b=2,求a和c的值.【答案】(1)(2)【解析】解:(1)∵cos=,∴sin=, 2分∴cos B=1-2sin2=. 5分(2)由可得a·c·cos B=2,又cos B=,故ac=6, 6分由b2=a2+c2-2ac cos B可得a2+c2=12, 8分∴(a-c)2=0,故a=c,∴a=c=10分【考点】解三角形点评:解决的关键是根据诱导公式以及二倍角公式和向量的数量积结合余弦定理来求解,属于中档题。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.做变速直线运动的物体的速度满足,该物体在内经过的路程为9,则的值为( ) A.1B.2C.3D.4【答案】C【解析】将区间均分成个小区间,记第个区间为,此区间长为,用小矩形面积近似代替相应的小曲边梯形的面积,则近似地等于速度曲线与直线t=0,t=a,t轴围成的曲边梯形的面积.依题意得,∴解得a=3.【考点】定积分的概念.2.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种【答案】A【解析】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.3.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.4.已知复数,则()A.B.z的实部为1C.z的虚部为﹣1D.z的共轭复数为1+i【答案】C【解析】由题意可得,所以A错;C,D均错。

所以选B5.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.【答案】(1) (2) 最大值是,最小值是.【解析】(1)利用函数为奇函数,建立恒等式⋯①,切线与已知直线垂直得⋯②导函数的最小值得⋯③.解得的值;(2)通过导函数求单调区间及最大值,最小值.试题解析:(1)因为为奇函数,所以即,所以, 2分因为的最小值为,所以, 4分又直线的斜率为,因此,,∴. 6分(2)单调递增区间是和. 9分在上的最大值是,最小值是. 12分【考点】奇函数的性质,求函数的导数,及通过导数研究函数的单调区间及最值.6.用反证法证明命题“如果,那么”时,假设的内容应是 ( )A.B.C.且D.或【答案】C【解析】略7.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.8.已知与之间的一组数据:则与的线性回归方程为必过点()A.B.C.D.【答案】D【解析】回归直线必过点(),而,,所以回归直线过点,故选D.【考点】线性回归直线方程9.若不等式对任意的恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∴,∴,而为减函数,∴当时,函数取得最小值,最小值为1,∴.【考点】1.恒成立问题;2.函数的单调性;3.对数式.10.已知,函数,若.(1)求的值并求曲线在点处的切线方程;(2)设,求在上的最大值与最小值.【答案】(1)(2)在上有最大值1,有最小值.【解析】解:(1) ,由得,所以;当时,, ,又,所以曲线在处的切线方程为,即; 6分(2)由(1)得,又, , ,∴在上有最大值1,有最小值.- 12分【考点】导数的运用点评:主要是根据导数的几何意义求解切线方程以及函数的最值,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省罗源县第一中学 高二数学下学期5月月考试题 文 新人教A 版一、选择题1.已知集合{}(1)0A x x x =-=,那么下列结论正确的是( ) A .0A ∈ B .1A ∉ C .1A -∈ D .0A ∉2.下列各组函数中,表示同一函数的是( )A .B .C .D .3.若x R ∈,则“0x =”是“220x x -=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、如果函数f(x)=x 2+bx +c 对于任意实数t ,都有f(2+t)=f(2-t),那么( )A. f(2)<f(1)<f(4)B. f(1)<f(2)<f(4)C. f(2)<f(4)<f(1)D. f(4)<f(2)<f(1) 5.下列命题中的假命题...是( ) A .,lg 0x R x ∃∈= B .,tan 1x R x ∃∈= C .3,0x R x ∀∈> D .,20xx R ∀∈> 6.函数()xxf x e e -=-是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数7.下列命题正确的是A .0.20.2log 3log 2>B .320.20.2>C .0.20.223>D .30.20.2log 3>8.给出下列命题:(1)“若1=xy ,则y x ,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若1≤m ,则022=+-m x x 有实根”的逆否命题;(4)“若B B A =⋂,则B A ⊆”的逆否命题.其中为真命题的是( )A .(1)(2)B .(2)(3)C .(1)(2)(3)D .(3)(4)9.已知函数⎩⎨⎧>-<-= 0),2(0),4(log )(5x x f x x x f 则)2013(f 的值为A .-1B .-2C .1D .210.已知函数f(x)=12++mx mx 的定义域是一切实数,则m 的取值范围是( )A .0<m ≤4B .0≤m ≤1C .m ≥4D .0≤m ≤411.已知函数()()()f x x a x b =--(其中a b >)的图象如右图所示,则函数()x g x a b =+的图象是( )12.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当)02(,-∈x 时,x x f 2)(=,则)2013()2012(f f -的值为( )A.21- B.21C. 2D.2-二、填空题13.命题2,240x R x x ∀∈-+≤的否定为14.函数()2x x x f -=的定义域为 .15.7log 203log 27lg25lg47(9.8)+++-=16.对于二次函数2()f x ax bx c =++,有下列命题:①若()() ()f p f q p q =≠,则()f p q c +=;②若(),(),()f p q f q p p q ==≠,则()()f p q p q +=-+;③若() () f p q c p q +=≠,则0()()p q f p f q +==或. 其中一定正确的命题是______________.(写出所有正确命题的序号) 三、解答题17.(本题满分12分) 17.已知函数1221)(+-=x xx f请用定义证明)(x f 在()+∞∞-,上为减函数.18、(本题满分12分)已知函数f(x)=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f(x)的最值;(2)求实数a 的取值范围,使y =f(x)在区间[-4,6]上是单调函数;19.(本题满分12分)已知()x f y =是定义在R 上的奇函数,⎪⎩⎪⎨⎧<++=>--=)0(,)0(,)0(,32)(22x d cx bx x a x x x x f , (1)分别求d c b a ,,,的值; (2)画出()x f 的简图并写出其单调区间. 20.(本题满分12分)已知命题p :“2[1,2],0x x a ∀∈-≥”;命题q :“2,220x R x ax a ∃∈++-=”.若命题“p q ∧”是真命题,求实数a 的取值范围. 21.(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为()R x 万元,且⎪⎪⎩⎪⎪⎨⎧>-≤<-=)10(31000108)100(3018.10)(22x x x x x x R .(1)写出年利润W (万元)关于年产品(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大? (注:年利润=年销售收入-年总成本) 22.(本小题满分14分) 设直线:54l y x =+是曲线:C 321()23f x x x x m =-++的一条切线,2()223g x ax x =+-.(Ⅰ)求切点坐标及m 的值;(Ⅱ)当m Z ∈时,存在[0,)x ∈+∞()()f x g x ≤使成立,求实数a 的取值范围.2012---2013学年罗源一中第二学期月考高二数学(文科)答题卷完卷时间: 120 分钟 满 分: 150 分一、选择题:(每小题 5 分,共 60 分)二、填空题:(每小题 4 分,共 16 分) 1314;15;16三、解答题:(各题分值,共 74 分) 17.学校: 高二年 班 号 姓名:1819.21.22一、选择题:(每小题 5 分,共 60 分)二、填空题:(每小题 4 分,共 16 分)1314,]1,0[;;15 132;16 ①③三、解答题:(各题分值,共 74 分)所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4…………12分20【答案】p :∵2[1,2],0x x a ∀∈-≥,∴2min (),[1,2]a x x ≤∈,即1a ≤;q :∵2,220x R x ax a ∃∈++-=,∴2(2)4(2)0a a ∆=--≥得2a ≤-或1a ≥. 若“p q ∧”是真命题,则p 真q 真,∴2a ≤-或1a =.22.解:(Ⅰ)设直线l 与曲线C 相切于点00(,)P x y ,Q ()22f x x x '=-+2,∴0022x x -+25=, 解得01x =-或03x =,…………………………………3分 当01x =-时,01y =-,Q (1,1)P --在曲线C 上,∴73m =, 当03x =时,019y =,Q (3,19)P 在曲线C 上,∴13m =,切点(1,1)P --,73m =, ……………………………………………5分 切点(3,19)P , 13m =. ……………………………………………7分 (Ⅱ)解法一:∵m Z ∈,∴13m =, 设321()()()(1)363h x f x g x x a x =-=-++, 若存在[0,)x ∈+∞()()f x g x ≤使成立,则只要min ()0h x ≤, ……………10分[]2()2(1)2(1)h x x a x x x a '=-+=-+,(ⅰ)若10a +≥即1a ≥-,令()0h x '>,得2(1)x 0x a >+<或, [0,)x ∈+∞Q ,∴()h x 在(2(1),)a ++∞上是增函数,令()0h x '≤,解得02(1)x a ≤≤+,∴()h x 在[0,2(1)]a +上是减函数, ∴min ()(2(1))h x h a =+,(2(1))0h a +≤令,解得2a ≥,…………………………………………………………………12分 (ⅱ)若10a +<即1a <-,令()0h x '>,解得2(1)x 0x a <+>或, [0,)x ∈+∞Q , ∴()h x 在(0,)+∞上是增函数,∴min ()(0),h x h = (0)0h ≤令,不等式无解,∴a 不存在, …………13分综合(ⅰ)(ⅱ)得,实数a 的取值范围为[2,)+∞.………………………14分 解法二:由()()f x g x ≤得2321363ax x x ≥-+, (ⅰ)当0x ≠时,213613a x x ≥+-,设2136()13h x x x=+- 若存在[0,)x ∈+∞()()f x g x ≤使成立,则只要min ()h x a ≤, ……10分33331726()33x h x x x -'=-=, 令()0h x '≥ 解得6x ≥∴()h x 在[6)+∞上是增函数,令()0h x '<,解得06x ∴<< ∴()h x 在(0,6)上是减函数,∴min ()(6)2h x h ==,∴2a ≥, ……………………………12分 (ⅱ)当0x =时,不等式2321363ax x x ≥-+ 不成立, ∴a 不存在, ……………………………………………………………13分 综合(ⅰ)(ⅱ)得,实数a 的取值范围为[2,)+∞. ………………14分。

相关文档
最新文档