曲线与方程讲义(二)求曲线方程学生讲义
§9.8 曲线与方程

方程的曲线 _______________.
主页
要点梳理
忆一忆知识要点
2.求动点的轨迹方程的一般步骤
(1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P(x, y).
(3)列式——列出动点P所满足的关系式.
(4)代换——依条件式的特点,选用距离公式、
斜率公式等将其转化为x, y的方程式,并化简.
(5)证明——证明所求方程即为符合条件的动点
轨迹方程.
主页
要点梳理
忆一忆知识要点
3. 两曲线的交点
(1)由曲线方程的定义可知,两条曲线交点的 坐标应该是两个曲线方程的 _________ ,即两个 公共解 曲线方程组成的方程组的实数解;反过来,方程 组有几组解,两条曲线就有几个交点;方程组 _______ 无 解 ,两条曲线就没有交点. 充 要 条件是它们的方 (2)两条曲线有交点的 _______ 程所组成的方程组有实数解.可见,求曲线的交点 问题,就是求由它们的方程所组成的方程组的实 数解问题.
即 ((x 即((- -x x,,- -4 4- -2 2y y)· )· x,,- -2) 2)= =0. 0. 12 1 2 所以曲线 所以曲线 C C 的方程为 的方程为 y y= =x x2- -2. 2. 4 4
主页
x
1 22 1 2 2 1 1 1 (2) 设 P ( x , y ) 为曲线 C : y = x - 2上一点. 上一点. (2) 设 P ((x , y ))为曲线 C : y = - 2 2 0 0 2x 0 0 0 0 (2) 设 P x , y 为曲线 C : y = x - 2 上一点. 0 0 4 (2)设 P (x0y , y0)为曲线 Cy : y= x2 - 2 上一点. (2)设 P(x C: = x4 - 上一点. 0, 0)为曲线 4 4 4 y 1 1 1 1 1 1 1 1x 因为 y y′′ ′1 =1x x,所以 ,所以 ll l 的斜率为 的斜率为 x00 . 因为 = .. 0 0 因为 y = x ,所以 的斜率为 x 2 2 因为 y ′ = x ,所以 l 的斜率为 x . 2 2 因为 y′= x,所以 l 的斜率为 x02 . 2 2 2 2 2 0 1 1 1 1 1 因此直线 ll l 的方程为 的方程为 y y- -y y00 =2 x00 (x x- -x x00 ), , 因此直线 = x (( )) 0 0 0 0 0 0 因此直线 的方程为 y - y = x x - x , 因此直线 l 的方程为 yy - y0= - x0), 因此直线 l 的方程为 y- x2 (x- x 0(x 0= 0), 2 2 02 2 2 2 O 2 即 x x - 2 y + 2 y - x = 0. 即 x x - 2 y + 2 y - x = 0. 2 0 0 0 2 x 0x-2y+2y 0- 0=0. 0 0 0 0 即 x - 2y2 + y00 - x =0. 即即 x0xx - 2 y+ y02 - x = 0. 0x 0 0 2 0 2 2 2 |2y y00 - x00 | |2 - || 2 1 22 1 0 0 2x 0 0 2 2 |2 y - x 1 |2 y - x | 1 |2 y - x | 0 0 1 2 所以 O 点到 l 的距离 d = . 又 y = x - 2 , 所以 O 点到 ll 的距离 d = . 又 y = - 2 , 0 0 0 0 2x 0 0 0 0 2 2 所以 O 点到 的距离 d = . 又 y = x - 2 , 2 0 0 4 所以 O 点到 l 的距离 d= 2 x .又 y0= x02 - 2, 4 所以 O 点到 l 的距离 d= .又 y0= x0 - , 2 x02 + 4 + 4 4 0 0 4 x + 4 4 x0 +4 x0+ 4 0 1 22 1 2 2 1 1 21x x +4 4 + 2 0 0 0 x + 4 0 4 4 2 x + 4 2 2 1 2 2 1 x02 + 4 0 4 2 1 4 4 x + 4 + 2 x + 4 + 2 1 2 0 2 1 0+4+ 0 x 2 所以 d d= = 22 = ≥2. 2. 所以 = ≥ 2 2 2 0 2 2 2 所以 d = = ≥ 2. x + 4 + x + 4 + 0 2 所以 d = = ≥ 2. x + 4 0 2 + 4 所以 d= 2 x = 2 ≥ 0 2x 2. 0 0 x + 4 x00 + 4 + 4 2 0 0 0 2 x + 4 x + 4 2 x + 4 0 x04 +4 0 x0+ 当x x00 =0 0 时取等号,所以 时取等号,所以 O O 点到 点到 ll l 距离的最小值为 距离的最小值为 2. 2. 当 = 0 0 当 x = 0 时取等号,所以 O 点到 距离的最小值为 2. x0 = 0 时取等号,所以 O 点到 l 距离的最小值为 当当 x0= 0 时取等号,所以 O 点到 l 距离的最小值为 2. 2.
12.1.2曲线和方程(2)

曲线方程的建立
外摆线
四叶草Βιβλιοθήκη 心脏线x2 1
2 2 2 x1 2 y1 4 x1 6 0
2 2 2 x1 1 y1 x1 6 x1 9 y1 16 2
y
M ( x, y)
P1
O
x1 12 y12 x1 32 y12 16
QP 16 1 QP 2
1.建立适当的直角坐标系(若已给出, 无需!); 2.任取轨迹上的一点(x, y); 3.根据轨迹上点所满足的条件, 建立等式; 4.坐标化, 并化简方程的形式; 5.证明方程的解为坐标的点均在轨迹上.
若在建立等式及化简过程中, 每两步间均互为充要条件, 则最后一步可以省略.
练习:
1.在 ABC 中, C
求曲线(轨迹)方程
平面解析几何研究的两个基本问题:
(1)根据条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质.
二、概念辨析
定义. 在直角坐标系中, 如果曲线C和二元方程 F ( x, y) 0 之间满足: ① 曲线C上的点的坐标都是方程的解; ② 方程的解为坐标的点都在曲线C上; 则称:方程 F ( x, y) 0 为曲线C的方程; 曲线C是方程 F ( x, y) 0的图形.
② 方程的解为坐标的点都在曲线C上; 综上所述, 所求得轨迹方程为:
x2 y 2 2x 3 0
2 2
P2
x
三、直接法求轨迹方程
例2.动点M与距离为2a的两个定点A, B的连线的斜率之 积为 1 ,求动点M的轨迹方程.
2
思考:如何求M的轨迹方程? 曲线的方程本质上反映了什么? 方程的本质是反映了曲线上点的横纵坐标间的关系;
2020高中数学 第二章 圆锥曲线与方程 2. 双曲线 2..1 双曲线及其标准方程讲义 2-1

2.3。
1 双曲线及其标准方程1.双曲线(1)定义错误!平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(2)双曲线的集合描述设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由错误!P={M|||MF1|-|MF2||=2a,0〈2a〈|F1F2|}.2.双曲线的标准方程1.判一判(正确的打“√",错误的打“×")(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程错误!-错误!=1中,a〉0,b>0且a≠b.( ) (3)双曲线的标准方程可以统一为Ax2+By2=1(其中AB 〈0).()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线错误!-错误!=1上一点M到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x2-4y2=1的焦距为________.(3)(教材改编P55T1)已知双曲线a=5,c=7,则该双曲线的标准方程为________.(4)下列方程表示焦点在y轴上的双曲线的有________(把序号填在横线上).①x2-错误!=1;②错误!+错误!=1(a<0);③y2-3x2=1;④x2cosα+y2sinα=1错误!.答案(1)4或12 (2) 5 (3)错误!-错误!=1或错误!-错误!=1(4)②③④解析(3)∵a=5,c=7,∴b=错误!=错误!=2错误!。
当焦点在x轴上时,双曲线方程为错误!-错误!=1;当焦点在y轴上时,双曲线方程为错误!-错误!=1。
探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x2+y2sinθ=cosθ表示的曲线是()A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆[解析] 曲线方程可化为错误!+错误!=1,θ是第三象限角,则cos θ<0,错误!〉0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为错误!+y 2n=1,则当mn 〈0时,方程表示双曲线.若错误!则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n 〉0则方程表示焦点在y 轴上的双曲线. 【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线答案C解析原方程化为错误!-错误!=1,∵k>1,∴k2-1>0,k+1>0。
人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习
求曲线方程方法讲解

y ( x, y) 由中点坐标公式可知
x1 y1
x 2 y 2
A
∵AB 边上的中线 CD=3
D
∴ (x1 4)2 y12 9
B
化简整理得 (x 8)2 y2 36
∴点 A 的轨迹方程为 (x 8)2
y2
0
36
.
y
0C
Mx
法二: 添辅助线 MA,巧用图形性质, 妙极了! 注:这种求轨迹方程的方法叫做相关点坐标分析法(代入法)
变式练习
若三角形ABC的两顶点C,B的坐标分别是C(0,0),
B(6,0),顶点A在曲线y=x2+3上运动,求三角形ABC
重心G的轨迹方程.
y 10
8
y=x2+3
6
A
4
2
M
OB
x
-2
-4
四 例 3.经过原点的直线 l 与圆 x2 y2 6x 4 y 9 0 相交于
√√ 4.化简方程 f (x, y) 0 为最简形式;
5.证明(查漏除杂).
以上过程可以概括为一句话:建.设.现.(.限.).代.化..
知识回顾
在什么条件下,方程f(x,y)=0是曲线C 的方程,同时曲线C是该方程的曲线?
(1)曲线C上的点的坐标都是方程 f(x,y)=0的解;(纯粹性)
(2)以方程f(x,y)=0的解为坐标的点 都在曲线C上. (完备性)
简单地说:利用所求曲线上的动点与某一已知曲 线上的动点的关系,把所求动点转换为已知动点 满足的曲线的方程,由此即可求得动点坐标x,y之 间的坐标。
变 变式 .△ABC 的顶点 B、C 的坐标分别为(0,0)、(4,0), 式 A B 边上的中线的长为 3,求顶点 A 的轨迹方程.
人教新课标版数学高二选修2-1讲义 2.1曲线与方程

2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。
曲线与方程 知识讲解(非常有用)

曲线与方程编稿:辛文升审稿:孙永钊【考纲要求】1.了解轨迹的背景、含义和概念2.能根据所给的条件,选择恰当的直角坐标系求出曲线的轨迹方程,画出某些简单方程所表示的曲线;3.在形成概念的过程中,培养分析、抽象和概括等思维能力,4.掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法;渗透数形结合思想。
【知识网络】轨迹数学思想与方法求轨迹方程的常用方法轨迹的概念、意义【考点梳理】【高清课堂:曲线与方程408396知识要点】考点一:曲线与方程的定义1.“曲线的方程”、“方程的曲线”的定义:在直角坐标系中,如果某曲线C 上的点与一个二元方程0),(=y x f 的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(轨迹的纯粹性);(2)以这个方程的解为坐标的点都是曲线上的点(轨迹的完备性);那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
2.定义的理解:设P={具有某种性质(或适合某种条件)的点},{(,)|(,)0}Q x y f x y ==,若设点00(,)M x y ,用集合的观点,上述定义中的两条可以表述为:(1)00(,)M P x y Q ∈⇒∈,即P Q ⊆;(2)00(,)x y Q M P ∈⇒∈,即Q P ⊆。
以上两条还可以转化为它们的等价命题(逆否命题):(1)00(,)x y Q M P ∉⇒∉;(2)00(,)M P x y Q ∉⇒∉。
显然,当且仅当P Q ⊆且Q P ⊆,即Q P =时,才能称方程0),(=y x f 为曲线C 的方程;曲线C 为方程0),(=y x f 的曲线(图形).要点诠释:在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件.两者满足了,“曲线的方程”和“方程的曲线”才具备充分性.只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题.这种“以数论形”的思想是解析几何的基本思想和基本方法考点二:求曲线方程的一般步骤求简单的曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M 的坐标;(2)写出适合条件P 的点M 的集合()P M ;(3)用坐标表示条件()P M ,列出方程0),(=y x f ;(4)化方程0),(=y x f 为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程。
曲线与方程(两课时精品)

研
1.求曲线的方程; 2.通过方程研究曲线的性质.
2.1.2 求曲线的方程
一、直接法求曲线方程
例 1.设 A、B 两点的坐标是 (-1,-1)、(3,7), 求线段 AB 的垂直平分线的方程.
解:设 M(x,y)是线段 AB 的垂直平分线上的任一点,
“以这个方程的解为坐标的点都在曲线上”说明符合 条件的点都在曲线上而毫无遗漏(完备性)。 简记:符合条件的都在曲线上 即:“数由形定”
2.方程的曲线与曲线的方程的关系: 点 P ( x0 , y0 ) 在方程的曲线 C 上点 P( x0 , y0 ) 的坐标是曲线的方程 f ( x, y ) 0 的解.
x
课堂小结
1.轨迹与轨迹方程是两个不同的概 念,轨迹是指曲线,轨迹方程是指曲 线的方程.求轨迹方程的本质,就是在 给定的坐标系中,求轨迹上任意一点 的横坐标与纵坐标之间的关系.
课堂小结
2.求已知类型的曲线方程,一般用 待定系数法或直接法求解;求未知类型 的曲线方程,有代入法、参数法、定义 法等,其解法比较灵活,并且因题而异.
2.1.1 曲线与方程
问题1:坐标平面中第一、三象限的平分线L的方程是什么?
思考: 如何理解两坐标轴所成的角位于第一、三象限的平分
线l的方程是x-y=0?
y
x-y=0
2 M(x,y) -2 -1 O -2 1 2 x
答:(1)直线l上的点的坐标都是方程x-y=0的解;
(2)以方程x-y=0的解为坐标的点都在直线上。
.M
B
( x, y )
(0, F. 2)
0
l
x
练习: 如图,已知点 C 的坐标是(2 , 2) , 过点 C 直线 CA 与 x 轴交于点 A,过点 C 且与直线 CA 垂直的直线 CB 与 y 轴交于点 B,设点 M 是线段 AB 的中点,求点 M 的 轨迹方程. y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线和方程(二)
教学目标:
(一)知识要求:根据已知条件求平面曲线方程的基本步骤.
(二) 能力训练要求:
1.会由已知条件求一些简单的平面曲线的方程.
2.会判断曲线和方程的关系.
(三)德育渗透目的:
培养学生的数学修养,提高学生的分析问题、解决问题的能力.
教学重点
求曲线方程的“五步”思路.
教学难点
依据题目特点,建立恰当的坐标系,考察曲线的点与方程的坐标的对应关系的纯粹性与完备性.
教学方法:导学法.
启发引导学生利用曲线的方程、方程的曲线理论,借助坐标系,用坐标表示点,把曲线视为点的集合或轨迹,用点(x,y)翻译约束条件,用方程f(x,y)=0表示曲线.
教学过程
知识回顾:方程的曲线和曲线的方程:
⑴曲线上的点的坐标都是方程的解
⑵以方程的解为坐标的点都在曲线上;
就说这条曲线是这个方程的曲线,这个方程是这条曲线的方程.
情境设置:
由曲线的方程、方程的直线可知,借助直角坐标,用坐标表示点,把满足某种条件的点的集合或轨迹看成曲线,即用曲线上的点的坐标(x,y)所满足的方程f(x,y)=0表示曲线,那么我们就可通过研究方程的性质,间接地研究曲线的性质.
我们把这种借助坐标系研究几何图形的方法叫做坐标法.
在教学中,用坐标法研究几何图形的知识已形成了一门学科,它就是解析几何.解析几何是用代数方法研究几何问题的一门数学学科.
它主要研究的是:(1)根据已知条件,求出表示平面曲线的方程;
(2)通过方程,研究平面曲线的性质.
(二)讲授新课:
1.例题分析:
【例1】设A、B两点的坐标分别为(-1,-1)、(3,7)求线段AB的垂直平分线的方程.
如何求曲线的方程?
法一、运用现成的结论──直线方程的知识来求. y
法二:若没有现成的结论怎么办?──需要掌握一般性的方法B(3,7)
M
0 x
A(-1,-1)
反思:第一种方法运用现成的结论当然快,但它需要你对研究的曲线要有一定的了解;
第二种方法虽然有些走弯路,但这种方法有一般性.
求曲线的方程可以这样一般地尝试,注意其中的步骤:
求曲线的方程(轨迹方程),一般有下面几个步骤:
1.建立适当的坐标系,设曲线上任一点M 的坐标(,)x y ;
2.写出适合条件P 的几何点集:{}
()P M P M =;
3.用坐标表示条件()P M ,列出方程(,)0f x y =;
4.化简方程(,)0f x y =为最简形式;
5.证明(查漏除杂).
例2已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2.一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.
变式:一个动点P 与定点A,B 的距离的平方和为122,AB =10,求动点P 的轨迹方程
练习1.已知点M 与x 轴的距离和点M 与点F(0,4)的距离相等,求点M 的轨迹方程.
课后作业:
1、求到直线4x+3y-5=0的距离为1的点的轨迹方程.
答案:4x+3y-10=0或4x-3y=0. l
B
F . M
2.、如图,已知点C 的坐标是(2 , 2) , 过点C 直线CA 与x 轴交于点A,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B,设点M 是线段AB 的中点,求点M 的轨迹方程.
课后反思:
由例1,例2归纳总结求曲线方程的步骤.
一般地,求曲线方程的步骤是:
(1)建立恰当条件的坐标系,用M(x,y)表示曲线上任意一点
(2)写出适当条件的点的集合P={M|P(M)}(即找几何特性满足的关系式)
(3)用坐标表示条件P(M),列出方程f(x,y)=0.(即将几何关系式转化为代数方程)
(4)化简方程f(x,y)=0.
(5)证明化简后的方程的解为坐标的点都是曲线上的点.
评注:(1)化简前后方程的解集是相同的,步骤(5)可以省略不写.
(2)根据情况,也可省略步骤(2),直接列出曲线方程.
曲线和方程(三)
教学目标:
(一) 教学知识点:1.根据条件,求较复杂的曲线方程.
2.求曲线的交点.
3.曲线的交点与方程组解的关系. x
y 0C
B
A M
(二)能力训练要求:
1.进一步提高应用“五步”法求曲线方程的能力.
2.会求曲线交点坐标,通过曲线方程讨论曲线性质.
(三)德育渗透目的:
1.渗透数形结合思想.
2.培养学生的辨证思维.
教学重点
1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0.
2.求曲线交点问题转化为方程组的解的问题.
教学难点
1. 寻找“几何关系”.
2. 转化为“动点坐标”关系.
教学方法
启发诱导式教学法.
启发诱导学生联想新旧知识点的联系,从而发现解决问题的途径.
教学过程
讲授新课:
1. 回顾求简单曲线方程的一般步骤,阐明步骤(2)、(3)为关键步骤,说明(5)步不要求书面表达,但思
维一定要到位,注意等价性即可.
2. 例题分析:
一、直接法:回顾前一节科内容
练习1.如图,在平面直角坐标系中,已知动点P (x ,y ),PM ⊥y 轴,垂足为M ,点N 与点P 关于x 轴对称且OP →·M N →
=4,则动点P 的轨迹方程为________.
二、代入法(相关点法):若动点P(x ,y)随已知曲线上的点Q(x 0,y0)的变动而变动,且x0、y0可用x 、y 表示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种方法称为相关点法(或代入法). 例题1.已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线132-=x y 上移动,求△ABC 的重心的轨迹方程.
反思:1)代入法:像本例将所求点M 的坐标代入已知曲线方程求得动点M 的轨迹方程的方法叫代入法.
(2)代入法求轨迹(曲线)方程的基本步骤为
①设点:设所求轨迹上任意点M (x ,y ),设动点(已知轨迹的动点)P (x 0,y 0).
②求关系式:求出两个动点的关系式⎩⎪⎨⎪⎧
x 0=f (x ,y ),y 0=g (x ,y ). ③代入:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.
练习:已知O 为直角坐标系原点,M 为圆()322
2=+-y x 上的动点,试求MO 中点的轨迹方程。
三、参数法:
如果问题中所求动点满足的几何条件不易得出,也没有明显的相关点,但能发现这个动点受某个变量(像角度、斜率、比值、截距、时间、速度等)的影响,此时,可先建立x 、y 分别与这个变量的关系,然后将该变量(参数)消去,即可得到x 、y 的关系式.
例题2:过原点的直线与圆05622=+-+x y x 相交于A 、B 两点,求弦AB 的中点M 的轨迹方程。
练习
四、.两曲线交点问题:
例题3、已知抛物线m x x y +--=22及直线x y l 2:=,当m 为何值时,(1)有两个交点;(2)仅有一个交点;(3)无交点.
的顶点的轨迹方程。
二次函数求)(1)12()(22R m m x m x x f ∈-+++=
小结:
1. 两条曲线交点的坐标应是两个曲线的方程的公共实数解.即两个曲线方程组成的方程组的实数
解.
2.两曲线交点个数与方程组的实数解一一对应.
3、求曲线方程的几种方法
课后作业.
课后反思:.
,
,
,
),1,3(
,1
22
点的轨迹方程
求
上运动时
在
当
中点
为
点
上任一点
为
定点
:
、已知曲线
练习
P
C
B
AB
P
C
B
A
x
y
C+
=
的轨迹方程。
,求
,且的垂心为
,
上的一个点,
为直线
,
,
中,已知
:在
练习
H
HD
3
AH
H
ABC
BC
AD
BC
D
C(3,0)
B(-3,0)
ABC
1
=
∆
=⋅
∆。