初中数学 秋九年级数学下册 第二十七章 相似自主检测考试卷及答案 (新版)新部编版

合集下载

人教版初3数学9年级下册 第27章(相似)自主提升测评试卷(w含解析)

人教版初3数学9年级下册 第27章(相似)自主提升测评试卷(w含解析)

人教版九年级数学下册《第27章相似》自主提升测评(附答案)一、单选题(满分40分)1.已知25x y =,则x y y-的值为( )A .25B .35C .25-D .35-2.如图所示,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF=3.如图,一块矩形ABCD 绸布的长AB =a ,宽AD =1,按照图中的方式将它裁成相同的三面矩形彩旗,如果裁出的每面彩旗与矩形ABCD 绸布相似,则a 的值等于( )AB C .2D 4.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是( )A .247B .4C .127或2D .4或2475.如图,在△ABC 中两条中线BE 、CD 相交于点O ,记△DOE 的面积为S 1,△COB 的面积为S 2,则S 1:S 2=( )A .1:4B .2:3C .1:3D .1:26.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,已知:1:2OA OD =,则△ABC 与△DEF 的面积比为( )A .1:2B .1:3C .1:4D .1:57.如图,在菱形ABCD 中,点E 、F 分别是边BC 、CD 的中点,连接AE 、AF 、EF .若菱形ABCD 的面积为16,则△AEF 的面积为( )A .3B .4C .5D .68.如图,在平面真角坐标系中,已知点E (﹣4,2),F (﹣1,﹣1),以原点O 为位似中心,把△EFO 扩大到原来的2倍,则点E 的对应点E 的坐标为( )A .(8,4)B .(8,﹣4)C .(8,4)或(﹣8,﹣4)D .(﹣8,4)或(8,﹣4)二、填空题(满分40分)9.如图,四边形~ABCD 四边形''''A B C D ,若65B ∠=︒,82C ∠=︒,'110A ∠=︒,则D ∠的度数为___.10.如图,在 Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,已知AD =94,55BD =,那么BC =_______.11.已知C ,D 分别是线段AB 上的两个黄金分割点,且6AB =,则CD =________.12.在Rt △ABC 中,以如图所示方式内置两个正方形,使得顶点D 、E 、M 、N 均在三角形的边上,若AC =3,BC =4,则小正方形的边长为_____.13.如图,点A ,B 在反比例函数k y x=(0k >)的图象上,点A 的横坐标为2,点B 的纵坐标为1,OA ⊥AB ,则k 的值为_________.14.如图,⊙O 的直径AB =5,弦AC =3,点D 是劣弧BC 上的动点,CE ⊥DC 交AD 于点E ,则OE 的最小值是_____.15.如图,在四边形ABCD 中,∠A =∠D =120°,AB =6、AD =4,点E 、F 分别在线段AD 、DC 上(点E 与点A 、D 不重合),若∠BEF =120°,AE =x 、DF =y ,则y 关于x 的函数关系式为________16.如图,在正方形ABCD 中,E 是边CD 的中点,F 是边BC 上异于B ,C 的一点.(1)若ADE ∽ECF △,则∠=AEF ______;(2)当CF 与BC 满足数量关系______时,ADE ∽ECF △.三、解答题(满分40分)17.如图,在四边形ABCD中,∠A=∠ABC=∠CDB=90°.(1)求证:△ABD∽△DCB.(2)若AD=2,BC=6.5,求AB的长.18.已知:ABC中,AD为BC上的中线,点E在AD上,且13DEAE,射线CE交AB于点F.求AFFB的值.19.如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)设矩形的一边AD=x m,那么AB边的长度如何表示?(2)设矩形的面积为y m2,当x取何值时,y的值最大?最大值是多少?20.某校社会实践小组为了测量古塔的高度,在地面上C 处垂直于地面竖立了高度为2米的标杆CD ,这时地面上的点E ,标杆的顶端点D ,古塔的塔尖点B 正好在同一直线上,测得 1.2EC =米,将标杆向后平移到点G 处,这时地面上的点F ,标杆的顶端点H ,古塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与古塔底处的点A 在同一直线上),这时测得 1.8FG =米,20CG =米,请你根据以上数据,估算古塔的高度AB .21.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:ADG CDG ≌;(2)求证:AEG FAG ∽;(3)若9GE GF ⋅=,求CG 的长.22.如图,BC 是O 的直径,AD 是O 的弦,AD 交BC 于点E ,连接AB ,CD ,过点E 作EF AB ⊥,垂足为F ,AEF D ∠=∠.(1)求证:AD BC ⊥;(2)点G 在BC 的延长线上,连接AG ,2DAG D ∠=∠.①求证:AG 与O 相切:②当3,37AFCEBF==时,求CG的长.23.如图,开口向上的抛物线与x轴交于A(1x,0)、B(2x,0)两点,与y轴交于点C,且AC⊥BC,其中1x,2x是方程x2+3x﹣4=0的两个根.(1)求点C的坐标,并求出抛物线的表达式;(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.D 解:由25x y =可设2x k =,5y k =,0k ≠则25355x y k k y k --==-故答案为:35-2.A解:A.////AB CD EF ,∴AD BC DF CE=,故A 正确;B.////AB CD EF ,∴BC AD CE DF=,故B 不正确;C 、D.////AB CD EF ,∴AD BC AF BE=,故C 、D 不正确;故选:A .3.B解: 使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,1131a a ∴=,解得a =舍去),a ∴=故选B .4.D解:∵△ABC 沿EF 折叠B 和B ′重合,∴BF =B ′F ,设BF =x ,则CF =8﹣x ,∵当△B ′FC ∽△ABC ,∴B F CF AB BC'=,∵AB =6,BC =8,∴868x x -=,解得:x =247,即:BF =247,当△FB ′C ∽△ABC ,FB FC AB AC'=,868x x -=,解得:x =4,当△ABC ∽△CBF ′时,同法可求BF =4,故BF =4或247.故选:D .5.A解:∵BE 和CD 是△ABC 的中线,∴DE =12BC ,∥DE BC , ∴1,2DE BC =△DOE ∽△COB , ∴22121124S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 故选:A .6.C解:∵△ABC 与△DEF 是位似图形,OA :OD =1:2,∴△ABC 与△DEF 的位似比是1:2.∴△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故选:C .7.D解:连接AC 、BD ,交于点O ,AC 交EF 于点G,∵四边形ABCD 是菱形,∴AO =OC ,菱形ABCD 的面积为:12AC •BD ,∵点E 、F 分别是边BC 、CD 的中点,∴EF ∥BD ,EF =12BD ,∴AC ⊥EF ,CF CG DF OG =,∴OG =CG ,∴AG =3CG ,设AC =a ,BD =b ,∴12ab =16,即ab =32,S △AEF =12EF •AG =12×12b ×34a =316ab =6.故选:D .8.D解:∵以原点O 为位似中心,把△EFO 扩大到原来的2倍,点E (−4,2),∴点E 的对应点E'的坐标为(−4×2,2×2)或(4×2,−2×2),即(−8,4)或(8,−4),故选D .9.103解:∵,四边形~ABCD 四边形''''A B C D ∴∠A =∠A′=110°,∵∠A +∠B +∠C +∠D =360°,65B ∠=︒,82C ∠=︒,∴∠D =360°-∠A -∠B -∠C ,=360°-110°-65°-82°,=103°.10解:∵∠ACB =90°,CD ⊥AB ,∴∠ACB =∠CDB =90°,∵∠B =∠B ,∴△BCD ∽△BAC ,∴BD BC =BC BA ,即45BC =4955BC +,∴25225BC =,∵0BC >∴BC11.12解:C ,D 分别是线段AB 上的两个黄金分割点∴3AB AD BC ===∴12CD AD BC AB =+-=-故答案为:1212.3031解:过C 作CH ⊥AB 于H ,交DE 于P ,如图:∵AC =3,BC =4,∠ACB =90°,∴AB5,∵CH ⊥AB ,∴2S △ABC =AC •BC =AB •CH ,∴CH =AC BC AB ⋅=125,∵DE ∥AB ,∴△CDE ∽△CAB ,又∵CP 、CH 是△CDE 和△CAB 的对应高,∴DE AB =CP CH,设小正方形的边长为x ,则DE =x ,CP =125﹣2x ,∴5x =1225125x -,解得x =3031,故答案为:3031.13.8解:过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥AM 于N ,∵∠OAB =90°,∴∠OAM +∠BAN =90°,∵∠AOM +∠OAM =90°,∴∠BAN =∠AOM ,∴△AOM ∽△BAN ,∴AM OM BN AN=,∵点A ,B 在反比例函数k y x =(k >0)的图象上,点A 的横坐标为2,点B 的纵坐标为1,∴A (2,2k ),B (k ,1),∴OM =2,AM =2k ,AN =2k -1,BN =k -2,∴22212kk k =--,解得k 1=2(舍去),k 2=8,∴k 的值为8,故答案为:8.14.5 4解:∵AB为⊙O的直径,∴∠ACB=90°,AB=5,AC=3,∴BC4=∴△ABC的大小和形状是唯一的,设∠B=α,∠D与∠B都是弧AC所对的圆周角,∴∠D=∠B=α,CE⊥DC,∴∠DCE=90°,∴∠AEC=∠DCE+∠D=90°+α,.∴AEC的度数为定值90°+α,∴如图,点E在△ACE的外接圆(以P为圆心,AP为半径)上,如图,连接OP,OC,当点E在OP与⊙P的交点处时,OE取得最小值,如图,在优弧AC上取一点Q,连接OC、AQ、CQ,∵∠AEC=90°+α,∴∠Q=180°-∠AEC=90°-α,∴∠APC=2∠Q=180°-2α,∵PA =PC ,∴1802APC PAC PCA a ︒-∠∠=∠==,∵∠ACB =90°,∠B =α,∴∠BAC =90°-∠B =90°-α,∴∠OAP =∠BAC +∠PAC =90°,∵PA =PC ,OA =OC ,∴OP 垂直平分AC ,∴OP ⊥AC ,又∵BC ⊥AC∴OP //BC ,∵∠AOP =∠B ,∵∠OAP =∠ACB ,∴△OAP ∽△BCA ,∴OA AP OP BC AC AB==∵直径AB =5∴OA =52∴52435AP OP ==,解得:AP =158,OP =258∴PE =AP =158∴OE =OP -PE =258-158=54∴OE 的最小值为54.故填54.15.21263y x x =-+解: ∠A =∠D =120°,∠BEF =120°,60AEB DEF DEF DFE ∴∠+∠=∠+∠=︒AEB DFE∴∠=∠∴ABE DEF△△∽AE DF AB DE∴=AB =6、AD =4,AE =x 、DF =y ,64x y x∴=-∴1(4)6y x x =-即21263y x x =-+(04)x <<故答案为:21263y x x =-+16.90︒ , 4BC CF =解:(1)ADE ∽ECF △,AED EFC ∠∠∴=,90C ∠=︒ ,90EFC FEC ∴∠+∠=︒,90AED FEC ∴∠+∠=︒,90AEF ∴∠=︒.故答案为:90︒;(2)当4BC CF =时,ADE ∽ECF △.142BC CF BC CD CE CD === ,,,12CF CE ∴=,12DE AD = ,CF DE CE AD∴=,又90D C ∠=∠=︒ ,ADE ∴V ∽ECF △.故答案为:4BC CF =.17.(1);(2)3解:(1)∵∠A =∠ABC =∠CDB =90°,∴∠ABD+∠DBC=∠DBC+∠C=90°,∴∠ABD=∠C ,∴△ABD ∽△DCB ;(2)∵△ABD ∽△DCB ,∴AD DB DB BC=,∴26.5D BD B =,解得:BD ,∴3A B ==.18.32解:如图,过D 作,DM AB ∥ 交CF 于,M,,DME AFE CDM CBF \V V V V ∽∽1,,3DE DM CD DM AE AF CB BF\=== D Q 为BC 的中点,1,2CD DM CB BF \== 3.2AF BF \=19.(1)1204m 3x AB -=;(2)当15x =时,y 有最大值,最大值为300.解:(1)∵30m AM =,m AD x =,∴()30mMD AM AD x =-=-∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,∴△MDC ∽△MAN ,∴MD CD AM AN =,即303040x CD -=,∴1204m 3x CD -=,∴1204m 3x AB -=;(2)∵124m 3x AB -=,m AD x =,∴()()22124443015300333x y AD AB x x x x -=⋅=⋅=--=--+,∵403-<,∴当15x =时,y 有最大值,最大值为300.20.68.7米解:根据题意得:AB ⊥AF ,CD ⊥AF ,HG ⊥AF ,GH =CD∴HG //AB ,CD //AB∴,CD E A B E FG H FA B ,∴,C D C E H G FG A B A E A B FA == ,∵C E FG A E FA= ,∵ 1.2EC =米, 1.8FG =米,20CG =米,∴1.2 1.81.2 1.820A C A C =+++ ,解得:40AC = 米,∴21.21.240A B =+ ,解得:68.7A B ≈ 米,答:古塔的高度约为68.7米.21.(1);(2);(3)CG 的长为3(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS );(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB −∠DAG =∠DCB −∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GE GA GA GF=,即GA 2=GE •GF ,∴GA =3或GA =−3(舍去),由(1)得△ADG ≌△CDG所以,AG =CG ,∴CG =3.22.(1)证明;(2)①证明;②152.证明:(1)由圆周角定理得:B D ∠=∠,AEF D ∠=∠ ,B AEF ∴∠=∠,EF AB ⊥ ,90B BEF ∴∠+∠=︒,90AEF BEF ∠∴∠+=︒,即90AEB =︒∠,AD BC ∴⊥;(2)①如图,连接OA ,由圆周角定理得:2AOC D ∠=∠,2DAG D ∠=∠ ,DA AOC G ∴∠=∠,由(1)已证:AD BC ⊥,90OAD AOC ∴+∠=∠︒,90DAG OAD ∠∴=+∠︒,即90OAG ∠=︒,OA AG ∴⊥,又OA 是O 的半径,AG ∴与O 相切;②如图,连接AC ,BC 是O 的直径,90BAC ∴∠=︒,即AC AB ⊥,EF AB ⊥ ,AC EF ∴ ,BE BF CE AF∴=,即733BE BF AF ==,解得7BE =,110,5,22BC BE CE OA OC BC OE OC CE ∴=+=====-=,在AOG 和EOA △中,90OAG OEA AOG EOA∠=∠=︒⎧⎨∠=∠⎩,AOG EOA ∴ ,OG OA OA OE ∴=,即552OG =,解得252OG =,2515522CG OG OC ∴=-=-=.23.(1)C (0,﹣2);y 12=x 232+x ﹣2;(2)S △CDE 最大为54,D (32-,0);(3)存在,P 的坐标为(32-32-,32-,﹣2)或(32-,52-).解:(1)由x 2+3x ﹣4=0得1x =﹣4,2x =1,∴A (﹣4,0),B (1,0),∴OA =4,OB =1,∵AC ⊥BC ,∴∠ACO =90°﹣∠BCO =∠OBC ,∵∠AOC =∠BOC =90°,∴△AOC ∽△COB ,∴OA OC OC OB =,即41OC OC =,∴OC =2,∴C (0,﹣2),设抛物线解析式为y =a (x +4)(x ﹣1),将C (0,﹣2)代入得﹣2=﹣4a ,∴a 12=,∴抛物线解析式为y 12=(x +4)(x ﹣1)12=x 232+x ﹣2;(2)如图:由A (﹣4,0),B (1,0),C (0,﹣2)得:AB =5,BC AC =∵DE ⊥BC ,AC ⊥BC ,∴DE ∥AC ,∴△ABC ∽△DBE ,∴BD DE BE AB AC BC==,设D (t ,0),则BD =1﹣t ,∴15t -==∴DE =1﹣t ),BE =(1﹣t ),∴S △BDE 12=DE •BE 15=(1﹣t )2,而S △BDC 12=BD •OC 12=(1﹣t )×2=1﹣t ,∴S △CDE =S △BDC ﹣S △BDE =1﹣t 15-(1﹣t )215=-t 235-t 4155+=-(t 32+)254+,∵15-<0,∴t 32=-时,S △CDE 最大为54,此时D (32-,0);(3)存在,由y 12=x 232+x ﹣2知抛物线对称轴为直线x 32=-,而D (32-,0),∴D 在对称轴上,由(2)得DE =[1﹣(32-)]=,当DE =DP 时,如图:∴DP =∴P (32-32-,,当DE =PE 时,过E 作EH ⊥x 轴于H ,如图:∵∠HDE =∠EDB ,∠DHE =∠BED =90°,∴△DHE ∽△DEB ,∴DE HE DH BD BE DE ====,∴HE =1,DH =2,∴E (12,﹣1),∵E 在DP 的垂直平分线上,∴P (32-,﹣2),当PD =PE时,如图:设P(32-,m),则m2=(3122--)2+(m+1)2,解得m52=-,∴P(32-,52-),综上所述,P的坐标为(32-32-,32-,﹣2)或(32-,52-).。

九年级下册《第二十七章 相似》单元检测试卷及答案(共八套)

九年级下册《第二十七章 相似》单元检测试卷及答案(共八套)

九年级下册《第二十七章相似》单元检测试卷(一)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.若yx=34,则x+yx的值为( )A.1 B.47C.54D.742.已知△ABC∽△A′B′C′且ABA′B′=12,则S△ABC∶S△A′B′C′为( )A.1∶2 B.2∶1 C.1∶4 D.4∶13.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( ) A.6.4米 B.7米 C.8米 D.9米4.如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于点F,则图中共有相似三角形( )A.1对 B.2对 C.3对 D.4对5.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O 为圆心所作的半圆分别与AC,BC相切于点D,E,则AD为( )A.2.5 B.1.6 C.1.5 D.16.如图,AD是△ABC的角平分线,则AB∶AC等于( )A .BD ∶CDB .AD ∶CDC .BC ∶AD D .BC ∶AC7.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C.设BE =x ,BC =y ,则y 关于x 的函数解析式为( )A .-12x x -4 B .-2x x -1 C .-3x x -1 D .-8xx -48.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.其中正确的个数为( )A .1个B .2个C .3个D .4个 二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a b =c d =ef =k(b +d +f≠0),且a +c +e =3(b +d +f),那么k =_____.10.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是________________.(写出一种情况即可) 11.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是________.12.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是________米.(平面镜的厚度忽略不计)13.如图,矩形EFGH 内接于△ABC,且边FG 落在BC 上,若BC =3,AD =2,EF =23EH ,那么EH 的长为________.14.如图,一条4m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________m 2.三、解答题(共9个小题,共70分)15.(5分)如图,在△ABC 中,D ,E 分别是AB ,AC 上一点,且∠AED=∠B.若AE =5,AB =9,CB =6,求ED 的长.16.(6分)如图所示,已知AB∥CD,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C.求证: (1) ∠EAF=∠B; (2) AF 2=FE·FB.17.(7分)如图所示,在正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1) 求证:△BDG∽△DEG;(2) 若EG·BG=4,求BE的长.18.(7分)如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1) 画出位似中心点O;(2) 求出△ABC与△A′B′C′的位似比;(3) 以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.19.(7分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1) 求证:∠DFA=∠ECD;(2) △ADF与△DEC相似吗?为什么?(3) 若AB=4,AD=33,AE=3,求AF的长.21.(9分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1) 求证:△AEF∽△ABC;(2) 求这个正方形零件的边长;(3) 如果把它加工成矩形零件如图②,问这个矩形的最大面积是多少?22.(9分)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1 )求证:PC是⊙O的切线;(2) 当点C在劣弧AD上运动时,其他条件不变,若BG2=BF·BO.求证:点G是BC的中点;(3) 在满足(2)的条件下,若AB=10,ED=46,求BG的长.23.(12分)如图,在平面直角坐标系xOy中,抛物线y=-16x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线相交于点D.(1) 求b,c的值;(2) 当t为何值时,点D落在抛物线上;(3) 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.答案;一、1---8 DCCCB AAB二、9. 310. ∠A=∠D(或BC∶EF=2∶1)11. 2∶3 12. 8 13. 3214. 80 三、15. 解:∵∠AED=∠B,∠A =∠A,∴△AED ∽△ABC ,∴AE AB =DEBC ,∵AE =5,AB=9,CB =6,∴59=DE 6,解得DE =10316. 证明:(1)∵AB∥CD,∴∠B =∠C,又∠C=∠EAF,∴∠EAF =∠B (2)∵∠EAF=∠B,∠AFE =∠BFA,∴△AFE ∽△BFA ,则AF BF =FEFA ,∴AF 2=FE·FB17. 解:(1)证明:∵BE 平分∠DBC,∴∠CBE =∠DBG,∵∠CBE =∠CDF ,∴∠DBG =∠CDF,∵∠BGD =∠DGE,∴△BDG ∽△DEG(2)∵△BDG∽△DEG,DG BG =EG DG ,∴DG 2=BG·EG=4,∴DG =2,∵∠EBC +∠BEC=90°,∠BEC =∠DEG,∠EBC =∠EDG,∴∠BGD =90°,∵∠DBG =∠FBG,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4. 18. 解:(1) 连接A′A,C ′C ,并分别延长相交于点O ,即为位似中心 (2) 位似比为1∶2 (3) 略19. 解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2m ,BD =15 m ,过E 点作EH⊥AB,交AB 于点H ,交CD 于点G ,则EG⊥CD,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG∽△EAH,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9 m ,所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m20. 解:(1)证明:∵∠AFE=∠B,∠AFE +∠DFA=180°,∠B +∠ECD=180°,∴∠DFA =∠ECD(2)△ADF∽△DEC.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠DEC,∴△ADF ∽△DEC(3)∵四边形ABCD 是平行四边形,∴AD∥BC,CD =AB =4,又∵AE⊥BC,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AF CD ,∴336=AF 4,AF =2 3 21. 解:(1)∵四边形EFHG 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC (2)∵四边形EFHG 为正方形,∴EF ∥BC ,EG ⊥BC ,又∵AD⊥BC,∴EG ∥AD ,设EG =EF =x ,则KD =x ,∵BC =120 mm ,AD =80 mm ,∴AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x80,解得x =48,∴这个正方形零件的边长是48 mm (3)设EG =KD =m ,则AK =80-m ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即EF 120=80-m80,∴EF =120-32m ,∴S 矩形EFHG =EG·EF=m·(120-32m)=-32m 2+120m =-32(m -40)2+2400,故当m =40时,矩形EFHG 的面积最大,最大面积为2400 mm 2 22. 解:(1)连接OC ,∵ED ⊥AB ,∴∠BFG =90°,∴∠B +∠BGF=90°,又∵PC =PG ,∴∠PCG =∠PGC,而∠PGC=∠BGF,∴∠B +∠PCG=90°,又∵OB=OC ,∴∠B =∠BCO.∴∠BCO+∠PCG=90°,则∠PCO=90°,即OC⊥PC,而OC 是半径,∴PC 是⊙O 的切线(2)连接OG ,∵BG 2=BF·BO,∴BG BF =BOBG ,而∠B=∠B,∴△BFG ∽△BGO ,∴∠BGO=∠BFG=90°,∴OG ⊥BC ,∴点G 是BC 的中点(3)连接OE ,∵AB 是⊙O 的直径,ED ⊥AB ,∴EF =12ED ,∵AB =10,ED =46,∴EF =26,OE =OB =12AB =5.在Rt △OEF 中,OF =OE 2-EF 2=1,∴BF =OB -OF=5-1=4,∴BG =BF ·BO =2 523. 解:(1)由抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),可得⎩⎨⎧c =4,-16×64+8b +c =0,解得⎩⎨⎧c =4b =56(2)∵∠AOP=∠PEB=90°,∠OAP =90°-∠APO=∠EPB,∴△AOP ∽△PEB ,且相似比为AO PE =APPB =2,∵AO =4,PE =2,OE =OP +PE =t +2,又∵DE=OA =4,∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA∽△ADB,则PO AD =AO BD ,即tt +2=44-12t ,整理,得t 2+16=0,∴t 无解,若△POA∽△BDA ,同理,解得t =-2+25(负值舍去);②当t >8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=412t -4,解得t =8+45(负值舍去),若△POA∽△BDA,同理,解得t 无解.综上所述,当t =-2+25或t =8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似九年级下册《第二十七章 相似》单元检测试卷(二)(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知△MNP 如图27­1,则下列四个三角形中与△MNP 相似的是( )图27­1A B C D2.△ABC和△A′B′C′是位似图形,且面积之比为1∶9,则△ABC和△A′B′C′的对应边AB和A′B′的比为( )A.3∶1 B.1∶3 C.1∶9 D.1∶273.下列命题中正确的有( )①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A.0个 B.1个 C.2个 D.3个4.在△ABC中,BC=15 cm,CA=45 cm,AB=63 cm,另一个和它相似的三角形的最短边长是5 cm,则最长边长是( )A.18 cm B.21 cm C.24 cm D.19.5 cm5.在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果AD∶BC=1∶3,那么下列结论中正确的是( )A.S△OCD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD6.如图27­2,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S的值为( )四边形BCEDA.1∶3 B.2∶3 C.1∶4 D.2∶5图27­2图27­37.如图27­3,已知直线a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,AC =4,CE =6,BD =3,则BF =( ) A .7 B .7.5 C .8 D .8.58.如图27­4,身高1.6 m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2 m ,CA =0.8 m ,则树的高度为( )图27­4A .4.8 mB .6.4 mC .8 mD .10 m9.如图27­5,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( ) A.AB AD =AC AE B.AB AD =BCDEC .∠B =∠D D .∠C =∠AED图27­5 图27­610.如图27­6,直角梯形ABCD 中,AB ∥CD ,∠C =90°,∠BDA =90°,若AB =a ,BD =b ,CD =c ,BC =d ,AD =e ,则下列等式成立的是( ) A .b 2=ac B .b 2=ce C .be =ac D .bd =ae二、填空题(本大题共6小题,每小题4分,共24分)11.已知线段a =1,b =2,c =3,d =6,则这四条线段________比例线段(填“成”或“不成”).12.在比例尺1∶6 000 000的地图上,量得南京到北京的距离是15 cm ,这两地的实际距离是______km.13.如图27­7,若DE ∥BC ,DE =3 cm ,BC =5 cm ,则ADBD=________.图27­714.△ABC 的三边长分别为2,2,10,△A 1B 1C 1的两边长分别为1和5,当△A 1B 1C 1的第三边长为________时,△ABC ∽△A 1B 1C 1.15.如图27­8,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,则这两个四边形每组对应顶点到位似中心的距离之比是__________.图27­8 图27­916.如图27­9,在矩形ABCD 中,点E 是BC 的中点,且DE ⊥AC 于点O ,则CDAD=________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图27­10,在▱ABCD 中,EF ∥AB ,FG ∥ED ,DE ∶EA =2∶3,EF =4,求线段CG 的长.图27­1018.如图27­11,在△ABC 中,AB =8,AC =6,BC =7,点D 在BC 的延长线上,且△ACD ∽△BAD ,求CD 的长.图27­1119.如图27­12,在水平桌面上有两个“E”,当点P1,P2,O在同一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 cm,要使测得的视力相同,则②号“E”的测试距离应为多少?图27­12四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图27­13,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.图27­1321.如图27­14,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2=BG·BF.图27­1422.如图27­15,点C,D在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.图27­15五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图27­16,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2.(1)求CD的长;(2)求BF的长.图27­1624.如图27­17,学校的操场上有一旗杆AB,甲在操场上的C处竖立3 m高的竹竿CD;乙从C处退到E处恰好看到竹竿顶端D与旗杆顶端B重合,量得CE=3 m,乙的眼睛到地面的距离FE=1.5 m;丙在C1处竖立3 m高的竹竿C1D1,乙从E处后退6 m到E1处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D1与旗杆顶端B 也重合,量得C1E1=4 m.求旗杆AB的高.图27­1725.如图27­18,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于点H ,过点E 作EF ⊥AC 交射线BB 1于点F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD =AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值.图27­18参考答案1.C 2.B 3.A 4.B 5.C 6.A 7.B 8.C 9.B 10.A 解析:∵CD ∥AB ,∴∠CDB =∠DBA . 又∵∠C =∠BDA =90°,∴△CDB ∽△DBA . ∴CD DB =BC AD =BD AB ,即c b =d e =ba.A .b 2=ac ,成立,故本选项正确;B .b 2=ac ,不是b 2=ce ,故本选项错误;C .be =ad ,不是be =ac ,故本选项错误;D .bd =ec ,不是bd =ae ,故本选项错误. 11.成 12.900 13.32 14. 215.1∶ 216.22解析:∵DE ⊥AC ,BC ∥AD ,∠ADC =90°,∴∠ACB =∠EDC .又∵∠ABC =∠ECD =90°, ∴△ACB ∽△EDC .∴AB CE =BC CD. ∵AB =CD ,BC =AD , ∴CD =CE ·AD =2CE .∴CD AD =2CE 2CE =22. 17.解:∵EF ∥AB ,∴△DEF ∽△DAB . 又∵DE ∶EA =2∶3,∴DE ∶DA =2∶5.∴EF AB =DE DA =4AB =25. ∴AB =10.又∵FG ∥ED ,DG ∥EF , ∴四边形DEFG 是平行四边形. ∴DG =EF =4.∴CG =CD -DG =AB -DG =10-4=6.18.解:∵△ACD ∽△BAD ,∴CD AD =AC AB =AD BD =68=34. ∴AD =34BD ,AD =43CD .∴16CD =9BD .又∵BD =7+CD ,∴16CD =9×(7+CD ),解得CD =9.19.解:(1)因为P 1D 1∥P 2D 2,所以△P 1D 1O ∽△P 2D 2O . 所以P 1D 1P 2D 2=D 1O D 2O ,即b 1b 2=l 1l 2. (2)因为b 1b 2=l 1l 2,b 1=3.2 cm ,b 2=2 cm ,l 1=8 m , 所以3.22=8l 2.所以l 2=5 m.20.解:(1)△ADE 与△ABC 相似.∵平行于三角形一边的直线和其他两边相交,交点与公共点所构成的三角形与原三角形相似.即由DE ∥BC ,可得△ADE ∽△ABC . (2)是位似图形.由(1)知:△ADE ∽△ABC .∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A , ∴△ADE 和△ABC 是位似图形,位似中心是点A . 21.证明:∵AB 是⊙O 的直径, ∴∠ACB =90°.又∵CD ⊥AB 于点D ,∴∠BCD =∠A . 又∵∠A =∠F (同弧所对的圆周角相等), ∴∠F =∠BCD =∠BCG . 在△BCG 和△BFC 中, ⎩⎨⎧∠BCG =∠F ,∠GBC =∠CBF ,∴△BCG ∽△BFC .∴BC BF =BGBC .即BC 2=BG ·BF .22.解:(1)∵△PCD 是等边三角形, ∴∠ACP =∠PDB =120°. 当AC PD =PC DB ,即AC CD =CDDB,也就是当CD 2=AC ·DB 时,△ACP ∽△PDB .(2)∵△ACP ∽△PDB ,∴∠A =∠DPB . ∴∠APB =∠APC +∠CPD +∠DPB=∠APC +∠CPD +∠A =∠PCD +∠CPD =120°. 23.解:(1)如图D100,连接OC ,在Rt △OCE 中,图D100CE =OC 2-OE 2=9-1=2 2. ∵CD ⊥AB ,∴CD =2CE =4 2. (2)∵BF 是⊙O 的切线, ∴FB ⊥AB .∴CE ∥FB . ∴△ACE ∽△AFB . ∴CE BF =AE AB ,2 2BF =26.∴BF =6 2.24.解:如图D101,连接F 1F ,并延长使之与AB 相交,设其与AB ,CD ,C 1D 1分别交于点G ,M ,N ,设BG =x m ,GM =y m. ∵DM ∥BG ,∴△FDM ∽△FBG . ∴DM BG =FM FG ,则1.5x =33+y. ①又∵ND 1∥GB ,∴△F 1D 1N ∽△F 1BG . ∴D 1N BG =F 1N F 1G ,即1.5x =4y +6+3. ② 联立①②,解方程组,得⎩⎨⎧x =9,y =15.故旗杆AB 的高为9+1.5=10.5(m).图D10125.解:(1)∵∠ACB =90°,AC =3,BC =4, ∴AB =32+42=5. ∵AD =5t ,CE =3t ,∴当AD =AB 时,5t =5,∴t =1.∴AE =AC +CE =3+3t =6,∴DE =6-5=1. (2)∵EF =BC =4,点G 是EF 的中点,∴GE =2. 当AD <AE ⎝⎛⎭⎪⎫即t <32时,DE =AE -AD =3+3t -5t =3-2t .若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BC AC, ∴3-2t 2=34或3-2t 2=43.∴t =34或t =16.∴当AD >AE ⎝ ⎛⎭⎪⎫即t >32时,DE =AD -AE =5t -(3+3t )=2t -3.若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BCAC, ∴2t -32=34或2t -32=43.∴t =94或t =176.综上所述,当t =16或34或94或176秒时,△DEG ∽△ACB .九年级下册《第二十七章 相似》单元检测试卷(三)班级___________姓名____________成绩一.选择题(每题5分,共35分) 1. 下列图形一定是相似图形的是( ) A .两个菱形 B .两个矩形 C .两个等腰三角形D .两个正三角形2. 如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( ) A .21 B .31C .41D .323.若DEF ABC ∆∆∽,1:2:=DE AB ,且ABC ∆的周长为16,则DEF ∆的周长为( ) A. 4B. 16C. 8D. 324. 如图,△ABC 中,若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DEDB AD =B .ADEFBC BF =C .FCBFEC AE =D .BCDEAB EF =5. 如图,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )A .1B .23C .2D .256. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )7. 如图所示,不能判定△ABC ∽△DAC 的条件是( ) A .∠B =∠DAC B .∠BAC =∠ADC C .AC 2=DC ·BC D .AD 2=BD ·BC二.填空题:(每题4分,共32分) 8. 若532zy x ==,则=-++z x z y x 2______. 9. 如图,□ABCD 中,G 是BC 延长线上的一点,AG 与BD 交于点E ,与DC 交于点F ,此图中的相似三角形共有______对.10. 如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m ,与树相距15m ,则树的高度为__________.ABC15m6m2m11. 如图,DE 是ABC ∆的中位线,M 是DE 的中点,那么NDMNBCS S ∆∆= .10题图 11题图 12题图 12. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =5,BC =12,则AD=________.13. 如图,四边形PQMN 是△ABC 内接正方形,BC =20cm , 高AD =12cm ,则内接正方形边长QM 为__________.14. 如图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且41=EB AE ,射线CF 交AB 于E 点,则AD AF 等于______.15. 如图,正方形ABCD 的边长为2,AE=EB ,MN =1,线段MN 的两端在BC 、DC 上滑动,当MC=__________时,△AED 与以N 、M 、C 为顶点的三角形相似.三.解答题:(16、17、18题每题8分,19题9分,共33分) 16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上. (1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:O ABCO ABCE N MABDC图1 图2结论:____________________________为所求.17. 如图,在△APM的边AP上任取两点B,C,过B作AM的平行线交PM于N,过N作MC的平行线交AP于D.求证:PA∶PB=PC∶PD.证明:18. 如图,在□ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.(1)证明:(2)解:19. 已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.(1)证明:(2)解:FEA DCB(3)解:AE =_________________________.答案与提示1. D2. B3. C4. D5. C6. B7. D8. -109.6 10. 7m 11. 161 12. 1325 13. 7.5cm 14. 3115.55255或 16. 略17. 提示:PA ∶PB =PM ∶PN ,PC ∶PD =PM ∶PN .18. (1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F , ∴∠AEB =∠F . ∴△ABE ∽△ECF .(2)解:∵△ABE ∽△ECF , ∴AB BE ECCF=.∵四边形ABCD 是平行四边形, ∴BC =AD =8.∴EC =BC -BE =8-2=6. ∴526CF=.∴125CF =.19.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC . (2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE(提示:当△ADE 是等腰三角形时,△ABD ≌△DCE .可得.12-=x ) 当∠ADE 为底角时:⋅=21AE九年级下册《第二十七章 相似》单元检测试卷(四)一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y (y ≠0),则下列比例式成立的是( ) A .B .C .D .2.(3分)若,则等于( )A .8B .9C .10D .113.(3分)下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A .∠A=∠E 且∠D=∠F B .∠A=∠B 且∠D=∠F C .∠A=∠E 且D .∠A=∠E 且4.(3分)如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.A .B .C .或D .或5.(3分)如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A. B. C. D.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.127.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C. D.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC :S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:19.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD= .12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD 的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= .三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.18.(8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.19.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.20.(8分)如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.如图,求证:∠BAD=∠CAD.22.(10分)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.23.(10分)如图,已知△ABC∽△ADE,AB=30cm,AD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.(1)求∠ADE和∠AED的度数;(2)求DE的长.24.(12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A 出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.【分析】本题须根据比例的基本性质对每一项进行分析即可得出正确结论.【解答】解:∵2x=5y,∴.故选B.【点评】本题主要考查了比例的性质,在解题时要能根据比例的性质对式子进行变形是本题的关键.2.(3分)若,则等于()A.8 B.9 C.10 D.11【分析】设=k,得出a=2k,b=3k,c=4k,代入求出即可.【解答】解:设=k,则a=2k,b=3k,c=4k,即===10,故选C.【点评】本题考查了比例的性质的应用,主要考查学生的分析问题和解决问题的能力.3.(3分)下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.4.(3分)如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A. B.C.或D.或【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM与AB是对应边时,②当DM与BE是对应边时这两种情况.5.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A. B. C. D.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=,=,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.12【分析】由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.【解答】解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选D.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握比例线段的对应关系.7.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C 1D1的长是()A.10 B.12 C. D.【分析】由四边形ABCD∽四边形A1B1C1D1,根据相似多边形对应边的比相等列出比例式=,将AB=12,CD=15,A1B1=9代入,计算即可求出边C1D1的长.【解答】解:∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.故选C.【点评】本题考查了相似多边形的性质,根据相似多边形对应边的比相等列出比例式是解题的关键.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC :S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:1【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵△ABC∽△A′B′C′,,∴=()2=,故选C.【点评】本题考查了相似三角形的性质的应用,能运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.9.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高x米,则=,∴解得:x=8.故选;C.【点评】此题考查了相似三角形在实际生活中的运用,得出比例关系式是解题关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3【分析】根据射影定理得到:AC2=AD•AB,把相关线段的长度代入即可求得线段AD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则AD=.故选:A.【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD= 6 .【分析】根据直角三角形中的射影定理来做:AD2=BD•CD.【解答】解:∵△ABC是直角三角形,AD是斜边BC上的高,∴AD2=BD•CD(射影定理),∵BD=4,CD=9,∴AD=6.【点评】本题主要考查了直角三角形的性质:射影定理.12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是 2 .【分析】根据BC=AC可得=,再根据条件AD∥BE∥CF,可得=,再把DE=4代入可得EF的值.【解答】解:∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.故答案为:2.【点评】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为2:3 .【分析】根据相似三角形的面积的比等于相似比的平方,可直接得出结果.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC :S△DEF=2:9=()2,所以△ABC与△DEF的相似比为2:3,故答案为:2:3.【点评】本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为1:4 .【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF的面积之比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8 米(平面镜的厚度忽略不计).【分析】由已知得△ABP∽△CDP,根据相似三角形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故答案为:8.【点评】本题综合考查了平面镜反射和相似形的知识,关键是根据相似三角形在测量中的应用分析.16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= 4或6 .【分析】分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.【解答】解:如图1,当MN∥BC时,则△AMN∽△ABC,。

最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

人教版九年级数学下册第二十七章-相似单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3 B.4:9 C D.16:812、如图,已知直线a∥b∥c,分别交直线m、n于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则DF 的长是()A.92B.4 C.6 D.23、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA.B.26 C.D.134、某校开展“展青春风采,树强国信念”科普阅读活动.小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618.特别奇妙的是在正五边形中,如图所示,连接顶点AB ,AC ,ACB ∠的平分线交边AB 于点D ,则点D 就是线段AB 的一个黄金分割点,即0.618AD AB≈,已知10cm AC =,那么该正五边形的周长为( )A .19.1cmB .25cmC .30.9cmD .40cm5、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =4,CD =12,那么EF 的长是( )A .2B .2.5C .2.8D .36、在ABC 中,D ,E 分别是边AB ,AC 上的两个点,并且DE ∥BC ,AD :BD =3:2,则ADE 与四边形BCED 的面积之比为( )A .3:5B .4:25C .9:16D .9:257、在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,交AC 于点D .BC =8,则AC =( )A . 4B . 4C .16D .128、如图, 点 E 是线段 BC 的中点, B C AED ∠∠∠==, 下列结论中, 说法错误的是( )A .ABE △ 与 ECD 相似B .ABE △ 与 AED 相似C .AB AE AE AD = D .BAE ADE ∠=∠9、如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 10、如图,H 是平行四边形ABCD 的边AD 上一点,且12AH DH =,BH 与AC 相交于点K ,那么AK :KC 等于()A.1:1 B.1:2 C.1:3 D.1:4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得△AOB和△OAD相似(不包括全等),则点D的坐标为__________.2、如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E是CD的中点;下列结论:①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.其中正确的结论有 _____.(填写序号即可)3、如图,在ABC中,D为AB边上的一点,要使BAC EAD△∽△成立,还需要添加一个条件,你添加的条件是__________4、如图,ABC ∆中,AB AC =,点D 为AB 上一点,4BD AD =,连接CD ,45BCD ︒∠=,132AC =,则BC 的长为________.5、若3x =7y ,则x y=_____.三、解答题(5小题,每小题10分,共计50分)1、小豪为了测量某塔高度,把镜子放在离塔(AB )50m 的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到塔尖A ,再测得DE =2.4m ,小豪目高CD =1.68m ,求塔的高度AB .2、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36°的等腰三角形称为“黄金三角形”.(1)理解:如图(1),请将内角分别36°,36°,108°的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(2),已知等腰三角形ABC 为“黄金三角形”,AB=AC ,∠A=36°,BD 为∠ABC 的平分线.求证:点D 是AC 的黄金分割点.3、如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,过点C 作射线CP AB ∥,D 为射线CP 上一点,E 在边BC 上(不与,B C 重合)且45DAE ∠=︒,AC 与DE 交于点O .(1)求证:ADC AEB △△;(2)求证:ADE ACB ;(3)如果CD CE =,求证:2CD CO CA =.4、如图,在ABCD 中,BE AB ⊥于点E ,交AC 于点F ,且:1:2AE EB =.(1)求证:AEF CDF∽△△;(2)求AEF与AFD的面积比.5、如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.---------参考答案-----------一、单选题1、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B.【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.2、A【解析】【分析】由直线////a b c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由4AC=,6CE=,3BD=,即可求得DF的长即可.【详解】解:////a b c,∴AC BDCE DF=,4AC=,6CE=,3BD=,∴436DF=, 解得:92DF =,故选择A .【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长:1=⎝⎭,由此求解即可. 【详解】解:∵一种数学课本的宽与长之比为黄金比,∴宽:长:1=⎝⎭, ∵长是26cm ,∴宽2613==,故选D .【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例.4、C【解析】【分析】根据正五边形各边相等,各内角相等,得到ADC AEC ≅△△ ,得到AE AD = ,再根据0.618AD AB≈求出AD 即可求解 .【详解】解:∵正五边形每个内角=540=1085︒︒ ,每条边相等,AB AC = , ∴108AEC ECB ∠=∠=︒ ,∵AE EC = , ∴180108362EAC ECA ︒-︒∠=∠==︒ , ∴1083672ACB ECB ECA ∠=∠-∠=︒-︒=︒ ,∵DC 为∠ACB 的平分线,∴1362ACD ACB ∠=∠=︒ , ∵AB AC = ,∴72ABC ACB ∠=∠=︒ , ∴36BAC ∠=︒ , ∵AC AC = ,∴()ADC AEC ASA ≅ , ∴AE AD = , ∵0.618ADAB≈,10cm AB AC ==, ∴100.618 6.18cm AE AD ==⨯= , ∴该五边形周长=6.185=30.9cm ⨯ , 故选:C . 【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键. 5、D 【解析】 【分析】根据相似三角形的判定得出△DEF ∽△DAB ,△BFE ∽△BDC ,根据相似得出比例式,求出1EF EFAB DC+=,代入求出即可. 【详解】解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△DEF ∽△DAB ,△BFE ∽△BDC , ∴EF DF AB BD =,EF BFDC BD =, ∴1EF EFAB DC+=, ∵AB =4,CD =12, ∴EF =3, 故选:D . 【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键. 6、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方.7、A【解析】【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出AC的长.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=180362︒-︒=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=∠ABD+∠A=72°,∴∠BDC=∠C=72°,∴AD=BD=BC=8.∵∠A=∠DBC=36°,∠C公共角,∴△ABC∽△BDC,∴BC ACCD BC=,即888ACAC=-,整理得:AC2-8AC-64=0,解方程得:AC AC舍去),故选:A.本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC 的长. 8、D 【解析】 【分析】根据外角的性质可得BAE DEC ∠=∠,结合已知条件即可证明ABE ECD ∽△△,从而判断A ,进而可得AB AEEC ED=,根据E 是中点,代换BE CE =,进而根据两边成比例夹角相等可证ABE △∽AED ,进而判断B ,C ,对于D 选项,利用反证法证明即可. 【详解】解:AEC BAE B AED DEC ∠=∠+∠=∠+∠,AED B ∠=∠BAE DEC ∴∠=∠又B C ∠=∠ABE ECD ∴∽故A 选项正确ABE ECD ∽△△AB AEEC ED∴= E 为BE 的中点∴BE CE =AB AEBE ED∴= 又B AED ∠=∠∴ABE △∽AED故B 、C 选项正确ABE △∽AEDDAE BAE ∴∠=∠若BAE ADE ∠=∠ 则DAE ADE ∠=∠AE DE ∴=根据现有条件无法判断AE DE =,故BAE ADE ∠∠≠ 故D 选项不正确 故选:D . 【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键. 9、A 【解析】 【分析】利用位似图形的性质结合两图形的位似比进而得出C 点坐标. 【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半, ∴端点C 的坐标为:(3,3). 故选:A . 【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.10、C【解析】【分析】根据AH=12DH求出AH:AD即AH:BC的值是1:3,再根据相似三角形对应边成比例求出AK:KC的值.【详解】解:∵AH=12DH,∴AH:AD=13,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AH:BC=1 3∴△AHK∽△CBK,∴13 AK AHKC BC==故选:C.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键.二、填空题1、(0,-12)或(1,-12)或(15,25-)或(45,25-).【解析】【分析】点D 在y 轴上,根据△AOB ∽△DOA ,可得BO OA AO OD=,即211OD =;当点D 在过点A 平行y 轴的直线上,根据△AOB ∽△D 1AO ,1BO OA OA D A =,即1211D A =;当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,ABOD 2A ∽△AOB ,2BO ABAD OA =,即22AD △D 2EA ∽△DOA ,22AD D E AE AD AO OD ==2112D E AE ==,求出AE =45,D 2E =25,当点D 3在0D 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3,根据△OD 3A ∽△BOA ,3BO ABOD AO =,即32OD,3OD =△D 3FO ∽△D 1AO ,3311OD D F OF OD OA AD ==3112D F OF ==,求出OE =45,D 3F =25即可. 【详解】解:点D 在y 轴上,△AOB ∽△DOA , ∴BO OA AO OD=,即211OD =,解得OD =12, 点D (0,-12);当点D 在过点A 平行y 轴的直线上,△AOB ∽△D 1AO ,∴1BO OA OA D A =,即1211D A =, 解得D 1A =12, 点D 1(1,-12);当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,AB= ∵△OD 2A ∽△AOB ,∴2BO AB AD OA =,即22AD =∴2AD =在Rt △OAD 中,AD= ∵D 2E ⊥x 轴于E ,,OD ⊥x 轴, ∴D 2E∥OD ,∴∠AD 2E =∠ADO ,∠D 2EA =∠DOA =90°, ∴△D 2EA ∽△DOA ,∴22AD D EAE AD AO OD ==2112D E AE ==, ∴AE =45,D 2E =25,∴OE =OA -AE =1-45=15,∴D 2(15,25-)当点D 3在OD 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3, ∵△OD 3A ∽△BOA ,∴3BO AB OD AO =,即32OD ,∴3OD =在Rt △OAD 1中,0D 1=, ∵D 3F ⊥x 轴于F ,OD ⊥x 轴, ∴D 3F∥OD ,∴∠OD 3F =∠QD 1A ,∠D 3FO =∠D 1AO =90°, ∴△D 3FO ∽△D 1AO ,∴3311OD D F OF OD OA AD ==3112D FOF ==, ∴OE =45,D 3F =25,∴D 3(45,25-);△AOB 和△OAD 相似(不包括全等),则点D 的坐标为(0,-12)或(1,-12)或(15,25-)或(45,25-). 故答案为(0,-12)或(1,-12)或(15,25-)或(45,25-).【点睛】本题考查三角形相似的判定与性质,勾股定理,掌握三角形相似判定与性质是解题关键.2、①②③【解析】【分析】①利用ASA证明△BDN≌△CDM,再证明△DMN是等腰直角三角形,即可判断结论①正确;②过点D作DF⊥MN于点F,则∠DFE=90°=∠CME,可利用AAS证明△DEF≌△CEM,即可判断结论②正确;③先证明△BDE∽△CME,可得出CMEM=BDDE=2,进而可得CM=2EM,NE=3EM,即可判断结论③正确;④先证明△BED≌△CAD(ASA),可得S△BED=S△CAD,再证明BN<NE,可得S△BDN<S△DEN,进而得出S△BED<2S△DNE,即可判断结论④不正确.【详解】解:①∵CD⊥AB,∴∠BDC=∠ADC=90°,∵∠ABC=45°,∴BD=CD,∵BM⊥AC,∴∠AMB=∠ADC=90°,∴∠A+∠DBN=90°,∠A+∠DCM=90°,∴∠DBN=∠DCM,∵DN⊥MD,∴∠CDM+∠CDN=90°,∵∠CDN+∠BDN=90°,∴∠CDM=∠BDN,∴△BDN≌△CDM(ASA),∴DN =DM ,∵∠MDN =90°,∴△DMN 是等腰直角三角形,∴∠DMN =45°,∴∠AMD =90°-45°=45°,故①正确;②如图1,由(1)知,DN =DM ,过点D 作DF ⊥MN 于点F ,则∠DFE =90°=∠CME ,∵DN ⊥MD ,∴DF =FN ,∵点E 是CD 的中点,∴DE =CE ,在△DEF 和△CEM 中,DEF CEM DFE CME DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△CEM (AAS ),∴ME =EF ,CM =DF ,∴FN =CM ,∵NE-EF=FN,∴NE-EM=MC,故②正确;③由①知,∠DBN=∠DCM,又∵∠BED=∠CEM,∴△BDE∽△CME,∴CMEM=BDDE=2,∴CM=2EM,NE=3EM,∴EM:MC:NE=1:2:3,故③正确;④如图2,∵CD⊥AB,∴∠BDE=∠CDA=90°,由①知:∠DBN=∠DCM,BD=CD,∴△BED≌△CAD(ASA),∴S△BED=S△CAD,由①知,△BDN≌△CDM,∴BN=CM,∴BN=FN,∴BN<NE,∴S△BDN<S△DEN,∴S△BED<2S△DNE.∴S△ACD<2S△DNE.故④不正确,故答案为:①②③.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、三角形面积等知识,解题的关键是熟练掌握全等三角形的判定和性质.3、AED ABC∠=∠∠=∠或ADE ACB【解析】【分析】根据图形可以看出两个三角形有一个公共角A∠,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可.【详解】解:由图可知,在BAC EAD∠=∠△与△中,BAC EAD∴添加的条件为:AED ABC∠=∠∠=∠或ADE ACB故答案为:AED ABC∠=∠∠=∠或ADE ACB【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键.4、【分析】过A点作AH⊥BC,过D点作DE⊥BC,得到BH=CH,△ABH∽△DBE,设BC=10a,求出BE=4a、DE=6a,根据Rt△BDE中,BD2=DE2+BE2,求出a,故可求解.【详解】过A点作AH⊥BC,过D点作DE⊥BC∵AB AC=∴BH=CH,设BC=10a∴BH=CH=5a∵132AC==AB,4BD AD=∴BD=426 55 AB=∵AH⊥BC,DE⊥BC ∴DE∥AH∴△ABH∽△DBE∴AB HBDB EB=∵4BD AD=∴5=4 AB HB DB EB=∴BE=4a∴CE=10a-4a=6a∵45BCD︒∠=,DE⊥BC∴∠CDE=180°-45°-90°=45°∴△ADE是等腰直角三角形∴DE=CE=6a在Rt△BDE中,BD2=DE2+BE2即(265)2=(6a)2+(4a)2解得a∴BC=10a=故答案为:【点睛】此题主要考查三角形内线段求解,解题的关键是熟知相似三角形的判定与性质、等腰三角形的性质及勾股定理的运用.5、7 3【解析】【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.【详解】解:若3x=7y,则73 xy故答案为:7 3【点睛】此题主要考查比例的基本性质,掌握比例的性质是解题的关键.三、解答题1、35m【解析】【分析】根据题意得:∠ABE=∠CDE=90°,BB=50m BE=50m,由光的反射定律得:∠AEB=∠CED,从而得到△ABE∽△CDE,再由相似三角形的性质,即可求解.【详解】解:根据题意得:∠ABE=∠CDE=90°,BE=50m,由光的反射定律得:∠AEB=∠CED,∴△ABE∽△CDE,∴BBBB=BBBB,∴BB1.68=502.4,解得:BB=35m,即塔的高度为35m.【点睛】本题主要考查了相似三角形的实际应用,明确题意,准确得到相似三角形是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明△CBD∽△CAB,结合图形、根据黄金分割的定义判断即可.【详解】解:(1)如图,(2)∴∠ABC=∠C=72°又∵BD平分∠ABC∴∠ABD=∠CBD=12∠ABC=36°∴∠BDC=180°-∠C-∠CBD=72°∴AD=BD,BC=BD即AD=BC=BD·又∵∠C=∠C,∠CBD=∠A∴△CBD∽△CAB∴BBBB=BBBB∴BBBB=BBBB·即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角△ABC得到∠BAC=∠B=45°,从而结合∠DAE=45°得到∠DAC=∠EAB,再由平行线的性质得到∠ACP=∠BAC=∠B=45°,从而得到△ADC∽△AEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合∠DAE=∠CAB=45°得证结果;(3)根据题意结合∠ACD=45°和∠ACB=90°,由CD=CE得到∠CDE=∠CED=22.5°,从而得到∠DAC=22.5°,然后得到△OCD∽△DCA,最后即可求证.【详解】解:(1)证明:∵ABC是等腰直角三角形,∴∠BBB=∠B=45°,∵∠BBB=45°,BB∥BB,∴∠BBB=∠BBB,∠BBB=∠BBB=∠B=45°,∴ΔBBB∼ΔBBB;(2)证明:∵ΔBBB∼ΔBBB∴BBBB=BBBB,即BBBB=BBBB,∵∠BBB=∠BBB=45°,∴ΔBBB∼ΔBBB;(3)∵∠BBB=45°,∠BBB=90°,∴∠BBB+∠BBB=180°−90°−45°=45°,∵CD CE=,∴∠BBB=∠BBB=22.5°,∵ΔBBB∼ΔBBB,∴∠BBB=∠BBB=90°,∴∠BBB=180°−∠BBB−∠BBB−∠BBB=180°−90°−22.5°−45°=22.5°∴∠BBB=∠BBB,又∵∠BBB=∠BBB,∴ΔBBB∼ΔBBB,∴BBBB=BBBB,∴2CD CO CA=【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似.4、(1)见解析;(2)1:3【解析】【分析】(1)由ABCD得出BB∥BB,由平行线的性质得∠BBB=∠BBB,∠BBB=∠BBB,即可证明△BBB∼△BBB;(2)由:1:2AE EB=得出BB:BB=1:3,由相似三角形的性质得BBBB =BBBB=13由BE AB⊥得∠BBB=90°,由三角形的面积公式得B△BBB=12×BB×BB,B△BBB=12×BB×BB,即可求出B△BBB:B△BBB.【详解】(1)∵四边形ABCD 是平行四边形,∴BB ∥BB ,∴∠BBB =∠BBB ,∠BBB =∠BBB ,∴△BBB ∼△BBB ;(2)∵BB :BB =1:2,∴BB :BB =BB :BB =1:3,∵△BBB ∼△BBB ,∴BB BB =BB BB =13,∵BB ⊥BB ,∴∠BBB =90°,∵B △BBB =12×BB ×BB ,B △BBB =12×BB ×BB ,∴B △BBB :B △BBB =BB :BB =1:3.【点睛】本题考查相似三角形的判定与性质、三角形的面积公式,掌握相似三角形的判定定理以及性质是解题的关键.5、(1)1;n m ;(2)①n m ;②n m ;(3)CE =CE =【解析】【分析】(1)先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(2)方法和()1一样,先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(3)由()2的结论得出ADE ∽CDF ,判断出2CF AE =,求出DE ,再利用勾股定理,计算出即可.【详解】解:()1当m n =时,即:BC AC =,90ACB ∠=,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,1AD AC DC BC ∴==,1DE DF∴= ()290ACB ∠=①,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m ∴==,DE n DF m∴= ②成立.如图3,90ACB ∠=,90A ABC ∴∠+∠=,又CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠+∠=∠+∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m∴==, DE n DF m∴=. ()3由()2有,ADE ∽CDF , 12DE AC DF BC ==, 12AD AE DE CD CF DF ∴===, 2CF AE ∴=,如图4图5图6,连接EF .在Rt DEF △中,DE =DF =EF ∴= ①如图4,当E 在线段AC 上时,在Rt CEF 中,())222CF AE AC CE CE ==-=,EF =根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=CE ∴=CE =舍) ②如图5,当E 在AC 延长线上时,在Rt CEF 中,())222CF AE AC CE CE ==+=,EF = 根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=,CE ∴CE =-舍),③如图6,当E 在CA 延长线上时,在Rt CEF 中,()(222CF AE CE AC CE ==-=,EF =根据勾股定理得,222CE CF EF +=,(22[2]40CE CE ∴+=,CE ∴=CE =,综上:CE =CE =【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE 是本题的难点.。

九年级数学下册《第二十七章 相似》单元测试卷-含答案(人教版)

九年级数学下册《第二十七章 相似》单元测试卷-含答案(人教版)

九年级数学下册《第二十七章 相似》单元测试卷-含答案(人教版)一、选择题1.任意下列两个图形不一定相似的是( )A .正方形B .等腰直角三角形C .矩形D .等边三角形2.如图,123l l l ,则下列比例式成立的是( )A .AB DEAC EF= B .AB DEAC DF= C .AB BEAC CF= D .AB ADAC CF= 3.如图ADE ACB ~,5DE =和916ADEBCED S S =四边形::则BC 为( )A .8B .203C .253D .104.高4米的旗杆在水平地面上的影长为6米,此时测得附近一个建筑物的影长24米,则该建筑物的高度为( ) A .10米B .16米C .26米D .36米5.在平面直角坐标系中,以原点O 为位似中心,作ABC 的位似图形A B C ''',ABC 与A B C '''相似比为12:,若点A 的坐标为()23,,则点A '的坐标为( ) A .()11.5,或()1 1.5--, B .()46,或()46--, C .()46-,或()46-, D .()11.5-,或()1 1.5-, 6.已知四边形ABCD∽四边形EFGH ,且AB =3,EF =4,FG =5.则四边形EFGH 与四边形ABCD的相似比为( ) A .3:4B .3:5C .4:3D .5:37.如图,在ABC 中,点D 在边AB 上,过点D 作DE BC ,交AC 于点E .若23AD BD ==,则AEAC的值是( )A .25B .12C .35D .238.如图,DE 是ABC 的中位线,点F 在DB 上,2.DF BF =连接EF 并延长,与CB 的延长线相交于点.M 若6BC =,则线段CM 的长为( )A .132B .7C .152D .89.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB BD ⊥,CD BD ⊥ 且测得1AB =米, 1.5BP =米,48PD =米,那么该大厦的高度约为( )A .32米B .28米C .24米D .16米10.如图,在直角坐标系中,ABC 的三个顶点分别为(12)(21)(32)A B C ,,,,,,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''',则顶点C '的坐标是( )A .(24),B .(42),C .(64),D .(54),二、填空题11.若两个相似多边形的相似比是2:3,则它们的周长比是 .12.如图,在菱形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 上的点,且BE BF CG AH === 若菱形的面积等于24,8BD = 则EF GH += .13.边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为 .14.如图所示∽ABC 和∽A'B'C'是以点O 为位似中心的位似图形,已知点C'是OC 的三等分点,则∽A'B'C'与∽ABC 的面积之比为 .三、解答题15.两个相似多边形的最长边分别为6cm 和8cm ,它们的周长之和为56cm ,面积之差为28cm 2,求较小相似多边形的周长与面积.16.如图,点D 为ABC 的边AB 的中点,过点D 作DE BC ,交AC 于点E ,延长DE 至点F ,使DE EF =,求证:CFE ABC ∽.17.如图,在矩形ABCD 中,点E 在边BC 上,AF DE ⊥垂足为F ,AD=4,CE=2 10DE =求DF 的长.18.位于陕西省渭南市澄城县城以南6公里处的印象古徵民俗文化园将现代都市生活与田园乡村气息完美结合,原汁原味的关中民俗风情诱惑着一批又一批的人前来游览.某个天气晴好的周末,欢欢和乐乐两个人去印象古徵民俗文化园游玩,看见园中的一棵大树,于是他们想运用所学知识测量这棵树的高度.如图,乐乐站在大树AB 的影子BC 的末端C 处,同一时刻,欢欢在乐乐的影子CE 的末端E 处做上标记,随后两人用尺子测得10BC =米,2CE =米.已知乐乐的身高 1.6CD =米,B 、C 、E 在一条直线上DC BE ⊥,AB BE ⊥请你运用所学知识,帮助欢欢和乐乐求出这棵大树的高度AB .19.如图,以原点O 为位似中心,把∽OAB 放大后得到∽OCD ,求∽OAB 与∽OCD 的相似比.四、综合题20.如图,把一个矩形ABCD 划分成三个全等的小矩形.(1)若原矩形ABCD 的长6AB =,宽4BC =.问:每个小矩形与原矩形相似吗?请说明理由. (2)若原矩形的长AB a =,宽BC b =,且每个小矩形与原矩形相似,求矩形长a 与宽b 应满足的关系式.21.如图,在平面直角坐标系中,ABC 各顶点的坐标分别为()11A -,,()23B ,和()03C ,.(1)以坐标原点O 为位似中心,在x 轴上方作与ABC 的位似比为2的位似图形A B C '''; (2)直接写出顶点B '的坐标为 ,ABCA B C SS'''=: .22.如图,点C 为线段AB 上一点,分别以AC BC ,为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接BF DE ,.(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.参考答案与解析1.【答案】C【解析】【解答】解:正方形的四个角均为直角且对应边成比例,故属于相似图形,不满足题意;等腰直角三角形的两锐角均为45°且对应边成比例,故属于相似图形,不满足题意; 矩形的对应边不成比例,故不属于相似图形,满足题意;等边三角形的三个角均为60°且对应边成比例,故属于相似图形,不满足题意. 故答案为:C.【分析】各角分别相等,各边对应成比例的两个图形为相似图形,据此判断.2.【答案】B【解析】【解答】解:∵123l l l∴AB DEAC DF =故答案为:B.【分析】由平行线分线段成比例定理即可一一判断得出答案.3.【答案】C【解析】【解答】解:∵~ADE ACB ∆∆,DE=5 916ADE BCED S S ∆=四边形::那么:925ADE ABC S S ∆∆=::∴DE :BC=3:5 ∴53BC DE =⋅ 525533BC =⨯=故答案为C 。

最新人教版九年级数学下册第二十七章-相似综合测试试卷(含答案详解)

最新人教版九年级数学下册第二十七章-相似综合测试试卷(含答案详解)

人教版九年级数学下册第二十七章-相似综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,90BC=,D,E分别在AB、AC上,将ABC沿DE折叠,使点A落∠=︒,6C在点A'处,若A'为CE的中点,则折痕DE的长为()A.1B.2 C.3 D.422、根据下列条件,判断△ABC与△A′B′C′能相似的条件有()①∠C=∠C′=90°,∠A=25°,∠B′=65°;②∠C=90°,AC=6cm,BC=4cm,90=,A′C′=9cm,B′C′=6cm;∠︒C'③AB=10cm,BC=12cm,AC=15cm,A′B′=150cm,B′C′=180cm,A′C′=225cm;④△ABC与△A′B′C′是有一个角为80°等腰三角形A.1对B.2对C.3对D.4对3、如图的两个四边形相似,则∠a的度数是()A .120°B .87°C .75°D .60°4、如图,在ABC 中,AB AC =,点D 为BC 边上一点,将ABD △沿直线AD 翻折得到AB D ',AB '与BC 边交于点E ,若3AB BD =,点E 为CD 中点,6BC =,则AB 的长为( )A .457B .6C .454D .1525、如图,下列选项中不能判定△ACD ∽△ABC 的是( )A .∠ACD =∠B B .∠ADC =∠ACB C .AC 2=AD •ABD .BC 2=BD •AB6、已知:矩形OABC ∽矩形OA 'B ′C ′,B ′(10,5),AA '=1,则CC ′的长是( )A .1B .2C .3D .47、若两个相似三角形的面积比为25:36,则它们的对应边的比是( )A B .2C .25:36D .5:68、如图,H 是平行四边形ABCD 的边AD 上一点,且12AH DH =,BH 与AC 相交于点K ,那么AK :KC 等于( )A .1:1B .1:2C .1:3D .1:49、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =4,CD =12,那么EF 的长是( )A .2B .2.5C .2.8D .310、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:81第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点F ,如果ΔΔ:1:9DEF BCF S S =,那么ΔΔ:ADE DEC S S 等于_______________2、已知在平行四边形ABCD 中,点E 在直线AD 上,13AE AD =,连接CE 交BD 于点F ,则:EF FC 的值是________.3、如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F ,若8AD =,6AB =,4AE =,则EBF ∆周长的大小为___.4、已知点 C 是线段 AB 的黄金分割点, 㓚果 ,2AC BC BC >=, 则 AC =_______.5、在△ABC 中,AB =8,点D 、E 分别是AC 、BC 上点,连接DE ,将△CDE 沿DE 翻折得△FDE ,点C 的对应点F 正好落在AB 上,若∠112+∠2=90°,S △ADF 12=S △CDE ,△BEF 的而积为12,则点D 到BC 的距离为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在6×6的方格纸ABCD 中给出格点O 和格点△EFG ,请按要求画格点三角形(顶点在格点上).(1)在图1中画格点△OPQ,使点P,Q分别落在边AD,BC上,且∠POQ=90°;(2)在图2中画格点△GMN,使它与△EFG相似(但不全等).2、如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.(1)探索发现:图1中,ABBC的值为,ADBE的值为.(2)拓展探究若将△CDE绕点C旋转,在旋转过程中ADBE的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,C三点共线时,直接写出线段BE的长.3、如图,O是ABC的外接圆,O点在BC边上,BAC的平分线交O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD 是O 的切线; (2)求证:PBD DCA △△;(3)当6AB =,8AC =时,求线段PB 的长.4、如图,已知O 是坐标原点,A ,B 两点的坐标分别为(2,1),(3,﹣1), (1)以点O 为位似中心,将△OAB 放大为原来的两倍,画出图形;(2)A 点的对应点A '的坐标是 ;B 点的对应点B ′的坐标是 ; (3)在AB 上有一点P (x ,y ),按(1)的方式得到的对应点P ′的坐标是 .5、AB 是⊙O 的弦,OD ⊥AB 交⊙O 于点F ,P 是OF 延长线上一点,连接PA 、PB 、AF 、OA .(1)如图1,若OA ⊥AP ,求证:∠DAF =∠PAF ;(2)如图2,若∠DAF =∠APF ,AB =16,OP =22,求OD 的长.---------参考答案----------- 一、单选题 1、B 【解析】 【分析】由折叠的特点可知AE AE '=,90DEA DEA ∠'=∠=︒,又90C ∠=︒,则由同位角相等两直线平行易证DE BC ∥,故ACB AED ∆~∆,又A '为CE 的中点可得13AE A E A C AC ''===,由相似的性质可得13DE BC =求解即可.【详解】解:ABC ∆沿DE 折叠,使点A 落在点A '处,90DEA DEA ∴∠=∠'=︒,AE A E =',又∵90C ∠=︒, ∴DE BC ∥,∴,ADE B AED C ∠=∠∠=∠,ACB AED ∴∆∆∽,又A '为CE 的中点,AE =AE ' ∴13AE A E A C AC ''===,∴13ED AE BC AC ==, 即163ED =, 2ED ∴=.故选:B . 【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键. 2、C 【解析】 【分析】根据相似三角形常用的判定方法对各个选项进行分析从而得到答案. 【详解】解:(1)∵∠C =∠C′=90°,∠A =25°. ∴∠B =65°.∵∠C =∠C′,∠B =∠B′. ∴ABC A B C '''∽.(2)∵∠C =90°,AC =6cm ,BC =4cm ,90C '∠︒= ,A′C′=9,B′C′=6. ∴2=3AC BC A C B C ='''',C C ∠∠'=.∴ABC A B C'''∽.(3)∵AB=10cm,BC=12cm,AC=15cm,A′B′=150cm,B′C′=180cm,A′C′=225cm;∴1==15 AB AC BCA B A C B C=''''''.∴ABC A B C'''∽.(4)∵没有指明80°的角是顶角还是底角.∴无法判定两三角形相似.∴共有3对.故选:C.【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似.3、B【解析】【分析】根据相似多边形的性质,可得1138∠=︒,再根据四边形的内角和等于360°,即可求解.【详解】解:如图,∵两个四边形相似, ∴1138∠=︒ ,∵两个四边形相似,且四边形的内角和等于360°, ∴360138607587α∠=︒-︒-︒-︒=︒ . 故选:B 【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键. 4、A 【解析】 【分析】由折叠的性质可得AB D ABD '∠=∠,BD B D '=,AB AB '=,然后证明B ED CEA '△∽△,得到DE B E B D AE CE CA ''==,设BD B D x '==,3AB AC AB x '===,即可推出13B E CE '=,从而得到133AE AB B E x CE ''=-=-,则11333DE CE CE AE AE x CE ===-,从而得到910CE x =,再由9961010BC BD DE CE x x x =++=++=,求解即可. 【详解】解:由折叠的性质可得AB D ABD '∠=∠,BD B D '=,AB AB '=, ∵AB =AC , ∴∠B =∠C , ∴AB D ACE '∠=∠, 又∵B ED CEA '∠=∠, ∴B ED CEA '△∽△,∴DE B E B D AE CE CA''==, ∵E 是CD 的中点,∴DE =CE ,设BD B D x '==,3AB AC AB x '===, ∴13DE B E B D AE CE CA ''===, ∴13B E CE '=, ∴133AE AB B E x CE ''=-=-, ∴11333DE CE CE AE AE x CE ===-, ∴910CE x =, ∴9961010BC BD DE CE x x x =++=++=, 解得157x , ∴4537AB x ==, 故选A .【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、D【解析】【分析】根据相似三角形的判定定理逐项判断即可.【详解】解:A.∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,故本选项不符合题意;B.∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC,故本选项不符合题意;C.∵AC2=AD•AB,∴AC AB AD AC=,∵∠A=∠A,∴△ACD∽△ABC,故本选项不符合题意;D.∵BC2=BD•AB,∴BC AB BD BC=,添加∠A=∠A,不能推出△ACD∽△ABC,故本选项符合题意.故选:D【点睛】本题考查了相似三角形的判定定理,能熟记相似三角形的判定定理的内容是解此题的关键.6、B【解析】【分析】根据坐标与图形性质求出OA'=5,进而得出矩形OABC与矩形OA'B'C'的相似比为4:5,计算即可.【详解】解:∵点B′的坐标为(10,5),AA'=1,∴OA'=5,OA=4,∴矩形OABC与矩形OA'B'C'的相似比为4:5,∴OC:OC'=4:5,∴OC=8,∴CC'=10-8=2,故选:B.【点睛】本题考查了坐标与图形性质,正确求出矩形OABC与矩形OA'B'C'的相似比是解题的关键.7、D【解析】【分析】根据相似三角形面积之比等于相似比的平方,求面积之比的算术平方根即可.【详解】相似多边形的面积比等于相似比的平方,面积比为25:36,6,故选:D.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形面积之比等于相似比的平方是解题的关键.8、C【解析】【分析】根据AH =12DH 求出AH :AD 即AH :BC 的值是1:3,再根据相似三角形对应边成比例求出AK :KC 的值.【详解】解:∵AH =12DH ,∴AH :AD =13,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴AH :BC =13∴△AHK ∽△CBK , ∴13AK AH KC BC == 故选:C .【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键.9、D【解析】【分析】根据相似三角形的判定得出△DEF ∽△DAB ,△BFE ∽△BDC ,根据相似得出比例式,求出1EF EF AB DC+=,代入求出即可.【详解】解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△DEF ∽△DAB ,△BFE ∽△BDC , ∴EF DF AB BD =,EF BF DC BD=, ∴1EF EF AB DC +=, ∵AB =4,CD =12,∴EF =3,故选:D .【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键.10、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.二、填空题【解析】【分析】首先根据//DE BC 得到DEF CBF ∆∆∽,根据ΔΔ:1:9DEF BCF S S =,得出:1:3DE CB =,然后得到:1:2AE EC =,再根据同底不同高,面积比等于高之比即可.【详解】解://DE BC ,DEF CBF ∴∆∆∽,ΔΔ:1:9DEF BCF S S =,1:3DE CB ∴+=,分别过点,E A 作,BC DE 的垂线,交于,M N ,在Rt EMC 与Rt ANE △,,90AEN ECM ANE EMC ∠=∠∠=∠=︒,Rt EMC Rt EMC ∴∽,::1:2AN EM AE EC ∴==,ΔΔ:1:2:ADE DEC AN EM S S ==,故答案是:1:2.本题考查了相似三角形的判定与性质,解题的关键是了解相似三角形面积的比等于相似比的平方.2、23或43【解析】【分析】分两种情况:①当点E在线段AD上时,由四边形ABCD是平行四边形,可证得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值;②当点E在射线DA上时,同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值.【详解】解:∵13AE AD=,∴分两种情况:①当点E在线段AD上时,如图1所示∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵13AE AD=,∴DE=2AE=23AD=23BC,∴DE:BC=2:3,∴EF:FC=2:3;②当点E在线段DA的延长线上时,如图2所示:同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵13AE AD,∴DE=4AE=43AD=43BC,∴DE:BC=4:3,∴EF:FC=4:3;综上所述:EF:FC的值是23或43;故答案为:23或43.【点睛】此题考查了相似三角形的判定与性质与平行四边形的性质.此题难度不大,证明三角形相似是解决问题的关键;注意分情况讨论.3、8【分析】设AH a=,则8DH AD AH a=-=-,通过勾股定理即可求出a值,再根据同角的余角互补可得出BFE AEH∠=∠,从而得出EBF HAE∆∆∽,根据相似三角形的周长比等于对应比即可求出结论.【详解】解:设AH=a,则DH=AD-AH=8-a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8-a,∴EH2=AE2+AH2,即(8-a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴23 EBFHAEC BE AB AEC AH AH∆∆-===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=23C△HAE=8.故答案为:8.【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.41##1【解析】根据黄金分割比可直接进行列式求解.【详解】解:∵点C 是线段AB 的黄金分制点,且AC >BC ,2BC =∴BC AC =AC =11.【点睛】本题主要考查了黄金分割点的定义,即:把一条线段分成两部分,使其中较长的线段为全线段与较短. 5、165 【解析】【分析】连接CF ,交DE 于H ,作DG ⊥AB 于G ,通过证明△AGD ≌△FGD ,得AD =DF ,从而可证D 是AC 中点,再证明E 是BC 中点,根据相似三角形的判定与性质,14CDECAB S S =△△.设S △CDE =m ,根据△BEF 的而积为12求出m ,然后根据三角形的面积公式和勾股定理求解即可.【详解】解:连接CF ,交DE 于H ,作DG ⊥AB 于G ,则∠AGD =∠DGF =90°,∵∠112+∠2=90°,∠1+∠GDF =90°,∴∠GDF =12∠2,∴∠GDF =∠3.在△AGD 和△FGD 中3AGD DGF DG DGGDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△FGD ,∴DA =DF ,∠A =∠1.由折叠的性质知,△AGD ≌△FGD ,∴FD =CD ,FE =CE ,∴∠4=∠5,AD =CD .∵∠A +∠1+∠4+∠5=180°,∴∠1+∠4=90°,∴∠AFC =90°,∴∠BFC =90°.∵,FE =CE ,∴∠6=∠7.∵∠8+∠6=90°,∴∠B +∠7=90°,∴∠8=∠B ,∴FE =BE ,∴CE =BE ,∴D 、E 分别为AC 、BC 的中点,∴DE //AB ,12DE AB =.∴△CDE ∽△CAB , ∴14CDE CAB S S =△△. 设S △CDE =m ,则S △ACB =4m ,∵S △ADF 12=S △CDE ,∴S △ADF 12=m .∵ΔΔΔΔΔ+ADF FDE BFE DEC ABC S S S S S ++=, ∴12m +m +m +12=4m ,∴m =8,∴S △CDE =8,S △ACB =32,S △BFE =32-8-8-4=12. ∵1322AB CF ⋅=,AB =8,∴CF =8.∵DE //AB ,∴△ABF与△BFE等高,∴AF:BF=S△ABF:S△BFE=4:12=1:3,∴BF=34AB=6.∵∠BFC=90°,∴BC.∵E为BC中点,∴BE=CE=5.设D到BC的距离为h,∵182CE h⋅=,∴∴h=2816=55⨯.故答案为:165.【点睛】本题考查了折叠的性质,勾股定理,全等三角形的判定与性质,等腰三角形的判定与性质,以及两平行线间的距离等知识,证明、E分别为AC、BC的中点是解答本题的关键.三、解答题1、(1)见解析;(2)见解析【解析】【分析】(1)利用正方形的性质,将OP作为4×4组成的正方形的对角线,将OQ作为2×2组成的正方形的对角线,即可得到;(2)根据GMN EFG∽且不全等,作3,45GM MN GMN==∠=︒即可实现.△满足题意;解:(1)如图:OPQ(2)如图:作3,45==∠=︒,即GMN满足题意;GM MN GMN【点睛】本题考查了作直角三角形,相似三角形,解题的关键是掌握三角形相似的判定定理及作图能力.2、(1(2)无变化,理由见解析;(3【解析】(1)连接AE ,先根据等腰三角形的性质可得,30AE BC B C ⊥∠=∠=︒,再根据直角三角形的性质、勾股定理可得BE =(2)先求出CD AC CE BC ==CD CE AC BC =,再根据旋转的性质可得ACB DCE ∠=∠,从而可得ACD BCE ∠=∠,然后根据相似三角形的判定证出ACD BCE ,最后根据相似三角形的性质即可得出结论;(3)分①CDE △绕点C 逆时针旋转180︒,②CDE △绕点C 逆时针旋转360︒两种情况,分别根据线段的和差即可得.【详解】解:(1)如图,连接AE ,2,120AB AC BAC ==∠=︒,30B C ∴∠=∠=︒,点,D E 分别是,AC BC 的中点,11,,122AE BC BE CE BC AD CD AC ∴⊥=====,11,2AE AB BE ∴==2BC BE ∴==AB BC ∴==AD BE(2)无变化,理由如下:由(1)知,1,CD CE BC ===∴CD CE =AC BC ==,∴CD AC CE BC == CE AC CD BC∴=, 由旋转的性质得:ACB DCE ∠=∠,∴ACB BCD DCE BCD ∠+∠=∠+∠,即ACD BCE ∠=∠,在ACD △和BCE 中,CD CE AC BC ACD BCE⎧=⎪⎨⎪∠=∠⎩, ∴ACD BCE ,∴AD AC BE BC ==AD BE 的大小不变; (3)由题意,分以下两种情况:①如图,当CDE △绕点C 逆时针旋转180︒时,,,A C D 三点共线,由(1)知,B C C E ==则BE BC CE =+=②如图,当CDE △绕点C 逆时针旋转360︒时,,,A D C 三点共线,由(1)知,BE =综上,线段BE【点睛】本题考查了等腰三角形的性质、含30角的直角三角形的性质、旋转的性质、相似三角形的判定与性质等知识点,较难的是题(2),正确找出两个相似三角形是解题关键.3、(1)见解析;(2)见解析;(3)254【解析】【分析】(1)连接OO ,根据AD 是BAC ∠的角平分线,进而可得∠OOO =∠OOO ,OO ⌢=OO ⌢,根据垂径定理的推论可得OO ⊥OO ,由OO //OO ,即可证明OO ⊥OO ,即可证明PD 是O 的切线;(2)由OO //OO 可得,∠OOO =∠O ,根据同弧所对的圆周角相等可得∠OOO =∠OOO ,进而可得∠OOO =∠O ,根据圆内接四边形的对角互补,可得∠OOO +∠OOO =180°=∠OOO +∠OOO ,可得∠OOO =∠OOO ,即可证明PBD DCA △△(3)连接OO ,根据直径所对的圆周角等于90°,进而勾股定理求得BC ,由OO =OO ,进而求得OO ,OO ,根据(2)的结论,列出比例式,代入数值计算即可求得线段PB 的长.【详解】(1)证明:连接OO ,如图,AD是BAC∠的角平分线,∴∠OOO=∠OOO∴OO⌢⌢=OO∴OO⊥OOOO //OO∴OO⊥OO∴PD是O的切线;(2)OO //OO∴∠OOO=∠O⌢∴OO⌢=OO∴∠OOO=∠OOO∴∠OOO=∠O ∴∠OOO+∠OOO=180°=∠OOO+∠OOO,∴∠OOO=∠OOO ∴PBD DCA△△(3)如图,连接OO∵OO 是O 的直径,∴∠OOO =90°,∠OOO =90°在Rt ABC 中,6AB =,8AC =∴OO =√OO 2+OO 2=10OO ⌢=OO ⌢∴OO =OO在OO △OOO 中OO =12OO =5∴OO =OO =√22OO =5√2 PBD DCA △△∴OO OO =OO OO 即5√2=5√28 ∴OO =254【点睛】 本题考查了切线的证明,勾股定理,垂径定理的推论,相似三角形的性质与判定,直径所对的圆周角等于90°,等弧所对的圆周角相等,弧、弦、圆周角之间的关系,掌握以上知识是解题的关键.4、(1)图见解析;(2)(4,2)--或(4,2),(6,2)-或(6,2)-;(3)(2,2)x y --或(2,2)x y .【解析】【分析】(1)分①放大后的图形OA B ''△在y 左侧,②放大后的图形OA B ''△在y 右侧两种情况,先分别将点,A B 的横纵坐标乘以2或2-得到点,A B '',再顺次连接点,,O A B ''即可得;(2)结合(1)的两种情况,根据位似图形的性质即可得;(3)结合(1)的两种情况,根据位似图形的性质即可得.【详解】解:(1)①当放大后的图形OA B ''△在y 左侧时,画图如下:②当放大后的图形OA B ''△在y 右侧时,画图如下:(2)(2,1),(3,1)A B -,(22,21),(23,2(1))A B ''∴-⨯-⨯-⨯-⨯-或(22,21),(23,12)A B ''⨯⨯⨯-⨯,即(4,2),(6,2)A B ''---或(4,2),(6,2)A B ''-,故答案为:(4,2)--或(4,2),(6,2)-或(6,2)-;(3)(,)P x y ,(2,2)P x y '∴--或(2,2)P x y ',故答案为:(2,2)x y --或(2,2)x y .【点睛】本题考查了画位似图形、点坐标与位似图形,正确分两种情况讨论是解题关键.5、(1)证明见解析;(2)6【解析】【分析】(1)在△OOO 中有∠OFA +∠DAF =90°,在△OOO 中有∠OAF +∠PAF =90°,因为AO =OF =r ,由等角对等边有∠OFA =∠OAF ,故∠DAF =∠PAF .(2)由题意可知△OOO ∼△OOO ,故有OO OO =OO OO ,设OD =x ,在△OOO 中由勾股定理有OO 2=OO2+OO2则有OO=√O2+64,DF=OO−OO=√O2+64−O,代入OOOO =OOOO,有82=(√O2+64−O)(22−O),解得x=6,x=703(舍).【详解】(1)∵∠OFA+∠DAF=90°,∠OAF+∠PAF=90°又∵AO=OF=r∴∠OFA=∠OAF∴∠DAF=∠PAF(2)由∠DAF=∠APF,∠ADF=∠ADP∴△OOO∼△OOO∴OOOO=OOOO设DF=x在△OOO中由勾股定理有OO2=OO2+OO2即OO=√O2+64,DF=OO−OO=√O2+64−O 则82=(√O2+64−O)(22−O)∴64=(√264√264√2)(22−O)∴64=(√2)(22−O)∴√O2+64+O=(22−O)∴√O2+64=22−2O∴O2+64=4O2−88O+484化简得3O2−88O+420=0(舍)解得x=6,x=703【点睛】本题考查了圆与三角形的综合问题,由相似三角形成比例以及勾股定理列两个方程联立求解是解题的关键.。

九年级数学下册 第二十七章 相似测试题 (新版)新人教版 (含答案)

九年级数学下册 第二十七章 相似测试题 (新版)新人教版  (含答案)

第二十七章相似测试题1.如图27­1­4所示的四个QQ头像,它们( )图27­1­4A.形状都相同,大小都不相等B.(1)与(4),(2)与(3)形状相同,四个不完全相同C.四个形状都不相同D.不能确定2.下列图形不是相似图形的是( )A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图3.在比例尺为1∶5000的国家体育馆“鸟巢”的设计图上,“鸟巢”的长轴为6.646 cm,则长轴的实际长度为( )A.332.3 m B.330 m C.332.5 m D.323.3 m4.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是( )A.5 cm B.10 cm C.15 cm D.30 cm5.在下列四组线段中,成比例线段的是( )A.3 cm,4 cm,5 cm,6 cmB.4 cm,8 cm,3 cm,5 cmC.5 cm,15 cm,2 cm,6 cmD.8 cm,4 cm,1 cm,3 cm6.已知正方形ABCD的面积为9 cm2,正方形ABCD的面积为16 cm2,则两个正方形边长的相似比为________.7.在某一时刻,物体的高度与它的影长成比例,同一时刻有人测得一古塔在地面上的影长为100 m,同时高为2 m的测竿,其影长为5 m,那么古塔的高为多少?8.两个相似的五边形的对应边的比为1∶2,其中一个五边形的最短边长为3 cm,则另一个五边形的最短边长为( )A.6 cm B.1.5 cmC.6 cm或1.5 cm D.3 cm或6 cm9.(中考改编)如图27­1­5,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,求留下矩形的面积.图27­1­510.北京国际数学家大会的会标如图27­1­6所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.(1)试说明大正方形与小正方形是否相似?(2)若大正方形的面积为13,每个直角三角形两直角边的和是5,求大正方形与小正方形的相似比.图27­1­627.2 相似三角形第1课时相似三角形的判定1.已知△ABC∽△DEF,∠A=80°,∠B=20°,那么△DEF的各角的度数分别是______________.2.如图27­2­11,直线CD∥EF,若OE=7,CE=4,则ODOF=____________.图27­2­113.已知△ABC∽△A′B′C′,如果AC=6,A′C′=2.4,那么△A′B′C′与△ABC 的相似比为________.4.如图27­2­12,若∠BAD =∠CAE ,∠E =∠C ,则________∽________.图27­2­125.如图27­2­13,DE ∥FG ∥BC ,图中共有相似三角形( ) A .2对 B .3对 C .4对 D .5对图27­2­136.在△ABC 和△A ′B ′C ′中,有下列条件: ①AB A ′B ′=BC B ′C ′;②BC B ′C ′=ACA ′C ′;③∠A =∠A ′;④∠C =∠C ′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有( )A .1组B .2组C .3组D .4组7.如图27­2­14,∠BAC =90°,AD ⊥BC 于点D ,求证:AD 2=CD ·BD .图27­2­148.已知线段AB ,CD 相交于点O ,AO =3,OB =6,CO =2,则当CD =________时,AC ∥BD .9.如图27­2­15,已知△ABC ,延长BC 到点D ,使CD =BC .取AB 的中点F ,连接FD 交AC 于点E .(1)求AE AC的值;(2)若AB =a ,FB =EC ,求AC 的长.图27­2­1510.如图27­2­16,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)求出△BDE的面积S与x之间的函数关系式;(3)当x为何值时,△BDE的面积S有最大值,最大值为多少?图27­2­16第2课时相似三角形的性质及其应用举例1.已知平行四边形ABCD与平行四边形A′B′C′D′相似,AB=3,对应边A′B′=4,若平行四边形ABCD的面积为18,则平行四边形A′B′C′D′的面积为( )A.272B.818C.24 D.322.若把△ABC的各边长分别扩大为原来的5倍,得到△A′B′C′,则下列结论不可能成立的是( )A.△ABC∽△A′B′C′B .△ABC 与△A ′B ′C ′的相似比为16C .△ABC 与△A ′B ′C ′的各对应角相等D .△ABC 与△A ′B ′C ′的相似比为153.如图27­2­24,球从A 处射出,经球台边挡板CD 反射到B ,已知AC =10 cm ,BD =15 cm ,CD =50 cm ,则点E 距离点C ( )图27­2­24A .40 cmB .30 cmC .20 cmD .10 cm4.已知△ABC 和△DEF 相似且对应中线的比为3∶4,则△ABC 和△DEF 的周长比为____________.5.高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为______米.6.如图27­2­25,在等腰梯形ABCD 中,AD ∥CB ,且AD =12BC ,E 为AD 上一点,AC 与BE 交于点F ,若AE ∶DE =2∶1,则S △AEFS △CBF=________.图27­2­257.如图27­2­26,直立在B 处的标杆AB =2.4 m ,直立在F 处的观测者从E 处看到标杆顶A 、树顶C 在同一条直线上(点F ,B ,D 也在同一条直线上).已知BD =8 m ,FB =2.5 m ,人高EF =1.5 m ,求树高CD .图27­2­268.如图27­2­27是测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,下列叙述错误的是( )图27­2­27A .可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B .只需测量出标杆和旗杆的影长就可计算出旗杆的高C .可以利用△ABC ∽△EDB ,来计算旗杆的高D .需要测量出AB ,BC 和DB 的长,才能计算出旗杆的高9.如图27­2­28,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE = 12CD . (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图27­2­2810.(2011年广东中考改编)如图27­2­29(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;(1)取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图27­2­29(2)中阴影部分,求正六角星形A 1F 1B 1D 1C 1E 1的面积;(2)取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图27­2­29(3)中阴影部分,求正六角星形A 2F 2B 2D 2C 2E 2的面积.(3) 取△A 2B 2C 2和△D 2E 2F 2各边中点,连接成正六角星形A 3F 3B 3D 3C 3E 3,依此法进行下去,试推测正六角星形A n F n B n D n C n E n 的面积.图27­2­2927.3 位 似1.下列说法正确的是( )A .位似图形中每组对应点所在的直线必互相平行B .两个位似图形的面积比等于相似比C .位似多边形中对应对角线之比等于相似比D .位似图形的周长之比等于相似比的平方2.如图27­3­9,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1∶2B .1∶4C .1∶5D .1∶6图27­3­9 图27­3­103.如图27­3­10,五边形ABCDE 和五边形A 1B 1C 1D 1E 1是位似图形,且PA 1=23PA ,则AB ∶A 1B 1=( )A.23B.32C.35D.534.已知△ABC 和△A ′B ′C ′是位似图形,△A ′B ′C ′的面积为6 cm 2,周长是△ABC 的一半,AB =8 cm ,则AB 边上高等于( )A .3 cmB .6 cmC .9 cmD .12 cm 5.如图27­3­11,点O 是AC 与BD 的交点,则△ABO 与△CDO ________是位似图形(填“一定”或“不一定”).图27­3­116.如图27­3­12,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,且相似比为12.若五边形ABCDE 的面积为17 cm 2,周长为20 cm ,那么五边形A ′B ′C ′D ′E ′的面积为________,周长为________.图27­3­127.已知,如图27­3­13,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A =4∶3,则△ABC 与________是位似图形,位似比为________;△OAB 与________是位似图形,位似比为________.图27­3­138.如图27­3­14,电影胶片上每一个图片的规格为3.5 cm×3.5 cm,放映屏幕的规格为2 m×2 m;若放映机的光源S 距胶片20 cm ,那么光源S 距屏幕________米时,放映的图象刚好布满整个屏幕.图27­3­149.如图27­3­15,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1∶2;(2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长(结果保留根号).图27­3­1510.某出版社的一位编辑在设计一本书的封面时,想把封面划分为四个矩形,其中左上角的矩形与右下角的矩形位似(如图27­3­16),以给人一种和谐的感觉,这样的两个位似矩形该怎样画出来?该编辑认为只要A,P,C三点共线,那么这两个矩形一定是位似图形,你认为他的说法对吗?请说明理由.图27­3­16第二十七章 相 似 27.1 图形的相似 【课后巩固提升】1.A 2.C 3.A 4.C 5.C 6.3∶47.解:设古塔的高为x ,则x100=25,解得x =40.故古塔的高为40 m. 8.C 解析:分两种情况考虑:①3为小五边形的最短边长;②3为大五边形的最短边长.9.解:由图可知:留下的矩形的长为4 cm ,宽可设为x ,利用相似图形的性质,得84=4x,即x =2.所以留下矩形的面积是4×2=8(cm 2).10.解:(1)因为正方形的四条边都相等,四个角都是直角,所以大正方形和小正方形相似.(2)设直角三角形的较长直角边长为a ,较短的直角边长为b ,则小正方形的边长为a -b .所以⎩⎪⎨⎪⎧a 2+b 2=13, ①a +b =5. ②把②平方,得(a +b )2=25,即a 2+2ab +b 2=25③. 所以③-①,得2ab =12,即ab =6.因为(a -b )2=a 2-2ab +b 2=13-12=1,所以小正方形的面积为1,边长为1.又因为大正方形的面积为13,则其边长为13,所以大正方形与小正方形的相似比为13∶1.27.2 相似三角形第1课时 相似三角形的判定 【课后巩固提升】1.∠D =80°,∠E =20°,∠F =80° 2.373.2∶5 4.△ABC △ADE5.B 解析:△ADE ∽△AFG ,△ADE ∽△ABC ,△AFG ∽△ABC . 6.C 解析:①②,②④,③④都能△ABC ∽△A ′B ′C ′. 7.证明:∵AD ⊥BC ,∴∠ADC =∠ADB =90°. ∴∠C +∠CAD =90°.又∵∠BAC =90°,∴∠C +∠B =90°. ∴∠B =∠CAD .∴△ADC ∽△BDA . ∴AD CD =BD AD,即AD 2=CD ·BD .8.6 解析:∵AC ∥BD ,∴△AOC ∽△BOD .∴CO DO =AO BO.∴DO =4.∴CD =6. 9.解:(1)过点C 作CG ∥AB ,交DF 于点G . ∵点C 为BD 的中点,∴点G 为DF 的中点,CG =12BF =12AF .∵CG ∥AB ,∴△AEF ∽△CEG . ∴AE CE =AF CG=2.∴AE =2CE .∴AE AC =AEAE +CE =2CE2CE +CE =23.(2)∵AB =a ,∴FB =12AB =12a .又∵FB =EC ,∴EC =12a .∴AC =3EC =32a .10.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC .∴AD AB =AE AC .又∵AD =8-2x ,AB =8,AE =y ,AC =6,∴8-2x 8=y 6.∴y =-32x +6.自变量x 的取值范围为0≤x ≤4.(2)S =12BD ·AE =12·2x ·y =-32x 2+6x .(3)S =-32x 2+6x =-32(x -2)2+6.∴当x =2时,S 有最大值,且最大值为6.第2课时 相似三角形的性质及其应用举例【课后巩固提升】1.D 2.B 3.C4.3∶4 5.9 6.197.解法一:如图D57,过点E 作EG ⊥CD ,交CD 于点G ,交AB 于点H .图D57因为AB ⊥FD ,CD ⊥FD ,所以四边形EFBH 、EFDG 是矩形.所以EF =HB =GD =1.5,EH =FB =2.5,AH =AB -HB =2.4-1.5=0.9,CG =CD -GD =CD -1.5,EG =FD =FB +BD =2.5+8=10.5.因为AB ∥CD ,所以△EHA ∽△EGC .所以EH EG =AH CG ,即CG =AH ·EG EH =0.9×10.52.5=3.78.所以CD =CG +GD =3.78+1.5=5.28,故树高CD 为5.28 m.解法二:如图D58,延长CE ,交DF 的延长线于点P.图D58设PF =x ,因为EF ∥AB ,所以△PEF ∽△PAB .所以PF PB =EF AB ,即x x +2.5=1.52.4,解得x =256,即PF =256.因为EF ∥CD ,所以△PFE ∽△PDC .所以PF PD =EF CD ,即PFPF +FB +BD =EF CD ,256256+2.5+8=1.5CD.解得CD =5.28.故树高CD 为5.28 m.8.B9.(1)证明:∵AB ∥CE ,∴∠ABF =∠E .∵四边形ABCD 为平行四边形,∠A =∠C ,∴△ABF ∽△CEB .(2)解:∵DE =12CD ,∴DE =13EC .由DF ∥BC ,得△EFD ∽△EBC .∴S △EFDS △EBC =⎝ ⎛⎭⎪⎫DE EC 2=⎝ ⎛⎭⎪⎫132=19.∴S △EBC =9S △EFD =9×2=18.S 四边形BCDF =S △EBC -S △EFD =18-2=16.由AB ∥DE ,得△ABF ∽△DEF .∴S △DEFS △ABF =⎝ ⎛⎭⎪⎫DE AB 2=14.∴S △ABF =4S △DEF =4×2=8.∴S 四边形ABCD =S △ABF +S 四边形BCDF =8+16=24.10.解:(1)∵正六角星形A 1F 1B 1D 1C 1E 1是取△ABC 和△DEF 各边中点构成的,∴正六角星形AFBDCE ∽正六角星形A 1F 1B 1D 1C 1E 1,且相似比为2∶1. ∴111111AFBDCEA FB DC E S S 正六角星形正六角星形=1111111A FB DC E S 正六角星形=22. ∴111111A F BD CE S 正六角星形=14. (2)同(1),得111111222222A FB DC E A F BD CE S S 正六角星形正六角星形=4,∴222222A FB DC E S 正六角星形=116. (3)n n n n n n A F BD CE S 正六角星形=14n .27.3 位 似【课后巩固提升】1.C 2.B 3.B 4.B 5.不一定 6.17410 7.△A ′B ′C ′ 7∶4 △OA ′B ′ 7∶48.807 解析:设光源距屏x 米,则 3.5×3.52×102×2×102=⎝ ⎛⎭⎪⎫20x ×1022,解得x =807. 9.解:(1)如图D63.图D63(2)AA ′=CC ′=2.在Rt △OA ′C 中,OA ′=OC =2,得A ′C =2 2,于是AC ′=4 2.∴四边形AA ′C ′C 的周长=4+6 2.10.解:对的.如图D64,作对角线AC ,在AC 上根据需要取一点P ,过点P 作EF ∥BC ,作GH ∥AB ,则矩形AEPG 和矩形CFPH 就是两个位似的图形.图D64矩形AEPG 和矩形CFPH 的每个内角都是直角,又由AE ∥FC ,AG ∥CH ,可得EP PF =AE CF =AP CP ,PG PH =GA HC =AP CP ,于是EP PF =AE CF =PG PH =GA HC. 所以矩形AEPG ∽矩形CFPH ,而且这两个矩形的对应点的连线交于P 点,因此矩形AEPG 位似于矩形CFPH ,位似中心是点P .。

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。

人教版数学九年级下册第二十七章相似试卷(含答案)

人教版数学九年级下册第二十七章相似试卷(含答案)

人教版数学九年级第二十七章相似一、选择题1.如果xy=32,则x+yy=( )A.12B.32C.52D.252.如图,直线l1∥l2∥l3,直线AC依次交l1,l2,l3于点A,B,C,直线DF依次交l1,l2,l3于点D、E,F,若ABBC =34,DE=6,则EF的长为( )A.8B.5C.4D.23.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定的比例伸长或缩短.它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A,B两个尖端分别在线段l的两个端点上,若量得CD的长度,便可知AB的长度.本题依据的主要数学原理是( )A.三边成比例的两个三角形相似B.两边及其夹角分别对应相等的两个三角形全等C.两边成比例且夹角相等的两个三角形相似D.平行线分线段成比例4.如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm,他准备了一支长为20cm的蜡烛,想要得到高度为4cm的像,蜡烛与纸筒的距离为( )A .65cmB .70cmC .75cmD .80cm5.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A .平移B .旋转C .轴对称D .黄金分割6.如图,有一批直角三角形形状且大小相同的不锈钢片,∠C =90°,AB =5米,BC =3米,用这批不锈钢片裁出面积最大的正方形不锈钢片,则面积最大的正方形不锈钢片的边长为( )A .6037B .6017C .127D .1587.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,连接AD ,DE ,DB ,∠ABD =2∠BDE ,过点E 作⊙O 的切线EC ,交AB 的延长线于点C ,若⊙O 的直径为4,CE =4,则AD 的长为( )A .25B .455C .352D .8558.将四个边长均为1的小正方形拼成“L”型模具如图摆放,其中两个顶点位于x 轴正半轴上,一个顶点位于y 轴正半轴上,一个顶点在函数 y =k x(k >0,x >0)的图象上,则k 的值为( ).A .5B .6C .7D .89.如图,在△ABC 中,D 为线段AC 上一点,点E 在AC 的延长线上,过点D 作DF ∥AB 交BC 于点F ,连结BE,EF ,若A C 2+D E 2=A E 2,则△BEF 与△DCF 的面积比为( )A .1:2B .1:3C .2:3D .2:510.如图,已知正方形ABCD,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积.在以上结论中,正确的有( )A .①②B .②③④C .①②③D .①③④二、填空题11.如图,已知 AB//CD//EF ,AD AF =35,BE=12,那么 CE 的长为 .12.如图,CA 、CB 分别切⊙O 于点A 、B ,AC 与OB 的延长线相交于点P .若AC =3,CP =5,则⊙O 的半径长为 .13.如图,小杰同学跳起来把一个排球打在离他2米(即CO=2米)远的地上,排球反弹碰到墙上,如果他跳起击球时的高度是1.8米(即AC=1.8米),排球落地点离墙的距离是6米(即OD=6米),假设排球一直沿直线运动,那么排球能碰到墙面离地的高度BD的长是 米.14.如图,把△ABC沿AB边平移到△DEF的位置,边BC与DF交于点H,设△HDB的面积为S1,四边形ADHC的面积为S2,若S1:S2=4:5,AB=4,则此三角形移动的距离AD为 .15.如图,在△ABC中,AB=AC=6,BC=4.已知点D是边AC的中点,将△ABC沿直线BD翻折,点C落在点E处,联结AE,那么AE的长是 .16.如图,边长为6的菱形ABCD中,∠A=60°,E是AB边上的一点,CF=2,将四边形AEFD沿着EF折叠得到四边形A′D′FE,当A′、B、D′点在同一条直线上时,∠A′BE+∠D′BC= ,此时D′F交BC边于点G,BG的长为 .三、解答题17.如图,D、E分别是AC、AB上的点,连接DE,且∠ADE=∠B,若DE=8,AB=18,AD=6,求BC 的长.18.如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,BDAD =32,BF=6cm,求EF和FC的长.19.“参天三柏倚高峰,武帝曾经驻六龙”讲的是嵩阳书院内的三棵古柏(现存两棵,分别名为“大将军柏”和“二将军柏”),林学专家测定,古柏的树龄不低于4000~4500年,是我国现存最古老和最大的柏树.某中学数学课题学习小组欲测量“二将军柏”的高度,他们利用太阳光照射下的影长进行测量.小西先在大树影子端点F处竖立了一根长为1米的木棒CF,并测得木棒的影长EF=1.5米,然后小乐在AF的延长线上找到点D,使得点B,C,D在同一直线上,并测得DF=1.58米,已知图中所有点均在同一平面内,且CF⊥AD,AB⊥AD,根据以上测量过程及测量数据,请你帮助该课题学习小组求出“二将军柏”AB的高度(结果精确到1米).20.如图,D是△ABC边AB上点,已知∠BCD=∠A,AD=5,BD=4.(1)求边BC的长;(2)如果△ACD∽△CBD(点A、C、D对应点C、B、D),求∠ACB的度数.21.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,DEBC=15.(1)若AB=15,求线段BD的长.(2)若△ADE的面积为3,求平行四边形BFED的面积.22.在四边形ABCD中,E是边BC上一点,在AE的右侧作EF=AE,且∠AEF=∠ABC=α(α≥90°),连接CF.(1)如图,当四边形ABCD是正方形时,∠DCF=..(2)如图,当四边形ABCD是菱形时,求∠DCF(用含α的式子表示).(3)在(2)的条件下,且AB=6,α=120°,如图,连接AF交CD于点G;若G为边CD的三等分点,请直接写出BE的长.23.在平面直角坐标系中,抛物线y=−x2+bx+c(b、c为常数)的对称轴为直线x=1,且此抛物线经过点(−1,−1),点A、B均在此抛物线上,点A、B的横坐标分别为m、m+1,过点B作y轴的垂线交此抛物线于点C,连结AC,以AC、BC为边作▱ACBD.(1)求此抛物线对应的函数表达式;(2)当线段BC长为2时,求点A的坐标;(3)当平行四边形ACBD的顶点落在抛物线y=−x2+bx+c的对称轴上时,求▱ACBD的面积;(4)设抛物线y=−x2+bx+c的对称轴交▱ACBD的边于M、N两点,若此抛物线与▱ACBD的边有交点(不包括▱ACBD的顶点),交点记为点H,作△MNH.当△MNH的面积是▱ACBD面积的18时,直接写出m的值.答案解析部分1.【答案】C2.【答案】A3.【答案】C4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】24512.【答案】613.【答案】5.414.【答案】4315.【答案】10171716.【答案】60°;14517.【答案】2418.【答案】EF=4cm,CF=323cm19.【答案】20米20.【答案】(1)6(2)90°21.【答案】(1)BD=12(2)2422.【答案】(1)45°(2)∠DCF=32α−90°(3)125或6723.【答案】(1)y=−x2+2x+2;(2)A(−1,−1)或A(1,3);(3)2或2 9;(4)12或2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知△MNP如图271,则下列四个三角形中与△MNP相似的是( )图271A B C D试题2:△ABC和△A′B′C′是位似图形,且面积之比为1∶9,则△ABC和△A′B′C′的对应边AB和A′B′的比为( )A.3∶1 B.1∶3 C.1∶9 D.1∶27试题3:下列命题中正确的有( )①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A.0个 B.1个 C.2个 D.3个评卷人得分在△ABC中,BC=15 cm,CA=45 cm,AB=63 cm,另一个和它相似的三角形的最短边长是5 cm,则最长边长是( ) A.18 cm B.21 cm C.24 cm D.19.5 cm试题5:在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果AD∶BC=1∶3,那么下列结论中正确的是( )A.S△OCD=9S△AOD B.S△ABC=9S△ACDC.S△BOC=9S△AOD D.S△DBC=9S△AOD试题6:如图272,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S四边形BCED的值为( )A.1∶3 B.2∶3 C.1∶4 D.2∶5试题7:如图273,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=( )A.7 B.7.5 C.8 D.8.5试题8:如图274,身高1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,则树的高度为( )A.4.8 m B.6.4 m C.8 m D.10 m试题9:如图275,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( )A.=B.=C.∠B=∠D D.∠C=∠AED试题10:如图276,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,若AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )A.b2=ac B.b2=ceC.be=ac D.bd=ae试题11:已知线段a=1,b=,c=,d=,则这四条线段________比例线段(填“成”或“不成”).试题12:在比例尺1∶6 000 000的地图上,量得南京到北京的距离是15 cm,这两地的实际距离是______km.试题13:如图277,若DE∥BC,DE=3 cm,BC=5 cm,则=________.图277试题14:△ABC的三边长分别为2,,,△A1B1C1的两边长分别为1和,当△A1B1C1的第三边长为________时,△ABC∽△A1B1C1.试题15:如图278,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,则这两个四边形每组对应顶点到位似中心的距离之比是__________.试题16:如图279,在矩形ABCD中,点E是BC的中点,且DE⊥AC于点O,则=________.试题17:如图2710,在▱ABCD中,EF∥AB,FG∥ED,DE∶EA=2∶3,EF=4,求线段CG的长.试题18:如图2711,在△ABC中,AB=8,AC=6,BC=7,点D在BC的延长线上,且△ACD∽△BAD,求CD的长.试题19:如图2712,在水平桌面上有两个“E”,当点P1,P2,O在同一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 cm,要使测得的视力相同,则②号“E”的测试距离应为多少?试题20:如图2713,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.试题21:如图2714,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2=BG·BF.试题22:如图2715,点C,D在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.试题23:如图2716,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2.(1)求CD的长;(2)求BF的长.试题24:如图2717,学校的操场上有一旗杆AB,甲在操场上的C处竖立3 m高的竹竿CD;乙从C处退到E处恰好看到竹竿顶端D 与旗杆顶端B重合,量得CE=3 m,乙的眼睛到地面的距离FE=1.5 m;丙在C1处竖立3 m高的竹竿C1D1,乙从E处后退6 m到E1处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D1与旗杆顶端B也重合,量得C1E1=4 m.求旗杆AB的高.试题25:如图2718,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于点H,过点E作EF⊥AC交射线BB1于点F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.试题1答案:C试题2答案:B试题3答案:A试题4答案:B试题5答案:C试题6答案:A试题7答案:B试题8答案:C试题9答案:B试题10答案:A 解析:∵CD∥AB,∴∠CDB=∠DBA.又∵∠C=∠BDA=90°,∴△CDB∽△DBA. ∴==,即==. A.b2=ac,成立,故本选项正确;B.b2=ac,不是b2=ce,故本选项错误;C.be=ad,不是be=ac,故本选项错误;D.bd=ec,不是bd=ae,故本选项错误.试题11答案:成试题12答案:900试题13答案:试题14答案:试题15答案:1∶试题16答案:解析:∵DE⊥AC,BC∥AD,∠ADC=90°,∴∠ACB=∠EDC.又∵∠ABC=∠ECD=90°,∴△ACB∽△EDC.∴=.∵AB=CD,BC=AD,∴CD==CE.∴==.试题17答案:解:∵EF∥AB,∴△DEF∽△DAB.又∵DE∶EA=2∶3,∴DE∶DA=2∶5.∴===.∴AB=10.又∵FG∥ED,DG∥EF,∴四边形DEFG是平行四边形.∴DG=EF=4.∴CG=CD-DG=AB-DG=10-4=6.试题18答案:解:∵△ACD∽△BAD,∴====.∴AD=BD,AD=CD.∴16CD=9BD.又∵BD=7+CD,∴16CD=9×(7+CD),解得CD=9.试题19答案:解:(1)因为P1D1∥P2D2,所以△P1D1O∽△P2D2O.所以=,即=.(2)因为=,b1=3.2 cm,b2=2 cm,l1=8 m,所以=.所以l2=5 m.试题20答案:解:(1)△ADE与△ABC相似.∵平行于三角形一边的直线和其他两边相交,交点与公共点所构成的三角形与原三角形相似.即由DE∥BC,可得△ADE∽△ABC.(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.试题21答案:证明:∵AB是⊙O的直径,∴∠ACB=90°.又∵CD⊥AB于点D,∴∠BCD=∠A.又∵∠A=∠F(同弧所对的圆周角相等),∴∠F=∠BCD=∠BCG.在△BCG和△BFC中,∴△BCG∽△BFC.∴=.即BC2=BG·BF.试题22答案:解:(1)∵△PCD是等边三角形,∴∠ACP=∠PDB=120°.当=,即=,也就是当CD2=AC·DB时,△ACP∽△PDB.(2)∵△ACP∽△PDB,∴∠A=∠DPB.∴∠APB=∠APC+∠CPD+∠DPB=∠APC+∠CPD+∠A=∠PCD+∠CPD=120°.试题23答案:解:(1)如图D100,连接OC,在Rt△OCE中,图D100CE==2 .∵CD⊥AB,∴CD=2CE=4 .(2)∵BF是⊙O的切线,∴FB⊥AB.∴CE∥FB.∴△ACE∽△AFB.∴=,=.∴BF=6 .试题24答案:解:如图D101,连接F1F,并延长使之与AB相交,设其与AB,CD,C1D1分别交于点G,M,N,设BG=x m,GM=y m. ∵DM∥BG,∴△FDM∽△FBG.∴=,则=①又∵ND1∥GB,∴△F1D1N∽△F1BG.∴=,即=②联立①②,解方程组,得故旗杆AB的高为9+1.5=10.5(m).图D101试题25答案:解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,∴t=1.∴AE=AC+CE=3+3t=6,∴DE=6-5=1.(2)∵EF=BC=4,点G是EF的中点,∴GE=2.当AD<AE时,DE=AE-AD=3+3t-5t=3-2t. 若△DEG∽△ACB,则=或=,∴=或=.∴t=或t=.∴当AD>AE时,DE=AD-AE=5t-(3+3t)=2t-3. 若△DEG∽△ACB,则=或=,∴=或=.∴t=或t=.综上所述,当t=或或或秒时,△DEG∽△ACB.。

相关文档
最新文档