初中数学 九年级上 解答题 汇总

合集下载

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

答案:能通过.设圆x,3.9^2-(2+3.9-2.4)^2=(x/2)^2,x=3.44证明:延长CE、DF交圆于接CN、DM交于O点,易证:△3.如图,△ABC 内接于⊙O答案:当P在O点时,∵OA=OC∴∠ACP=∠BAC=30∘;当P在B点时,∵圆的直径所对的圆周角为直角,∴∠ACP=90∘;∴30∘⩽x⩽90∘.故答案为:30∘⩽x⩽90∘.10、如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =6,AB =5,求BE 的长.证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴ED ˆ=BDˆ,∴DE=BD;(2)∵AB=5,BD=12BC=3,∴AD=4,∵AB=AC=5,∴AC⋅BE=CB⋅AD,∴BE=4.8.11、如图11,半圆的直径AB =10,点C 在半圆上,BC=6.(1)求弦AC 的长;(2)若P 为AB 的中点,PE ⊥AB 交AC 于点E ,求PE 的长.解:(1)是的直径,,,而,,;(2),,而公共,,,即,.12、如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:BC2 =BG*BF.证明:∵AB是O的直径,∠ACB=90∘,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.,∴∠F=∠BCD.在△BCG和△BFC中,{∠BCG=∠F∠GBC=∠CBF,∴△BCG∽△BFC.∴BCBF=BGBC.即BC2=BG⋅BF.13、如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是,∠B 2的度数是;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).解:(1)∵垂直于AD的两条弦,把圆周4等分,∴弧、弧、弧、弧的度数都是90度,弧弧,∴弧的度数是45度,,, 故答案为:22.5度,67.5度,(2)∵垂直于AD的三条弦,,把圆周6等分∴弧、弧、弧的度数都是60度,弧弧,∴弧的度数是30度,,故答案为:75度。

初中数学九年级上册一元二次方程试卷(含答案)

初中数学九年级上册一元二次方程试卷(含答案)

九年级(上)《一元二次方程》数学试卷(中难度)一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.21.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣927.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,530.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<人教版九年级(上)《一元二次方程》数学试卷(中等难度)参考答案与试题解析一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为3.【解答】解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④若方程的两个实根一个大于3,另一个小于3.则有32﹣6﹣a<0,∴a>3,故④正确,故答案为3.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是14.【解答】解:解方程x2﹣7x+12=0得:x=3或4,当腰为3时,三角形的三边为3,3,6,3+3=6,此时不符合三角形三边关系定理,此时不行;当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为4+4+6=14,故答案为:14.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=﹣6056.【解答】解:∵α、β是方程x2+2013x﹣2=0的两实数根,∴α2+2013α﹣2=0,β2+2013β﹣2=0,α+β=﹣2013,αβ=﹣2,则(α2+2016α﹣1)(β2+2016β﹣1)=(α2+2013α﹣2+3α+1)(β2+2013β﹣2+3β+1)=(3α+1)(3β+1)=9αβ+3(α+β)+1=﹣18﹣6039+1=﹣6056.故答案为:﹣6056.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.【解答】解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.【解答】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因方程的根为整数,故其判别式为平方数,设△=(k+2)2﹣16k=n2⇒(k﹣6+n)(k﹣6﹣n)=1×32=2×16=4×8,∵k﹣6+n>k﹣6﹣n,∴或或,解得k1=(不是整数,舍去),k2=15,k3=12,当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.∴当k=15时,三角形三边的长为:5,12,13.当k=12时,三角形三边的长为:6,8,10.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)【解答】解:(1)设11月份和12月份的平均增长率为x,根据题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:11月份和12月份的平均增长率为50%.(2)根据题意得:11﹣10+0.03a≥2.6,解得:a≥53.∵a为整数,∴a≥54.∴此时总盈利为54×(11﹣10+0.03×54)=141.48(万元).答:该公司1月份至少需要销售该型号汽车54辆,此时总盈利至少是141.48万元.9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:要使每盆的盈利达到10元,每盆应植4株或者5株.11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.【解答】解:(1)设甲种树木的数量为x棵,乙种树木的数量为y棵,由题意得:,解得:,答:甲种树木的数量为40棵,乙种树木的数量为32棵;(2)由题意得甲种树木单价为×80(1+a%)=90(1+a%)元,乙种树木单价为80×(1﹣),由题意得:90(1+a%)×40+80×(1﹣)×32=6804,解得:a=25,答:a的值为25.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.【解答】解:(1)∵关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2,∴,解得:m≥﹣且m≠2.(2)由|x1|=|x2|,可得:x1=x2或x1=﹣x2.当x1=x2时,△=(2m+1)2﹣4m(m﹣2)=0,解得:m=﹣,此时x1=x2=﹣=;当x1=﹣x2时,x1+x2=﹣=0,∴m=﹣,∵m≥﹣且m≠2,∴此时方程无解.综上所述:若|x1|=|x2|,m的值为﹣,方程的根为x1=x2=.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.【解答】解:(1)依题意得△=22﹣4(2k﹣4)>0,解得:k<:(2)因为k<且k为正整数,所以k=1或2,当k=1时,方程化为x2+2x﹣2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0 解得x1=0,x2=﹣2,所以k=2,方程的有整数根为x1=0,x2=﹣2.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?【解答】解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.【解答】解:(1)建筑区的面积是500×400×(1﹣19%)=162000(平方米).设建筑区的长度为5x米,则宽为4x米.根据题意得:5x•4x=162000,整理得x2=8100,解得x1=90,x2=﹣90(不合题意),则东西两侧道宽:(500﹣5x)÷2=25(米),南北两侧道宽:(400﹣4x)÷2=20(米).答:小区的东西两侧道宽为25米,南北两侧道宽为20米;(2)设小区道路的宽度为z米,则(20﹣z)×300+2×(25﹣z)×200=5500,解得z=15.答:小区道路的宽度是15米.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解答】解:(1)设家庭轿车拥有量的年平均增长率为x,根据题意得:81(1+x)2=144,解得:x1=,x2=﹣(不合题意,舍去),∴144×(1+)=192,答:该小区到2010年底家庭轿车将达到192辆;(2)设建造室内车位a个,可建车位总数为w个,则建造室外车位(125﹣3a)个,根据题意得:3a≤125﹣3a≤4.5a,解得:≤a≤∵w=a+125﹣3a=﹣2a+125,∴当整数a取最小值17时,w取最大值,最大值为91,答:该小区最多可建车位总共91个.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.【解答】解:由已知得,(a+b)2﹣ab=1,t=﹣(a+b)2+3ab,由此可得:ab=,a+b=(t≥﹣3),∴a,b是关于方程x2x+=0的两个实根,由△=﹣2(t+1)≥0,解得t≤﹣,故t的取值范围是﹣3≤t≤﹣.故答案为:﹣3≤t≤﹣.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.【解答】(1)证明:x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,即方程关于x的方程x2﹣(k+1)x+k=0一定有两个实数根;设方程的两根为x1,x2,则根据根与系数的关系得:x1+x2=k+1,x1•x2=k,∵k为非负实数,∴x1+x2=k+1>0,x1•x2=k≥0,∵由x1•x2=k≥0得出方程有同号两个根或有一个根为0;∴由x1+x2=k+1>0,x1•x2=k≥0得出方程有两个正实数根或有一个根为0,所以方程x2﹣(k+1)x+k=0必有两个非负实数根;(2)x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,方程的根为,即方程的根为k和1;当相同的根是k时,把x=k代入方程kx2﹣(k+2)x+k=0得:k3﹣(k+2)k+k=0,解得:k=0或k=或k=,∵k为非负实数,∴k=舍去,k=符合题意;当相同的根是1时,把x=1代入方程kx2﹣(k+2)x+k=0得:k﹣(k+2)+k=0,解得:k=2;所以当k=2或0或时,述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1.又∵,且,∴解得m≥﹣3且m≠﹣1.又∵方程mx2﹣3mx+m﹣1=0为一元二次方程,∴m≠0.综上可得:m≥﹣3且m≠﹣1,m≠0(2)∵一元二次方程mx2﹣3mx+m﹣1=0有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或﹣1,又∵m≥﹣3且m≠﹣1,m≠0,∴m=1,∴方程为x2﹣3x=0,解得:x=3或x=021.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)【解答】解:元,根据题意得:=,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.【解答】解:若m≠n,∵实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,∴m、n是方程3x2+6x﹣5=0的两根,∴m+n=﹣=﹣2,mn=﹣,∴====﹣;若m=n,则=1+1=2;综上可知的值为﹣或2.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.【解答】解:(1)∵△=[﹣(m﹣2)]2﹣4(﹣)=2m2﹣4m+4=2(m﹣1)2+2>0,∴方程总有两个不相等的实数根;(2)∵x1•x2=﹣≤0,∴x1,x2至少有一个为0或不同号,当x2<0,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=x1+x2+2,∴x1+x2=2,或x1+x2=﹣1,∴m﹣2=2,或m﹣2=﹣1,∴m=4,或m=1;当x1<0时,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=﹣x1﹣x2+2,∴x1+x2=﹣2,或x1+x2=1∴m﹣2=﹣2,或m﹣2=1,∴m=0,或m=3.故m的值为m=4或m=1或m=0或m=3.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.【解答】解:(1)设x2+mx+n=0(n≠0)的两根为x1,x2,则x1+x2=﹣m,x l x2=n,则所求新方程的两根为,.∵+==﹣,×==.所以,所求的方程为y2+y+=0,即ny2+my+1=0.(2)从a,b满足的同一种关系可知:①当a≠b时,a、b是一元二次方程x2﹣15x﹣5=0的两根,所以a+b=15,ab=﹣5,从而====﹣47.②当a=b时,从而=1+1=2.所以的值为﹣47或2.(3)由a+b+c=0,abc=16,得a+b=﹣c.ab=,因此,由给出的结论,得a、b是方程x2+cx+=0的实数根,所以△=c2﹣4×≥0,因为c>0,所以c3≥64,所以c≥4,故c的最小值为4.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣9【解答】解:(1)方程两边都乘以3(x﹣2)得:3(5x﹣4)=4x+10﹣3(x﹣2),解得:x=2,检验:当x=2时,3(x﹣2)=0,所以x=2不是原方程的解,即原方程无解;(2)4x(x﹣3)=x2﹣9,4x(x﹣3)﹣(x+3)(x﹣3)=0,(x﹣3)[4x﹣(x+3)]=0,x﹣3=0,4x﹣(x+3)=0,x1=3,x2=1.27.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;【解答】解:令y=mx2﹣(4m+1)x+3m+3=0,则mx2﹣(4m+1)x+3m+3=0,∴x=3或x=,①当3﹣=n+2时,即n=﹣,P点所在的曲线解析式为y=﹣,把A(1,a),B(b,2)代入n=﹣中,∴A(1,﹣1),B(﹣,2),设直线AB的解析式为y=kx+b,代入得:,解得:,∴直线AB的解析式为y=﹣2x+1;②当﹣3=n+2时,即n=﹣4,P点所在的曲线解析式为y=﹣4,同理可求A(1,﹣3),B(,2),同理可得:直线AB的解析式为y=﹣6x+3.三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.30.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有实数根,∴k≠0且△=(﹣1)2﹣4k≥0,解得:k≤且k≠0.故选:C.。

冀教版数学九年级上册综合知识训练100题-含答案

冀教版数学九年级上册综合知识训练100题-含答案

冀教版数学九年级上册综合知识训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.如图,在O 中,已知22.5OAB ∠=︒,则C ∠的度数为( )A .122.5︒B .135︒C .112.5︒D .115.5︒2.甲、乙两名射击运动员10次射击成绩的平均数均为9.5环,其中甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,则下列说法正确的是( ) A .甲的成绩比乙的成绩更稳定 B .乙的成绩比甲的成绩更稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人的成绩不能比较【答案】A【分析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定,据此即可作出判断. 【详解】解:∠甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,即0.03<0.05,∠甲的成绩比乙的成绩更稳定 故选:A【点睛】本题考查方差的意义,解题的关键是理解方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定.3.如图,O 是ABC 的外接圆,连结AO ,BO ,则下列选项中与AOB ∠度数一定相等的是( )A .2CAB ∠ B .2ABC ∠ C .2ACB ∠D .2ABO ∠【答案】C【分析】由题意直接依据圆周角定理即同弧所对圆周角等于它所对圆心角的一半进行分析即可得出答案.【详解】解:因为AOB ∠与ACB ∠是AB 所对的圆心角和圆周角, 所以AOB ∠=2ACB ∠. 故选:C.【点睛】本题考查圆周角定理,熟练掌握圆周角定理即同弧所对圆周角等于它所对圆心角的一半是解题的关键.4.一个面积为10的矩形,若长与宽分别为x , y ,则y 与x 之间的关系用图象可大致表示为( )A.B.C.D.5.如果两个相似多边形的相似比为1:5,则它们的面积比为()A.1:25B.1:5C.1:2.5D.【答案】A【分析】根据相似多边形面积的比等于相似比的平方即可得出结论.【详解】解:∠两个相似多边形的相似比为1:5,∠它们的面积比=12:52=1:25.故选:A.【点睛】本题考查的是相似多边形的性质,熟知相似多边形面积的比等于相似比的平方是解答此题的关键.6.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为()A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91【答案】B【分析】设每个枝干长出x个小分支,则主干上长出了x个枝干,根据主干、枝干和小分支的总数是91,即可得出关于x 的一元二次方程,此题得解. 【详解】设每个枝干长出x 个小分支,则主干上长出了x 个枝干, 根据题意得:x 2+x+1=91. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,根据主干、枝干和小分支的总数是91,列出关于x 的一元二次方程是解题的关键. 7.如图,已知点A 是函数y=x 与y=的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则∠AOB 的面积为( )A .2B .C .2D .4【答案】C【详解】试题分析:先根据点A 是函数y=x 与y=的图象在第一象限内的交点求得点A 的坐标,再根据OA=OB 及勾股定理即可求得点B 的坐标,最后根据三角形的面积公式求解即可.解:∠点A 是函数y=x 与y=的图象在第一象限内的交点,∠x=,解得x=2(舍负),则A (2,2),又∠OA=OB=2,∠B (-2,0),故选C .考点:函数图象上的点的坐标的特征,勾股定理,三角形的面积公式点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.若关于x 的方程2410ax x ++=有实数根,则a 的取值范围是( ) A .4a ≤ B .4a <C .4a ≤且0a ≠D .4a <且0a ≠【答案】A9.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)形式,则a+b值为()A.25B.17C.29D.21【答案】B【分析】方程配方后判断即可求出a与b的值.【详解】解:方程x2﹣8x﹣5=0,变形得:x2﹣8x=5,配方得:x2﹣8x+16=21,即(x﹣4)2=21,则a=﹣4,b=21,故a+b=﹣4+21=17,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.10.某校准备选派甲、乙、丙、丁中的一名队员代表学校参加市直跳绳比赛,表中是这四名队员选拔赛成绩的平均数和方差,你觉得最适合的队员是()A .甲B .乙C .丙D .丁【答案】A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可. 【详解】解:甲、丙成绩的平均数大于乙、丁成绩的平均数, ∴从甲和丙中选择一人参加比赛,22S S <甲丙,∴最适合的队员是甲;故选:A .【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 11.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线∠剪开,则虚线∠所对的圆弧长和展开后得到的多边形的内角和分别为( )A .,1802π︒B .,5404π︒C .,10804π︒D .,21603π︒12.如图,AB 为∠O 的直径,点C 、点D 是∠O 上的两点,连接CA ,CD ,AD .若∠CAB =35°,则∠ADC 的度数是( )A.40°B.45°C.55°D.100°【答案】C【分析】连接CB,根据圆周角定理求出∠ACB=90°,根据圆周角定理求出∠ADC=∠B 即可.【详解】解:连接CB,∠AB是∠O的直径,∠∠ACB=90°,∠∠CAB=35°,∠∠B=90°-∠CAB=55°,∠∠ADC=∠B=55°,故选:C.【点睛】本题考查了圆周角定理的推论,能熟记直径所对的圆周角是直角和在同圆或等圆中,同弧所对的圆周角相等是关键.π,则这弧所对圆心角度数是13.如果O的半径为3cm,其中一弧长2cm()A.150B.120C.60D.4514.如图,点A、B、C、D在O上,112AOC∠=︒点B是弧AC的中点,则D∠的度数是()A.56︒B.35︒C.38︒D.28︒15.在反比例函数y=3kx-的图象的每一个象限内,y都随x的增大而减小,则k的取值范围是()A.k>3B.k>0C.k≥3D.k<316.若关于x 的一元二次方程260x x a +-=有两个不相等的实数根,则a 的取值范围是( ) A .9a >- B .9a <- C .9a ≥- D .9a ≤-【答案】A【分析】根据判别式的意义得到2640a ∆=+>,然后解不等式即可. 【详解】解:根据题意得224640b ac a ∆=-=+>, 解得9a >-. 故选:A .【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根. 17.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是( )A .35码,35码 B .35码,36码C .36码,35码D .36码,36码【答案】D【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36. 故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.18.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是()A.B.C.D.【答案】A【详解】试题分析:分针每分钟旋转6°,30分钟旋转180°,所以分针在钟面上扫过的扇形是半径为1半圆,根据圆的面积公式即可求得分针在钟面上扫过的面积:.考点:扇形面积.19.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定【答案】D【详解】为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选:D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.20.如图,已知ABC,90C∠=︒,按以下步骤作图:∠以点A为圆心,以适当长为半径画弧,分别交边AC,AB于点M,N;∠分别以M,N为圆心,以大于12 MN的长为半径画弧,两弧在ABC的内部相交于点P;∠作射线AP交BC于点D;∠分别以A,D为圆心,以大于12AD的长为半径画弧,两弧相交于点G,H;∠作直线GH,分别交AC,AB于点E,F,若3AF=,1CE=,则ABC的面积是()A.B.C.D.22223122CE,21.下列命题中,正确的是()A.如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边B.有一个内角相等的两个菱形相似C.点O是等边三角形ABC的中心,则向量OA、OB、OC是相等向量D.有一个锐角相等的两个等腰三角形相似【答案】B【分析】根据平行线分线段成比例的逆定理,相似多边形概念,相等向量的概念,相似三角形定义等逐项判断.【详解】A、如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线不一定平行于三角形的第三边,选项错误,不符合题意;B、因为菱形的四条边相等,所以有一角对应相等的两个菱形相似,选项正确,符合题意;C、点O是等边三角形ABC的中心,则|OA OB OC==,但它们不是相等向量,选项错误,不符合题意;D、有一个锐角相等的两个等腰三角形不一定相似,选项错误,不符合题意吧;故选B.【点睛】本题考查命题与定理,解题的关键是掌握相关的概念和定理.22.我国古代数学《九章算术》中,有个“井深几何”问题:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺=10寸),问井深几何?其意思如图所示,则井深BD的长为()A.12尺B.56尺5寸C.57尺5寸D.62尺5寸【答案】C【分析】根据平行证△ABC∠∠ADE,再根据相似三角形的性质即可求AD的长,最后减去AB的长即可得到井深.【详解】∠BC∠DE,∠∠ABC∠∠ADE,∠AB:AD=BC:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选C.【点睛】本题考查了相似三角形的判定与性质.解题的关键是得到△ABC∠∠ADE.23.如图,四边形ABCD内接于半径为5的∠O,且AB=6,BC=7,CD=8,则AD 的长度是()AB.C.D.A .45°B .60°C .75°D .105°25.如图,ABCD 中,E ,F 为CD 的三等分点,连接AF ,BE ,相交于点G ,则:EFG ABG S S △△等于( )A .1:2B .1:3C .1:4D .1:9【答案】D【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题; 【详解】∠四边形ABCD 是平行四边形, ∠CD=AB ,CD∠AB , ∠DE=EF=FC , ∠EF :AB=1:3,EFG BAGS S=故选D .【点睛】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活26.用配方法解一元二次方程x 2﹣6x ﹣8=0,下列变形正确的是( ) A .(x ﹣6)2=﹣8+36 B .(x ﹣6)2=8+36 C .(x ﹣3)2=8+9D .(x ﹣3)2=﹣8+9 【答案】C【分析】移项,配方,即可得出答案. 【详解】x 2-6x-8=0, x 2-6x=8, x 2-6x+9=8+9, (x-3)2=17, 故选C .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 27.多项式22225122451x xy y x y -++-+的最小值为( ) A .41 B .32C .15D .12【答案】C【分析】先将多项式2x 2﹣2xy +5y 2+12x ﹣24y +51分组配方,根据偶次方的非负性可得答案.【详解】2x 2﹣2xy +5y 2+12x ﹣24y +51 =x 2﹣4xy +4y 2+12x ﹣24y +36+x 2+2xy +y 2+15 =(x ﹣2y )2+12(x ﹣2y )+36+(x +y )2+15 =(x ﹣2y +6)2+(x +y )2+15 ∠(x ﹣2y +6)2≥0,(x +y )2≥0, ∠(x ﹣2y +6)2+(x +y )2+15≥15. 故选:C .【点睛】本题考查了配方法在多项式最值中的应用,熟练掌握配方法并灵活运用及恰当分组,是解答本题的关键.28.如图,函数1y x =(x>0)和3y x=(x>0)的图象分别是1l 和2l .设点P 在2l 上,PA∠y 轴交1l 于点A ,PB∠x 轴,交1l 于点B ,△PAB 的面积为( )A .12B .23C .13D .3429.如图,点()0,0A 、()11,0D 是菱形111AB C D 的两个顶点,160B ∠=︒,11B C 与y 轴交于点2D ,以2AD 为边,作第二个菱形222AB C D ,使得260B ∠=︒,22B C 与x 轴交于点3D ,以3AD 为边,作第三个菱形333AB C D ,使得360B ∠=︒,33B C 与y 轴交于点4D ,以4AD 为边,作第四个菱形444AB C D ,使得4B ∠60=︒,…,以此类推,则点2019B 的横坐标为( )A .2018⎝⎭B .2019⎝⎭C .201820192D .2019201822sin 60⎛︒= ⎝3B 中,B ∠的横坐标为()2332二、多选题30.若0°<α<90°,则下列说法正确的是()A.sinα随α的增大而增大B.cosα随α的增大而减小C.tanα随α的增大而增大D.sinα、cosα、tanα的值都随α的增大而增大【答案】ABC【分析】根据锐角三角函数的增减性作答.【详解】解:A、若0°<α<90°,则sinα随α的增大而增大,故本选项正确;B、若0°<α<90°,则cosα随α的增大而减小,故本选项正确;C、若0°<α<90°,则tanα随α的增大而增大,故本选项正确;D、若0°<α<90°,则sinα、tanα的值都随α的增大而增大,而cosα随α的增大而减小,故本选项错误.故选:ABC.【点睛】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,∠正弦值随着角度的增大(或减小)而增大(或减小);∠余弦值随着角度的增大(或减小)而减小(或增大);∠正切值随着角度的增大(或减小)而增大(或减小).31.不能说明∠ABC∠∠A’B’C’的条件是()A.AB ACA B A C=''''或BCB C''B.AB A BAC A C''=''且A C'∠=∠C.AB BCA B B C=''''且B B'∠=∠D.AB BCA B A C=''''且B A'∠=∠32.如图,下列条件能判定∠ABC与∠ADE相似的是()A.AE DEAC BC=B.∠B=∠ADE C.AE ACAD AB=D.∠C=∠AED33.如果α、β都是锐角,下面式子中不正确的是( ) A .sin (α+β)=sinα+sinβ B .cos (α+β)=12时,α+β=60°C .若α≥β时,则cosα≥cosβD .若cosα>sinβ,则α+β>90°34.在直角坐标系中,已知点A (6,﹣3),以原点O 为位似中心,相似比为13,把线段OA 缩小为OA ′,则点A ′的坐标为( ) A .(﹣2,﹣1) B .(﹣2,1) C .(2,1) D .(2,﹣1)35.下列各数不是方程21(2)23x +=解的是( )A .6B .2C .4D .0【答案】ACD36.如图,已知楼房AB高为100m,铁塔塔基距楼房基间的水平距离BD为,塔高CD为(100m+,则下面结论中正确的是()A.由楼顶望塔顶角为45︒B.由楼顶望塔基俯角为45︒C.由楼顶望塔顶仰角为30︒D.由楼顶望塔基俯角为30︒Rt ABD中,利用锐角三角函数,即可得到【详解】解:如图,过点100m,Rt ACE 中,CE CAE AE∠=45CAE =︒即由楼顶望塔顶角为ADE △ 中,37.如图,90ABC BDA ∠=∠=︒,下列线段比值等于cos A 的是( )A .BD AB B .BC AB C .BD BC D .AB AC【答案】CD【分析】根据余弦等于邻边比斜边,可得答案.【详解】90ABC BDA ︒∠=∠=38.下列方程中,有实数根的方程是()A.(x﹣1)2=2B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0D.x2+2x+4=0C.3a=,b24∴∆=-b方程有实数根,D.1a=,b24∴∆=-b方程无实数根,故选:ABC【点睛】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.39.下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.40.下列生活中的做法与其背后的数学原理对应正确的是()A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B.在景区两景点之间设计“曲桥”(垂线段最短)C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D.车轱辘设计为圆形(圆上的点到圆心的距离相等)【答案】ACD【分析】A.根据公理“两点确定一条直线”进行判断;B.根据线段的性质即可判断;C.根据三角形的稳定性判断;D.根据圆的性质进行判断.【详解】解:A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线),故本选项正确,符合题意;B.在景区两景点之间设计“曲桥”,即是增加了桥的长度,即蕴含的数学知识是:两点之间线段最短,而不是垂线段最短,故本选项错误,不符合题意;C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性),故本选项正确,符合题意;D.车轱辘设计为圆形(圆上的点到圆心的距离相等),故本选项正确,符合题意;故选:ACD.【点睛】本题主要考查了直线的性质,线段公理等知识,三角形的稳定性以及圆的认识,将实际问题数学化是解决问题的关键.41.若函数kyx的图象经过点(3,-7),那么它一定不经过点()A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)【答案】ABD42.如图,在Rt∠ABC 中,∠A =90°,AD ∠BC ,垂足为D .则下列结论中正确的是( )A .sin α=sin BB .sin α=cos βC .AD 2=BD •DC D .AB 2=BD •BC 【答案】ABCD 【分析】根据同角的余角相等判断A ;根据三角函数的定义判断B ;根据相似三角形的判定和性质判断C 、D .【详解】解:∠∠A =90°,AD ∠BC ,∠∠B =∠α=90°−∠C ,∠sin α=sin B ,A 正确;∠α+β=90°,∠sin α=cos β,B 正确;∠,90ABD CBA ADB CAB ∠=∠∠=∠=︒,,∠ B =∠α,∠ADB =∠CDA =90°,∠~ADB CAB ∆∆,~ADB CDA ∆∆,∠AD 2=BD •DC ,AB 2=BD •BC ,C 、D 正确;故选:ABCD .【点睛】本题考查的是相似三角形的判定与性质、锐角三角函数的性质,熟练掌握相关知识是解题关键.43.如图,在O 中,AB 为直径,80AOC ∠=,点D 为弦AC 的中点,点E 为BC 上任意一点,则CED ∠的大小不可能是( )A.20︒B.30︒C.10︒D.40︒知识点,能求出CN的范围是解此题的关键.44.如图所示是∠ABC位似图形的几种画法,正确的是()A.B.C.D.【答案】ABCD【分析】利用位似图形的画法:∠确定位似中心;∠分别连接并延长位似中心和能代表原图的关键点;∠根据位似比,确定能代表所作的位似图形的关键点;∠顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.45.如图,若ACD ABC△∽△,以下4个等式正确的是()A.AC ABCD BC=B.CD BCAD AC=C.2CD AD DB=⋅D.2AC AD AB=⋅46.如图,在平面直角坐标系中,平行四边形ABCO的顶点A,C的坐标分别(8,0),(3,4).点D,E三等分线段OB,延长CD,CE交OA,AB于点F,G,连接FG.对于以下结论:∠F是OA的中点;∠OFD与BEG相似;∠四边形DEGF的面积是20;∠OD=.正确的是()3A.∠B.∠C.∠D.∠CDE CFG S S = DEGF CFG S S 四边形四边形DEGF ∠结论正确;性质、勾股定理、三角形的中位线定理、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.47.如图,点E 是ABC 的内心,连接AE 并延长交BC 于点F ,交ABC 的外接圆于点D ,连接BD .以下结论中正确的有( )A .AE 平分BAC ∠B .BD DC = C .DBC BAD ∠=∠ D .DFB DBA ∆∆∽【答案】ABCD【分析】根据三角形的内心的性质和圆周角定理判断即可. 【详解】解:A 、点E 是ABC ∆的内心,AE ∴平分BAC ∠,正确,符合题意;B 、AE 平分BAC ∠,BAD DAC ∴∠=∠,∴BD DC =,正确,符合题意;C 、BD DC =,DBC BAD ∴∠=∠,正确,符合题意;D 、D D ∠=∠,DBC BAD ∠=∠,DFB DBA ∴∆∆∽,正确,符合题意;故选:ABCD .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形的判定定理. 48.如图,已知AOB ∠,按以下步骤作图:∠在射线OA 上取一点,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ;∠连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交PQ 于点M 、N ;∠连接OM ,MN .根据以上作图过程及所作图形,下列结论中正确的是( )A .COM COD ∠=∠B .点M 与点D 关于直线OA 对称C .若20AOB ∠=︒MN = D .//MN CD∠//MN CD,∠D正确;故选:ABD.【点睛】本题考查了几何作图,三角形全等,线段的垂直平分线,等腰三角形的性质,圆心角与圆周角的关系定理,熟练掌握作图,理解作图的意义,活用相关知识是解题的关键.49.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中正确的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是2吨、6吨出现了吨,故选项正确,符合题意;++++456、把这些数从小到大排列,则中位数是、这组数据的方差为1[(46三、填空题50.把方程2x2=3x﹣1化为一般形式得:_____【答案】2x2﹣3x+1=0.【分析】直接利用一元二次方程的一般形式分析得出答案.【详解】将一元二次方程2x2=3x−1化为一般形式之后,变为2x2﹣3x+1=0,故答案是:2x2﹣3x+1=0.【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.51.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_______.【答案】15.6【详解】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(∠),则这六个整点时气温的中位数是15.6∠.考点:折线统计图;中位数52.已知y与2x成反比例,且当x=3时,y=16,那么当x=2时,y=_________,当y=2时,x=_________.53.如图,在ABC ∆中,D 是AB 边上的点,如果________或________,则.ABC ACD ∆∆∽【答案】 B ACD ∠=∠ ACB ADC ∠=∠ 【分析】利用三角形相似的判定求解即可.【详解】由图可知BAC DAC ∠=∠,根据相似三角形的判定,再加一个对应角相等即可,所以,可以为:B ACD ∠=∠或ACB ADC ∠=∠使得ABC ACD ∆∆∽ 故答案为B ACD ∠=∠或ACB ADC ∠=∠【点睛】此题主要考查学生对相似三角形的判定定理的理解和掌握. 54.如图,在平面直角坐标系中,点A 、B 在函数y kx=(k ≠0,x >0)的图象上,点B 在点A 的右侧,点A 的坐标为(2,4),过点A 作AD ∠x 轴于点D ,过点B 作BC ∠x 轴于点C ,连接OA 、AB ,若D 为OC 的中点,则四边形OABC 的面积为___.【答案】10【分析】将(2,4)代入解析式可得k =8,根据线段中点的定义可得OC 的长,从而确55.如图,Rt△ABC中,∠C=90°,AC=6,AB=10,D为BC上一点,将AC沿AD 折叠,使点C落在AB上点C1处,则CD的长为__________.【答案】3【分析】翻折前后,对应线段、对应角不变,据此构建直角三角形,根据勾股定理,列方程解答即可.【详解】解:∠∠C=90°,AC=6,AB=10,∠BC=8,由折叠可得AC1=AC=6,∠BC 1=10﹣6=4, 设CD =x ,则BD =8﹣x ,在Rt △DBC 1中,42+x 2=(8﹣x )2, ∠x =3. ∠CD =3, 故答案为:3.【点睛】本题考查的知识点是图形的折叠变换以及勾股定理,解题关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.56.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm 变成了6cm ,这次复印的放缩比例是________ . 【答案】1:3【详解】由题意可知,相似多边形的边长之比=相似比=2:6=1:3, 故答案为1:3.【点睛】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比.在本题中,要注意放缩前后两个多边形是相似多边形,然后根据相似多边形的性质求解即可.57.关于x 的方程22(2)320m m x x -+-+=是关于x 一元二次方程,则m ______. 【答案】2【分析】根据一元二次方程的定义列得222m -=,且20m +≠,求解即可. 【详解】解:由题意得222m -=,且20m +≠, 解得m=2, 故答案为:2.【点睛】此题考查一元二次方程的定义:只含有一个未知数并且未知数的最高次数为2的方程叫一元二次方程,熟记定义是解题的关键.58.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+= 243101x x -++=+2441x x -+=()221x -=∠1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.59.在ABC 中,6AB =,8AC =,ABC 绕点A 旋转后能与11AB C △重合,那么1ABB 与1ACC △的周长之比是______.【答案】3:4##34【分析】根据旋转的性质可知1ABB 与1ACC △是顶角相等的两个等腰三角形,易证它们相似,利用相似三角形的性质解题. 【详解】解:如图,由旋转的性质可知,1AB AB =,1AC AC =,旋转角11BAB CAC ∠=∠,所以,11BAB CAC ∽△△,相似比34AB AC =::, 根据相似三角形的周长比等于相似比可知, 1ABB 与1ACC △的周长之比为3:4,故答案为:3:4.【点睛】本题利用旋转的性质,证明相似三角形,再用相似三角形的性质求周长的比.60.如图,在半径为4的∠O 中,弦AB∠OC ,∠BOC =30°,则AB 的长为_____.30角的直角三角形的性质,平行线的性61.一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为________. 【答案】25或36【详解】设这个两位数的十位数字为x ,则个位数字为(3x +). 依题意得:2103(3)x x x ++=+, 解得:122,3x x ==.∠ 这个两位数为25或36.62.若α为锐角,且sin 250°+sin 2α=1,则α=__. 【答案】40°【分析】根据sin 2α+cos 2α=1可得cos 250°= sin 2α即cos50°= sinα,再根据互余两角的三角函数值相等即可得出答案.【详解】解:∠sin 250°+cos 250°=1,sin 250°+sin 2α=1, ∠cos 250°= sin 2α, ∠α为锐角, ∠sinα=cos50°, 则α+50°=90°,解得,α=40°, 故答案为:40°.【点睛】本题考查的是互余两角三角函数的关系,在直角三角形中,∠A+∠B =90°时,sinA =cos (90°﹣∠A ),sin 2A+cos 2A =1.63.如图,在矩形ABCD 中,4AB =,6BC =,E 为CD 的中点,G 为AE 的中点,F 为CB 上的一个动点,当12FG AE =时,BF 的长为___________.【答案】2或4##4或2【分析】连接,AF EF 根据已知条件可得90AFE ∠=︒,再根据矩形的性质得到164.已知平行四边形ABCD的周长为28,自顶点A作AE∠DC于点E,AF∠BC于点F,若AE=3,AF=4,则CE-CF=_____65.对于一个三角形,设其三个内角的度数为x°,y°,z°,若x,y,z满足x2+y2=z2我们定义这个三角形为美好三角形.已知△ABC为美好三角形,∠A<∠B<∠C,∠B=60°,则∠A的度数为__________.【答案】45°【分析】利用美好三角形的定义结合三角形内角和定理得出∠A的度数.【详解】解:设∠A=x°,则∠C=180°-60°-x°=(120-x)°,∠∠A<∠B<∠C,根据美好三角形定义,∠C为最大角,∠222x+60=(120-x),解得:x=45,即∠A=45°,故答案为:45°.【点睛】此题考查三角形内角和定理、二次函数综合应用,解题关键在于掌握三角形内角和定理.66.如图,在直径为8的弓形ACB中,弦AB=C是弧AB的中点,点M为弧上动点,CN∠AM于点N,当点M从点B出发逆时针运动到点C,点N所经过的路径长为___.6022,1803367.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约1000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________.【答案】20%【详解】根据题意设年平均增长率为x ,列出一元二次方程,解方程即可得出答案.设年平均增长率为x , 则1000(1+x )2=1440,解得x 1=0.2或x 2=-2.2(舍去),所以年平均增长率为20%;故答案为20% .68.如图,菱形ABCD 中,AB AC =,点E 、F 分别为边AB 、BC 上的点,且AE BF =,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,60.CHD ∠=︒则下列结论:∠ABF △∠CAE ,∠120AHC ∠=︒,∠AH CH DH +=,∠2AD OD DH =⋅中,正确的是______.【答案】∠∠∠∠【分析】由菱形ABCD 中,AB =AC ,易证得△ABC 是等边三角形,则可得∠B =∠EAC =60°,由SAS 即可证得△ABF ∠∠CAE ;则可得∠BAF =∠ACE ,利用三角形外角的性质,即可求得∠AHC =120°;在HD 上截取HK =AH ,连接AK ,易得点A ,H ,C ,D 四点共圆,则可证得△AHK 是等边三角形,然后由AAS 即可证得△AKD ∠∠AHC ,则可证得AH +CH =DH ;易证得△OAD ∠∠AHD ,由相似三角形的对应。

初中数学沪科版九年级上册第二十一章《二次函数的应用》练习题(解析版)

初中数学沪科版九年级上册第二十一章《二次函数的应用》练习题(解析版)

初中数学沪科版九年级上册第二十一章21.4二次函数的应用练习题一、选择题1.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A. 25min~50min,王阿姨步行的路程为800mB. 线段CD的函数解析式为s=32t+400(25≤t≤50)C. 5min~20min,王阿姨步行速度由慢到快D. 曲线段AB的函数解析式为s=−3(t−20)2+1200(5≤t≤20)2.二次函数y=x2−8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于1的点P共有()2A. 1个B. 2个C. 3个D. 4个3.某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读数节活动”,决定降价促销,经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本,设每件商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数关系式为()A. y=(30−x)(200+40x)B. y=(30−x)(200+20x)C. y=(30−x)(200−40x)D. y=(30−x)(200−20x)4.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A. y=(x−40)(500−10x)B. y=(x−40)(10x−500)C. y=(x−40)[500−10(x−50)]D. y=(x−40)[500−10(50−x)]5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A. y=2a(x−1)B. y=2a(1−x)C. y=a(1−x2)D. y=a(1−x)26.为解决药价虚高给老百姓带来的求医难问题,国家决定对药品价格分两次降价,若设平均每次降价的百分率为x,该药品的原价是18元/盒,降价后的价格为y元/盒,则y与x之间的函数关系式是()A. y=36(1−x)B. y=36(1+x)C. y=18(1−x)2D. y=18(1+x2)7.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是()A. y=x2B. y=4−x2C. y=x2−4D. y=4−2x8.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A. y=−x2+6x(3<x<6)B. y=−x2+6x(0<x<6)C. y=−x2+12x(6<x<12)D. y=−x2+12x(0<x<12)9.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A. y=x2B. y=(12−x)2C. y=(12−x)xD. y=2(12−x)10.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(x2+6x(0≤x≤4),米)关于水珠和喷头的水平距离x(米)的函数解析式是y=−32那么水珠的高度达到最大时,水珠与喷头的水平距离是()A. 1米B. 2米C. 5米D. 6米二、填空题11.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=________.12.据权威部门发布的消息,2021年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是____.13.如图,用一段长为40m的篱笆围成一个一边靠墙的矩形菜园ABCD,墙长为18m,设AD的长为x m,菜园ABCD的面积为y m2,则y关于自变量x的函数关系式是___________________________.14.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件,商品进价为每件40元,若设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为______.15.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量万件与x之间的关系应表示为______.三、解答题16.已知抛物线y=−x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l//y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.17.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx−5与x轴交于A(−1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.18.在平面直角坐标系中,函数y=x2−2ax−1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2−2ax−1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(−1,−1)、F(−1,a−1)、G(0,a−1).当函数y=x2−2ax−1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A 作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.答案和解析1.【答案】C【解析】【分析】本题考查了二次函数的应用,一次函数的应用,正确的识别图象、数形结合是解题的关键.根据函数图象中的信息,利用数形结合求相关线段的解析式解答即可.【解答】解:A.25min ~50min ,王阿姨步行的路程为2000−1200=800m ,故A 正确;B .设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{1200=25k +b 2000=50k +b, 解得:{k =32b =400, ∴线段CD 的函数解析式为s =32t +400(25≤t ≤50),故B 正确;C .在A 点的速度为5255=105m/min ,在B 点的速度为1200−52520−5=67515=45m/min ,速度从快变慢,故C 错误;D .当t =5,20时,由图象可得s =525,1200m ,将t =5,20分别代入s =−3(t −20)2+1200(5≤t ≤20)得s =525,s =1200,故D 正确.故选C .2.【答案】D【解析】【分析】本题结合图象的性质考查二次函数的综合应用,难度中等.要注意函数求出的各个解是否符合实际.由题可求出MN 的长,即△MNP 的底边已知,要求面积为12,那么根据面积即可求出高,只要把相应的y 值代入即可解答.【解答】解:y =x 2−8x +15的图象与x 轴交点(3,0)和(5,0),|MN|=2,设p 点(x,y),y =x 2−8x +15,面积=12=12|MN|⋅|y|,可得y 1=12,或者y 2=−12,当y =12时,x =8±√62; 当y =−12时,x =8±√22, 所以共有四个点.故选:D .3.【答案】B【解析】【分析】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.根据降价x 元,则售价为(30−x)元,销售量为(200+20x)本,由题意可得等量关系:总销售额为y =销量×售价,根据等量关系列出函数解析式即可.【解答】解:设每本降价x 元,则售价为(30−x)元,销售量为(200+20x)本,根据题意得,y =(30−x)(200+20x),故选B .4.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出销量是解题关键.直接利用每千克利润×销量=总利润,进而得出关系式.【解答】解:设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为:y =(x −40)[500−10(x −50)].故选:C .5.【答案】D【解析】解:由题意得第二次降价后的价格是a(1−x)2.则函数解析式是y=a(1−x)2.故选D.原价为a,第一次降价后的价格是a×(1−x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1−x)×(1−x)=a(1−x)2.本题需注意第二次降价是在第一次降价后的价格的基础上降价的.6.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,本题需注意第二次降价是在第一次降价后的价格的基础上降价的.原价为18,第一次降价后的价格是18(1−x),第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2,则函数关系式即可求得.【解答】解:原价为18,第一次降价后的价格是18(1−x);第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2.则函数解析式是:y=18(1−x)2.故选C.7.【答案】B【解析】解:设剩下部分的面积为y,则:y=−x2+4(0<x<2),故选:B.根据剩下部分的面积=大正方形的面积−小正方形的面积得出y与x的函数关系式即可.此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积−小正方形的面积得出是解题关键.8.【答案】B【解析】【分析】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.已知一边长为xcm,则另一边长为(6−x)cm,根据矩形的面积公式即可解答.【解答】解:已知一边长为xcm,则另一边长为(6−x).则y=x(6−x)化简可得y=−x2+6x,(0<x<6),故选:B.9.【答案】C【解析】【分析】本题考查列二次函数关系式,得到长方形的另一边长是解决本题的关键点.先得到长方形的另一边长,那么面积=一边长×另一边长.【解答】解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12−x,∴y=(12−x)⋅x.故选C.10.【答案】B【解析】【分析】本题考查了二次函数的应用,解决本题的关键是掌握二次函数的顶点式.根据二次函数的顶点式即可求解.【解答】解:方法一:根据题意,得y=−32x2+6x(0≤x≤4),=−32(x−2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x=−62×(−32)=2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.11.【答案】a(1+x)2【解析】【分析】本题考查根据实际问题列二次函数关系式,关键是由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份新产品的研发资金为a(1+x)元,∴三月份新产品的研发资金为a(1+x)(1+x)=a(1+x)2元,即y=a(1+x)2.12.【答案】y=0.75(1+x)2【解析】【分析】此题主要考查了根据实际问题列二次函数关系式,属于中考常考题型.第一季度安徽省城镇居民人均可支配收入约为0.75万元,第二季度安徽省城镇居民人均可支配收入是0.75(1+x)元,第三季度安徽省城镇居民人均可支配收人为0.75(1+x)2元,则函数解析式即可求得.【解答】解:平均每个季度城镇居民人均可支配收入增长的百分率为x,根据题意可得:y与x之间的函数关系为:y=0.75(1+x)2.故答案为y=0.75(1+x)2.13.【答案】y=−2x2+40x(11≤x<20)【解析】【分析】本题考查了根据实际问题列二次函数关系式、矩形的面积公式的运用,利用篱笆的总长用含x的代数式表示出平行于墙的边长是解题的关键.先用含x的代数式表示出平行于墙的边长,再由矩形的面积公式就可以得出结论;【解答】解:根据题意,AD边的长为x米,则AB边的长为(40−2x)米,∴y=x(40−2x),即y与x之间的函数关系式为y=−2x2+40x;0<40−2x≤18,11≤x<20,故答案为y=−2x2+40x(11≤x<20).14.【答案】y=10x2−500x+6000【解析】解:设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为:y=(60−40−x)(300−10x)=10x2−500x+6000.故答案为:y=10x2−500x+6000.直接利用销量×每件利润=总利润,进而得出函数关系式.此题主要考查了根据实际问题列二次函数关系式,正确表示出销量和每件利润是解题关键.15.【答案】y=20+20(x+1)+20(x+1)2【解析】解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.根据平均增长问题,可得答案.本题考查了根据实际问题列二次函数关系式,利用增长问题获得函数解析式是解题关键. 16.【答案】解:(1)由题意得:{b2=1c =3, ∴b =2,c =3,(2)①如图1,∵点C 关于直线x =1的对称点为点D ,∴CD//OA ,∴3=−x 2+2x +3,解得:x 1=0,x 2=2,∴D(2,3),∵抛物线的解析式为y =−x 2+2x +3,∴令y =0,解得x 1=−1,x 2=3,∴B(−1,0),A(3,0), 设直线AC 的解析式为y =kx +b ,∴{3k +b =0b =3,解得:{k =−1b =3, ∴直线AC 的解析式为y =−x +3,设F(a,−a 2+2a +3),E(a,−a +3),∴EF =−a 2+2a +3+a −3=−a 2+3a ,四边形CEDF 的面积=S △EFC +S △EFD =12EF ⋅CD =12×(−a 2+3a)×2=−a 2+3a =−(a −32)2+94, ∴当a =32时,四边形CEDF 的面积有最大值,最大值为94.②当△PCQ∽△CAP 时,∴∠PCA =∠CPQ ,∠PAC =∠PCQ ,∴PQ//AC ,∵C(0,3),A(3,0),∴OA =OC ,∴∠OCA=∠OAC=∠PCQ=45°,∴∠BCO=∠PCA,如图2,过点P作PM⊥AC交AC于点M,∴tan∠PCA=tan∠BCO=OBOC =13,设PM=b,则CM=3b,AM=b,∵AC=√OC2+OA2=3√2,∴b+3b=3√2,∴b=34√2,∴PA=34√2×√2=32,∴OP=OA−PA=3−32=32,∴P(32,0),设直线l的解析式为y=−x+n,∴−32+n=0,∴n=32.∴直线l的解析式为y=−x+32.【解析】(1)根据抛物线的对称轴及抛物线与y轴的交点坐标可求出b、c的值;(2)由题意先求出D点坐标为(2,3),求出直线AC的解析式,设F(a,−a2+2a+3),E(a,−a+3),则EF=−a2+3a,四边形CEDF的面积可表示为12EF⋅CD,利用二次函数的性质可求出面积的最大值;(3)当△PCQ∽△CAP时,可得∠PCA=∠CPQ,∠PAC=∠PCQ=∠OCA=45°,则PQ//AC,∠BCO=∠PCA,过点P作PM⊥AC交AC于点M,可求出PM、PA、OP的长,用待定系数法可求出函数解析式.本题考查了二次函数的综合题:熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似三角形的性质解题;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.17.【答案】解:(1)∵点A(−1,0),B(5,0)在抛物线y =ax 2+bx −5上,∴{a −b −5=025a +5b −5=0,解得{a =1b =−4,∴抛物线的表达式为y =x 2−4x −5,(2)设H(t,t 2−4t −5),∵CE//x 轴,∴点E 的纵坐标为−5,∵E 在抛物线上,∴x 2−4x −5=−5,∴x =0(舍)或x =4,∴E(4,−5),∴CE =4,∵B(5,0),C(0,−5),∴直线BC 的解析式为y =x −5,∴F(t,t −5),∴HF =t −5−(t 2−4t −5)=−(t −52)2+254,∵CE//x 轴,HF//y 轴,∴CE ⊥HF ,∴S 四边形CHEF =12CE ⋅HF =−2(t −52)2+252,∴H(52,−354);(3)如图2,∵K 为抛物线的顶点,∴K(2,−9),∴K 关于y 轴的对称点K′(−2,−9),∵M(4,m)在抛物线上,∴M(4,−5),∴点M关于x轴的对称点M′(4,5),∴直线K′M′的解析式为y=73x−133,∴P(137,0),Q(0,−133).【解析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.18.【答案】解:(1)当x=0时,y=x2−2ax−1=−1,∴点A的坐标为:(0,−1);(2)将点(1,2)代入y=x2−2ax−1,得:2=1−2a−1,解得:a=−1,∴函数的表达式为:y=x2+2x−1,∵y=x2+2x−1=(x+1)2−2,∴抛物线的开口向上,对称轴为x=−1,如图1所示:∴当x>−1时,y随x的增大而增大;(3)抛物线y=x2−2ax−1=(x−a)2−a2−1的对称轴为:x=a,顶点坐标为:(a,−a2−1),当a>0时,对称轴在y轴右侧,如图2所示:∵x≤0,∴最低点就是A(0,−1),∵图象的最低点到直线y=2a的距离为2,∴2a−(−1)=2,解得:a=12;当a<0,对称轴在y轴左侧,顶点(a,−a2−1)就是最低点,如图3所示:∴2a −(−a 2−1)=2,整理得:(a +1)2=2,解得:a 1=−1−√2,a 2=−1+√2(不合题意舍去);综上所述,a 的值为12或−1−√2;(4)∵a <0,Rt △EFG 三个顶点的坐标分别为E(−1,−1)、F(−1,a −1)、G(0,a −1), ∴直角边为EF 与FG ,∵抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为:x =a ,A(0,−1), ∴AA′=−2a ,当点P 在EF 边上时,如图4所示:则x p =−1,∵EA =OA =1,∴点P 在对称轴x =a 的左侧,∴PP′=2(a +1),∵AA′=2PP′,∴−2a =2×2(a +1),解得:a =−23;当点P 在FG 边上时,如图5所示:则y p =a −1,∴x 2−2ax −1=a −1,解得:x 1=a +√a 2+a ,x 2=a −√a 2+a ,∴PP′=a +√a 2+a −(a −√a 2+a)=2√a 2+a ,∵AA′=2PP′,∴−2a =4√a 2+a ,解得:a 1=−43,a 2=0(不合题意舍去);综上所述,a 的值为−23或−43.【解析】(1)当x =0时,代入y =x 2−2ax −1,即可得出结果;(2)将点(1,2)代入y =x 2−2ax −1,得a =−1,则函数的表达式为y =x 2+2x −1,由y =x 2+2x −1=(x +1)2−2,得出抛物线的开口向上,对称轴为x =−1,则当x >−1时,y 随x 的增大而增大;(3)抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为x =a ,顶点坐标为(a,−a 2−1),当a >0时,对称轴在y 轴右侧,最低点就是A(0,−1),则2a −(−1)=2,即可得出结果;当a <0,对称轴在y 轴左侧,顶点(a,−a 2−1)就是最低点,则2a −(−a 2−1)=2,即可得出结果;(4)易证直角边为EF 与FG ,由抛物线的对称轴为x =a ,A(0,−1),则AA′=−2a ,当点P 在EF 边上时,PP′=2(a +1),则−2a =2×2(a +1),即可得出结果;当点P 在FG 边上时,求出PP′=2√a 2+a ,则−2a =4√a 2+a ,即可得出结果.本题是二次函数综合题,主要考查了二次函数图象与性质、待定系数法求解析式、直角三角形的性质、解一元二次方程、分类讨论等知识;熟练掌握二次函数图象与性质是解题的关键.1、最困难的事就是认识自己。

人教版初中数学-学年九年级上学期期末专题复习 专题1:一元二次方程 解析版

人教版初中数学-学年九年级上学期期末专题复习 专题1:一元二次方程 解析版

人教版初中数学2019-2020学年九年级上学期期末专题复习专题1:一元二次方程一、单选题1.下列方程中,关于x的一元二次方程是()A. x2+2y=1B. ﹣2=0C. ax2+bx+c=0D. x2+2x=12.一元二次方程x2-x-4=0的一次项系数和常数项分别是()A. 1,-1B. 1,-4C. -1,-4D. -1,43.将一元二次方程化为一般形式,正确的是()A. B. C. D.4.方程的解是()A. B. C. , D.5.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是( )A. k>-1或k≠0B. k≥-1C. k≤-1或k≠0D. k≥-1且k≠06.一元二次方程x2+4x+2=0的根的判别式的值为()A. 8B. 24C.D.7.已知x1、x2、是一元二次方程x2+x-2=0的两个根,则x1+x2+x1x2的值为()A. 1B. -3C. 3D. -2二、填空题8.方程x2-2ax+3=0有一个根是1,a的值是________。

9.若代数式可化为,则=________,=________.10.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,则方程min{x,-x}=x2-1的解是________.三、计算题11.解下列方程。

(1)x2-5x+6=0(2)(2x+1)(x-4)=5.12.(1)先化简,再求值:(x-2y)2-x(x+3y)-4y2,其中x=-4,y= .(2)已知:x+y=6,xy=4,求下列各式的值x2+y213.按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.(5)(6x-1)2=25;四、解答题14.如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.15.要组织一次篮球邀请比赛,参赛的队伍每两个队都要比赛一场.赛程安排7天,每天比赛4场,问组织者应该邀请多少个队参赛?五、综合题16.已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.17.在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手________次;若参加聚会的人数为5,则共握手________次;(2)若参加聚会的人数为n(n为正整数),则共握手________次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.答案解析部分一、单选题1. D解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故答案为:D.【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.2. C解:一元二次方程x2-x-4=0的一次项系数时-1,常数项是-4,故C正确。

人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

当 BP=2 时,AP=
=;
当 BP=8 时,AP=
=.
故答案为: 或 . 【点睛】 本题主要考查了矩形的性质和勾股定理及一元二次方程,学会利用方程的思想求线段的长是 关键. 10.25% 【解析】 【分析】 设运动商城的自行车销量的月平均增长率为 x,根据该商城一月份、三月份销售自行车的数 量,即可列出关于 x 的一元二次方程,解之取其正值即可得出结论. 【详解】 解:设运动商城的自行车销量的月平均增长率为 x, 根据题意得:64(1+x)2=100, 解得:x1=0.25=25%,x2=-2.25(舍去). 故答案为:25%. 3;CD, ∴CD=5-x, ∵AC 2+AD 2= DC 2, ∴(2+x)2+32=(5-x) 2,
∴x= ,
AC=2+ =2 m. 故选 B. 【点睛】 本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后 列方程求解. 6.C 【解析】 分析:设平均每次下调的百分率为 x,则两次降价后的价格为 6000(1-x)2,根据降低率问 题的数量关系建立方程求出其解即可. 详解:设平均每次下调的百分率为 x,由题意,得 6000(1-x)2=4860, 解得:x1=0.1,x2=1.9(舍去). 答:平均每次下调的百分率为 10%. 故选:C. 点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解 法的运用,解答时根据降低率问题的数量关系建立方程是关键. 7.C 【解析】 【分析】 设参加酒会的人数为 x 人,根据每两人都只碰一次杯,如果一共碰杯 55 次,列出一元二次 方程,解之即可得出答案. 【详解】 设参加酒会的人数为 x 人,依题可得:
3 / 13

初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率

初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率

初中数学人教版九年级上学期第二十五章25.2用列举法求概率一、单选题(共4题;共8分)1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.3.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是4.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.二、填空题(共3题;共8分)5.两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为________.6.在如图所示的电路图中,当随机闭合开关, , 中的两个时,能够让灯泡发光的概率为________.7.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是________;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.三、解答题(共2题;共10分)8.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.9.现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为、,图案为“保卫和平”的卡片记为B)四、综合题(共4题;共41分)10.小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;解:树状图为:(2)求出一个回合能确定两人下棋的概率.11.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.12.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).13.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.答案解析部分一、单选题1.【答案】A【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.2.【答案】C【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.3.【答案】A【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D、第一次摸出的球是红球的概率是;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.4.【答案】B【解析】【解答】解:根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故答案为:B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.二、填空题5.【答案】【解析】【解答】由题可得到树状图如下图所示:∴.故答案为.【分析】画出树状图进行求解即可;6.【答案】【解析】【解答】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足:一共有:, ,、, 、, 三种情况,满足条件的有, 、, 两种,∴能够让灯泡发光的概率为:故答案为:.【分析】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足条件,从而求算概率.7.【答案】(1)(2)解:根据题意可列表格如下:总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种:,(两张卡片数字之和大于7).【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,∴抽到的卡片上标有数字为奇数的概率是,故答案为:;【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.三、解答题8.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P (小吉抽到两张卡片中有A卡片)= .解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.9.【答案】解:树状图如下:P(两次抽取的卡片上图案都是“保卫和平”).列表法如下表:第B一张结果第二张P(两次抽取的卡片上图案都是“保卫和平”).【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形姓名:班级:成绩:一、单选题(共10题;共30分)1. (3 分)(2018 •广东模拟)正六边形ABCDEF 内接于©O .正六边形的周长是12,则©O 的半径是(A .B .2C .站2. (3 分)(2018 •莱芜模拟)如图.BC 是(DA 的内接正十边形的一边.BD 平分匕ABC 交AC 于点D,则下列结论不成立的是(A ・ BC=BD=ADB . BC2二DC・ACD . BC 二ACC ・的三边之长为1: 1:3.(3分)如图,为。

0的内接三角形,此L 匕C 二30° ,则。

的内接正方形的面积为()A .2B . 4C . 8D .164. (3 分)如图.正六边形ABCDEF 内接于。

0,若直线PA 与。

相切于点A.则ZPAB-( )A .30°B .35c. 45°・60°5. (3 分)(2016九上•罗平开学考)如图.AD. BE, CF 是正六边形ABCDEF 的对角线,图中平行四边形的个C D 数有(B CB . 4个C .6个D . 8个6.(3分)(2012•柳州)如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A'B'C‘D f E‘F'的位置,所转过的度数是()A .60°B .72°C ・108°D .120°7.(3分)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点0重合,点A在xk)・=—轴上,点B在反比例函数-'位于第一象限的图象上,则k的值为()A .MB .9/D .M8.(3分)正六边形的外接圆的半径与内切圆的半径之比为()A .1:"B .反2C .2:正D .反19.(3分)(2017•贵港模拟)若一个正多边形的中心角为10°.则这个名边形的边数是(A .9B .8C .7D .610.(3分)以下说法正确的是()A .每个内角都是120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档