2013-2014学年福建省厦门双十中学八年级(下)期末数学试卷

合集下载

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.2.函数中自变量x的取值范围是.3.两个相似三角形的相似比为2 :3,面积差为30cm2,则较小三角形的面积为 cm2.4.某超市现在年产值是25万元,如果每增加100元投资,一年可增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间的函数关系式为___________________.5.的立方根是.6.若∠A为锐角,且sinA=,则tanA= .7.在直角三角形中,若一个锐角为300,斜边与较小直角边的和为18cm,则较大直角边为 cm.8.若1<x<4,则= .9.学校举行小发明比赛,小刚要做一个直角三角形木架,现有长为30cm和40cm的两根木条,那么第三根木条的长应为 cm .10.如图,阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC= m .二、填空题1.下列计算正确的是--------------()A.B.C.D.2.如图,在直角坐标系中,直线l所表示的一次函数是()A.y=3x+3B.y=3x-3C.y=-3x+3D.y=-3x-33.下列说法中,正确的是()A.有一个角对应相等,且有两条边对应成比例的两个三角形相似B.算术平方根与立方根相等的数是0,1C.正比例函数y=3x与位于不同的象限D .两组数据中,平均数越小,这组数据越稳定4.要从直线得到直线,就要把直线( ) A .向上平移个单位 B .向下平移个单位 C .向上平移1个单位D .向下平移1个单位5.如图,在ΔABC 中,AB=30,BC=24,CA=27,AE=EF=FB ,EG ∥FD ∥BC ,FM ∥EN ∥AC ,则图中阴影部分的三个三角形的周长之和为 ( ) A .70 B .75 C .81 D .806.已知长方体容器的底面是边长为2cm 的正方形(高度不限),容器内盛有10cm 高的水,现将底面为边长是1cm 的正方形、高是xcm 的长方体铁块竖直放入容器内,容器内的水高y 关于x 的函数关系式为,则x 的取值范围是( ) A .B .x >0C .0<x≤10cmD .以上均错三、解答题1.如图,在ΔABC 中,∠C=900,延长CA 至D ,使AD=AB ,∠BAC=300,则由图可得cot150的值是( )A .B .C .D .2.如图,梯形ABCD 的对角线AC 、BD 交于点O ,若S ΔAOD :S ΔACD =1:4,则S ΔAOD :S ΔBOC 的值为( )A 、1:3B 、1:4C 、1:9D 、1:163.一个布袋里有2个红球和2个蓝球,第一次从布袋中摸出一个球,放回后第二次再摸出一个球,则两次摸出的球中发生的机会最大的是( ) A .两个红球 B .两个蓝球 C .一红一蓝 D .以上均错4.如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西600的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.B.C.D.5.计算:6.甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:甲 5 8 8 9 10乙 9 6 10 5 10(1)分别计算每人的平均成绩;(2)求出每组数据的方差;(3)谁的射击成绩比较稳定?7.如图,一水坝的横断面为梯形ABCD,坝顶DC宽5m,斜坡AD=6m,∠A=600,斜坡BC的坡度i=1:2.求坝底AB的长(精确到0.1m).8.如图,四边形DEFG是ΔABC的内接矩形,如果ΔABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.9.某公司在A、B两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地需15台,乙地需13台.已知从A地运一台到甲地的运费为500元,到乙地为400元;从B地运一台到甲地的运费为300元,到乙地为600元.请你帮助算一算,怎样调运花费最省,最省为多少元?10.如图,大江的一侧有甲、乙两家工厂,它们都有垂直于江边的小路AD、BE,长度分别为3千米和2千米,两条小路相距10千米.现在要在江边建一个抽水站,把水送到甲、乙两厂去.欲使供水管路最短,抽水站应建在哪里?福建初二初中数学期末考试答案及解析一、选择题1.在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.【答案】(1,2)【解析】解:根据“关于y轴的对称点的横坐标互为相反数、纵坐标相同”的规律可知点P(-1,2)关于y轴的对称点为(1,2)。

2024届福建省福州十中学八年级数学第二学期期末综合测试试题含解析

2024届福建省福州十中学八年级数学第二学期期末综合测试试题含解析

2024届福建省福州十中学八年级数学第二学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图所示,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH,那么图中平行四边形AEMG 的面积1S 与平行四边形HCFM 的面积2S 的大小关系是( )A .11S S =B .11<S SC .11>S SD .112S S =2.为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查.方法是通过考试(参加考试的为全市八年级学生),从中随机抽取600名学生的英语成绩进行分析.对于这次调查,以下说法不正确的是( ) A .调查方法是抽样调查B .全市八年级学生是总体C .参加考试的每个学生的英语成绩是个体D .被抽到的600名学生的英语成绩是样本 3.下列方程中,没有实数根的是( ) A .3x +2=0B .2x +3y=5C .x 2+x ﹣1=0D .x 2+x +1=04.如图,一根木棍斜靠在与地面OM 垂直的墙面ON 上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到墙角点O 的距离( )A .不变B .变小C .变大D .先变大后变小5.如图,在ABCD 中,AC 与BD 相交于点O ,则下列结论不一定成立的是( )A .BO=DOB .CD=ABC .∠BAD=∠BCD D .AC=BD6.如图,矩形ABCD 的对角线AC BD 、相交于点O ,1208BOC AC ∠=︒=,,则ABO 的周长为()A .12B .14C .16D .187.下列各组线段中,不能够组成直角三角形的是( ) A .6,8,10B .3,4,5C .4,5,6D .5,12,138.如图所示,正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF=1,则正方形ABCD 的面积是6+42 ,其中正确的结论个数有()A .2个B .4个C .3个D .5个9.能使分式2121--+x x x 的值为零的所有x 的值是( )A .x =1B .x =﹣1C .x =1或x =﹣1D .x =2或x =110.将抛物线y=x 2﹣4x ﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( ) A .y=(x+1)2﹣13 B .y=(x ﹣5)2﹣3 C .y=(x ﹣5)2﹣13D .y=(x+1)2﹣311.已知某一次函数的图象与直线2y x =平行,且过点(3, 7),那么此一次函数为( )A .21y x =-B .21y x =+C .23y x =+D .37y x =+12.下面式子是二次根式的是( ) A .B .C .D .a二、填空题(每题4分,共24分)13.函数2(1)1y x =-+向右平移1个单位的解析式为__________.14.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.15.如图,在4×4方格纸中,小正方形的边长为1,点A ,B ,C 在格点上,若△ABC 的面积为2,则满足条件的点C 的个数是_____.16.如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD 中,若AB =10,AC =12,则BD 的长为_____.17.如图,Rt ABC ∆中,90,5,12ACB BC AC ︒∠=== D 是AB 的中点,则CD=__________.18.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____. 三、解答题(共78分)19.(8分)如图,在R △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =4,CE =10,求CD 的长.20.(8分)完成下列运算 (1)计算:1236162-+(2)计算:(4827)3-÷(3)计算:2(231)(32)(231)--+-21.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.22.(10分)已知某实验中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草坪,经测量∠A =90°,AC =3m ,BD =12m ,CB =13m ,DA =4m ,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?23.(10分)已知:如图,在Rt △ABC 中,∠C =90°,∠BAC ,∠ABC 的平分线相交于点D ,DE ⊥BC ,DF ⊥AC ,垂足分别为E ,F ,求证:四边形CEDF 是正方形.24.(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表训练后学生成绩统计表成绩/分数6分7分8分9分10分人数/人 1 3 8 5 n根据以上信息回答下列问题(1)训练后学生成绩统计表中n= ,并补充完成下表:平均分中位数众数训练前7.5 8训练后8(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?25.(12分)小辉为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图1.小辉发现每月每户的用水量在33535m m -之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小军绘制的图表和发现的信息,完成下列问题: (1)n = ,小明调查了 户居民,并补全图1;(1)每月每户用水量的中位数落在 之间,众数落在 之间;(3)如果小明所在的小区有1100户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数多少?26.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?参考答案一、选择题(每题4分,共48分) 1、A 【解题分析】根据平行四边形的性质和判定得出平行四边形GBEP 、GPFD ,证△ABD ≌△CDB ,得出△ABD 和△CDB 的面积相等;同理得出△BEM 和△MHB 的面积相等,△GMD 和△FDM 的面积相等,相减即可求出答案. 【题目详解】∵四边形ABCD 是平行四边形,EF ∥BC,HG ∥AB , ∴AD=BC,AB=CD,AB ∥GH ∥CD,AD ∥EF ∥BC , ∴四边形HBEM 、GMFD 是平行四边形, 在△ABD 和△CDB 中;∵AB CDBD DB DA CB =⎧⎪=⎨⎪=⎩, ∴△ABD ≌△CDB(SSS),即△ABD 和△CDB 的面积相等;同理△BEM 和△MHB 的面积相等,△GMD 和△FDM 的面积相等, 故四边形AEMG 和四边形HCFM 的面积相等,即12S S .故选:A. 【题目点拨】此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于得出△ABD ≌△CDB 2、B 【解题分析】根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解. 【题目详解】A 、调查方法是抽样调查,正确;B 、全市八年级学生的英语成绩是总体,错误;C 、参加考试的每个学生的英语成绩是个体,正确;D 、被抽到的600名学生的英语成绩是样本,正确. 故选:B . 【题目点拨】此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位. 3、D 【解题分析】试题解析: A.一元一次方程,有实数根. B.二元一次方程有实数根.C.一元二次方程,()24141150.b ac ∆=-=-⨯⨯-=>方程有两个不相等的实数根.D.一元二次方程,24141130.b ac ∆=-=-⨯⨯=-<方程有没有实数根. 故选D.点睛:一元二次方程根的判别式:24.b ac ∆=-240b ac ∆=->时,方程有两个不相等的实数根. 240b ac ∆=-=时,方程有两个相等的实数根.240b ac∆=-<时,方程没有实数根.4、A【解题分析】连接OP,易知OP就是斜边AB上的中线,由于直角三角形斜边上的中线等于斜边的一半,那么OP12=AB,由于AB不变,那么OP也就不变.【题目详解】不变.连接OP.在Rt△AOB中,OP是斜边AB上的中线,那么OP12=AB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.故选A.【题目点拨】本题考查了直角三角形斜边上的中线,解题的关键是知道木棍AB的长度不变,也就是斜边不变.5、D【解题分析】试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.6、A【解题分析】根据题意可得三角形ABO是等边三角形,利用性质即可解答.【题目详解】解:已知在矩形ABCD中,AO=BO,又因为∠BOC=120°,故∠AOB=60°,可得三角形AOB为等边三角形,又因为AC=8,则AB=4,则三角形AOB的周长为12.答案选A.【题目点拨】本题考查矩形和等边三角形的性质,熟悉掌握是解题关键.7、C【解题分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【题目详解】A. 6+8=10,能构成直角三角形,故不符合题意;B. 3+4=5,能构成直角三角形,故不符合题意;C. 4+5≠6,不能构成直角三角形,故符合题意;D. 5+12=13,能构成直角三角形,故不符合题意.故选C.【题目点拨】此题考查勾股定理的逆定理,解题关键在于掌握运算公式.8、C【解题分析】根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF 可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【题目详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=12∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<12 AB,∴ADAE>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴,∴.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S △OGF =1, ∴12OG 2=1,解得,∴, ∴AE=GF=2,∴+2,∴S 四边形ABCD =AB 2 =(2 +2) 2 .故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.【题目点拨】 此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理9、B【解题分析】分析:根据分式的值为0的条件:分子等于0,分母≠0,构成不等式组求解即可.详解:由题意可知:210210x x x ⎧-=⎨-+≠⎩解得x=-1.故选B.点睛:此题主要考查了分式的值为0的条件,利用分式的值为0的条件:分子等于0,分母≠0,构造不等式组求解是解题关键.10、D【解题分析】因为y=x 2-4x-4=(x-2)2-8,以抛物线y=x 2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D .11、B【解题分析】一次函数的图象与直线y=2x 平行,所以k 值相等,即k=2,又因该直线过点(3, 7),所以就有7=6+b ,从而可求出b 的值,进而解决问题.【题目详解】∵一次函数y=kx+b 的图象与直线2y x =平行,∴k=2,则即一次函数的解析式为y=2x+b.∵直线过点(3, 7),∴7=6+b ,∴b=1.∴直线l 的解析式为y=2x+1.故选B.【题目点拨】此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.12、A【解题分析】分析:直接利用二次根式定义分析得出答案.详解:A 、,∵a 2+1>0,∴是二次根式,符合题意; B 、是三次根式,不合题意; C 、,无意义,不合题意;D 、a 是整式,不合题意.故选A .点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.二、填空题(每题4分,共24分)13、22()1y x =-+或245y x x =-+【解题分析】根据“左加右减,上加下减”的规律即可求得.【题目详解】解:∵抛物线()211y x =-+向右平移1个单位∴抛物线解析式为()221y x =-+或245y x x =-+.【题目点拨】本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.14、y=﹣3x【解题分析】设函数解析式为y=kx ,把点(-1,3)代入利用待定系数法进行求解即可得.【题目详解】设函数解析式为y=kx ,把点(-1,3)代入得3=-k ,解得:k=-3,所以解析式为:y=-3x ,故答案为y=-3x.【题目点拨】本题考查了利用待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.15、1.【解题分析】根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.【题目详解】解:如图,点C 的位置可以有1种情况.故答案为:1.【题目点拨】本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错. 16、1【解题分析】过点A 作AE BC ⊥于E ,AF CD ⊥于F ,设AC 、BD 交点为O ,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB 的长,从而可得到BD 的长.【题目详解】解:过点A 作AE BC ⊥于E ,AF CD ⊥于F ,设AC 、BD 交点为O .两条纸条宽度相同,AE AF ∴=.//AB CD ,//AD BC ,∴四边形ABCD 是平行四边形.ABCD SBC AE CD AF =⋅=⋅. 又=AE AF .BC CD ∴=,∴四边形ABCD 是菱形;OB OD ∴=,6OA OC ==,AC BD ⊥.22221068OB AB OA ∴-=-=.216BD OB ∴==.故答案为1.【题目点拨】本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理以及四边形的面积,证得四边形ABCD 为菱形是解题的关键.17、6.1【解题分析】首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD 的长度.【题目详解】∵Rt △ABC 中,90,5,12ACB BC AC ︒∠===,∴22AC BC +22125+=13,∵D 为AB 的中点,∴CD=12AB=6.1. 故答案为:6.1.【题目点拨】本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.18、1【解题分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.【题目详解】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=1 故答案为1【题目点拨】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.三、解答题(共78分)19、CD =8.【解题分析】根据直角三角形的性质得出AE=CE=10,进而得出DE=6,利用勾股定理解答即可.【题目详解】∵Rt ABC ∆,CE 为AB 边上的中线,∴10CE AE ==.∵4=AD ,∴1046DE AE AD =-=-=.又∵CD 为AB 边上的高,∴8CD ===.【题目点拨】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.20、(1)2+(2)1;(3)9-【解题分析】(1)先把二次根式化简,然后合并即可;(2)根据二次根式的除法法则运算;(3)利用乘法公式展开,然后合并即可.【题目详解】解:(1)原式=6﹣=(2=4﹣3=1;(3)原式121(62)=-+--134=---9=-【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、(1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=0(00.5)0.5(0.5)xx x≤<⎧⎨-≥⎩;(2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.【解题分析】试题分析:(1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;(2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;试题解析:(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:1y kx b=+,由图可得:0.500.5k bk b+=⎧⎨+=⎩,解得:10.5kb=⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-;(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:3[,]44ππ-, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩ 可得:21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5),又∵0x >,∴结合图象可得:当02x <<时,李老师用“手机支付”更合算;当0x =时,李老师选择两种支付分式花费一样多;当2x >时,李老师选择“会员支付”更合算. 点睛:本题是一道一次函数的实际问题,解题时有两个要点:(1)由图中所得信息,求出两个函数的解析式;(2)由两函数的解析式组成方程组求得两函数图象的交点坐标,结合两函数图象的位置关系即可得到第2问的答案.22、学校需要投入10800元买草坪 【解题分析】连接CD ,在直角三角形ACD 中可求得CD 的长,由BD 、CB 、CD 的长度关系可得三角形DBC 为一直角三角形,BC 为斜边;由此看,四边形ABCD 由Rt △ACD 和Rt △DBC 构成,然后求直角三角形的面积之和即可.【题目详解】解:连接CD ,在RtΔACD 中,222222345CD AC AD =+=+=在ΔCBD 中,225CD =,2212BD =而22212513+=即222DC BD CB +=所以∠BDC =90°则CAD DBC ABCD S S S ∆∆=+四边形1122AD AC DB DC =⋅⋅+⋅ 114312522=⨯⨯+⨯⨯=5所以需費用36×300=10800(元).答:学校需要投入10800元买草坪..【题目点拨】本题考查了勾股定理的应用,通过勾股定理判定三角形直角三角形,是解答本题的关键.23、证明见解析【解题分析】证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形DECF为矩形,∵∠BAC、∠ABC的平分线交于点D,∴DF=DE,∴四边形CFDE是正方形24、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125人【解题分析】(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;【题目详解】(1)n=20-1-3-8-5=3;强化训练前的中位数为7+82=7.5;强化训练后的平均分为120(1×6+3×7+8×8+9×5+10×3)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×(820-320)=125,所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人. 【题目点拨】本题考查读条形统计图图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25、(1)110,84,补图见解析;(1)331520m m -,331015m m -;(3)700户【解题分析】(1)利用36030120n =--即可求出n 的值,利用“对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变”的居民的数量除以相应的百分比即可求出调查的总数量,然后用总数量减去用水量在33515m m -,332035m m -的居民的数量,即可求出用水量在331520m m -之间的居民的数量,即可补全图1;(1)根据中位数和众数的概念即可得出答案;(3)用总人数1100×样本中“视调价涨幅采取相应的用水方式改变”的居民所占的百分比即可得出答案.【题目详解】(1) 36030120210n =--=, 调查的居民的总数为30784360÷= , 用水量在331520m m -之间的居民的数量为841522181658-----= ,补全的图1如图:(1)根据中位数的概念,因为共调查了84户居民,每月每户用水量的中位数为第41,41个数据的平均数,即中位数落在331520m m -之间,由图可知,用水量在331015m m -的数据最多,所以众数落在331015m m -之间;(3)∵2101200700360⨯= (户), ∴估计“视调价涨幅采取相应的用水方式改变”的居民户数有700户.【题目点拨】本题主要考查扇形统计图和频数分布直方图,掌握中位数,众数的概念,用样本估计总体的方法是解题的关键.26、2400元【解题分析】试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.试题解析:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:22345+=(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC=12×5×12﹣12×3×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.考点:1.勾股定理;2.勾股定理的逆定理.。

【三套打包】厦门双十中学初中部八年级下学期期末数学试题

【三套打包】厦门双十中学初中部八年级下学期期末数学试题

A.x=-1或x=1 B.x=0 C.x=1 D.x=-12.点M为数轴上表示-2的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是()A.3 B.5 C.-7 D.3或-73.已知a,b.c均为实数,a<b,那么下列不等式一定成立的是()A.a-b>0 B.-3a<-3bC.a|c|<b|c| D.a(c2+1)<b(c2+1)4.计算(-2)100+(-2)99的结果是()A.2 B.-2 C.-299D.2995.已知点P(2a+1,1-a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.A.B C.3 D.47.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.1010202x x-=B.1010202x x-=C.1010123x x-=D.1010123x x-=8.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3116.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.17.如图,已知直线y=kx-3经过点M,直线与x轴,y轴分别交于A,B两点.(1)求A,B两点坐标;(2)结合图象,直接写出kx-3>1的解集.18.阅读:分解因式x2+2x-3解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:分解因式:x2-y2-8x-4y+12.19.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?20.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.21.旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?初步应用:(2)如图2,在△ABC纸片中剪去△CDE,得到四边形ABDEA,∠1=130°,则∠2-∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可接使用,不需说明理由.)参考答案与试题解析1.【分析】直接利用分式的值为0,则分子为0,分母不能为0,进而得出答案.【解答】解:∵分式211xx-+的值为零,∴x2-1=0,x+1≠0,解得:x=1.故选:C.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2.【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解答】解:由M为数轴上表示-2的点,将点M沿数轴向右平移5个单位到点N可列:-2+5=3,故选:A.【点评】此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.3.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a<b,∴a-b<0,故本选项错误;B、∵a<b,∴-3a>-3b,故本选项错误;C、当c=0时,a|c|=b|c|,故本选项错误;D、∵a<b,c2+1>0,∴a(c2+1)<b(c2+1),故本选项正确.故选:D.【点评】本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.【分析】根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.【解答】解:原式=(-2)99[(-2)+1]=-(-2)99=299,故选:D.【点评】本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.5.【分析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.【解答】解:根据题意,得:21010aa+-⎧⎨⎩>①>②,解不等式①,得:a>-12,解不等式②,得:a<1,∴该不等式组的解集为:-12<a<1,故选:C.【点评】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【分析】根据平行四边形的性质可知,OA=OC,OB=OD,由AC:BD=2:3,推出OA:OB=2:3,设OA=2m,OB=3m,在Rt△AOB中利用勾股定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AC:BD=2:3,∴OA:OB=2:3,设OA=2m,BO=3m,∵AC⊥BD,∴∠BAO=90°,∴OB2=AB2+OA2,∴9m2=5+4m2,∴m=±1,∵m>0,∴m=1,∴AC=2OA=4.故选:D.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,学会设未知数,把问题转化为方程去思考,属于中考常考题型.7.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,1010123 x x-=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.8.分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=12(a+c)(a-c)=12a2-12c2,∴S2=S1-12S3,∴S3=2S1-2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.故选:A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.9.【分析】已知等式左边通分并利用同分母分式的加法法则计算,再利用分式相等的条件求出A与B的值,代入原式计算即可得到结果.【解答】解:已知等式整理得:(2)(1)34(1)(2)(1)(2)A xB x xx x x x-+--=----,可得(A+B)x-2A-B=3x-4,即324 A BA B+=⎧⎨+=⎩,解得:A=1,B=2,则3A+2B=3+4=7.故答案为:7【点评】此题考查了分式的加减法,以及分式相等的条件,熟练掌握运算法则是解本题的关键.10.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2-1)=a(a+1)(a-1),故答案为:a(a+1)(a-1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【分析】根据代数式3x−14的值不大于代数式13x-2的值,即可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,取期内的最大整数值,此题得解.【解答】解:由已知得:3x−14≤13x-2,解得:x≤-21 32.∵-1<-2132<0,故答案为:-1.【点评】本题考查了一元一次不等式的整数解,解题的关键是根据代数式3x−14的值不大于代数式13x-2的值得出关于x 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.12. 【分析】两个阴影图形可以平移到一个长方形中去,故根据长方形面积公式计算. 【解答】解:两个阴影图形可以平移组成一个长方形,长为15-2=13,宽为8, 故阴影部分的面积=13×8=104.【点评】本题主要考查平移的性质,把复杂的问题化简单.13. 【分析】先根据平行四边形的性质,求得∠C 的度数,再根据四边形内角和,求得∠EAF 的度数.【解答】解:∵平行四边形ABCD 中,∠B=50°, ∴∠C=130°,又∵AE ⊥BC 于E ,AF ⊥CD 于F ,∴四边形AECF 中,∠EAF=360°-180°-130°=50°, 故答案为:50°.【点评】本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.14. 【分析】根据f (x )求出f (1x ),进而得到f (x )+f (1x )=1,原式结合后,计算即可求出值.【解答】解:∵x >0,规定()1xf x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭,则原式=1111(2019)(2018)(2)(1)20182019201822f f f f ff f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812. 【点评】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.15. 【分析】根据分式的加法和除法可以化简题目中的式子,然后在0,-1,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=23(1)(1)11(2)a a a a a --++⋅+- =2(2)(2)11(2)a a a a a +-+⋅+-=22a a +--, 当a=0时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 16. 【分析】(1)根据平行四边形的性质得出AB=CD ,AB ∥CD ,根据平行线的性质得出∠ADE=∠CBF ,求出∠AED=∠CFB=90°,根据AAS 推出△ADE ≌△CBF 即可; (2)证出AE ∥CF ,即可得出结论.【解答】证明:(1)∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∴∠ADE=∠CBF , ∵AE ⊥BD ,CF ⊥BD , ∴∠AED=∠CFB=90°, 在△ADE 和△CBF 中,ADE CBF AED CFB AD CB ∠∠∠∠⎧⎪⎨⎪⎩===, ∴△ADE ≌△CBF (AAS ), ∴AE=CF .(2)∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF ,由(1)得AE=CF ,∴四边形AECF 是平行四边形.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,解此题的关键是证明△ADE≌△CBF.17.【分析】(1)把点M的坐标代入直线y=kx-3,求出k的值.然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点;(2)利用函数图象进而得出kx-3>1的解集.【解答】解:根据图示知,直线y=kx-3经过点M(-2,1),∴1=-2k-3,解得:k=-2;∴当x=0时,y=-3;当y=0时,x=-32,则A(-32,0),B(0,-3);(2)kx-3>1的解集为:x<-2.【点评】本题考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征,正确利用函数图象分析是解题关键.18.【分析】仿照阅读材料中的方法将原式变形,分解即可.【解答】解:x2-y2-8x-4y+12=(x2-8x+16)-(y2+4y+4)=(x-4)2-(y+2)2=(x-4+y+2)(x-y-y-2)=(x+y-2)(x-2y-2).【点评】此题考查了因式分解-十字相乘法,运用公式法,以及分组分解法,熟练掌握因式分解的方法是解本题的关键.19.【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有1320028800102x x+=, 解得x=120,经检验,x=120是原方程的解,且符合题意. 答:该商家购进的第一批衬衫是120件.(2)3x=3×最新人教版八年级数学下册期末考试试题【答案】一.选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.以下列长度的三条线段为边,能组成直角三角形的是( )A .6,7,8B .2,3,4C .3,4,6D .6,8,102.下列各式中,运算正确的是( )A B .3=C .2+2D 2=-3.下列关系不是函数关系的是( )A .汽车在匀速行驶过程中,油箱的余油量y (升)是行驶时间t (小时)的函数B .改变正实数x ,它的平方根y 随之改变,y 是x 的函数C .电压一定时,通过某电阻的电流强度I (单位:安)是电阻R (单位:欧姆)的函数D .垂直向上抛一个小球,小球离地的高度h (单位:米)是时间t (单位:秒)的函数4.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若∠B=50°,则∠AFE 的度数为( )A.50°B.60°C.65°D.70°5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.是轴对称图形7.如图,△ABC中,D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.2.5 B.2 C.1.5 D.18.如图,在一张平行四边形纸片ABCD中,画一个菱形,甲、乙两位同学的画法如下:甲:以B,A为圆心,AB长为半径作弧,分别交BC,AD于点E,F,则四边形ABEF为菱形;乙:作∠A,∠B的平分线AE,BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形;关于甲、乙两人的画法,下列判断正确的是()A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误9.如图,已知矩形纸片ABCD的两边AB:BC=2:1,过点B折叠纸片,使点A落在边CD上的点F处,折痕为BE.若AB的长为4,则EF的长为()A.B.2C.6D.6 510.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5 或8.25 D.4.5 或 8.5二.填空题(本题有6小题,每小题5分,共30分)11x的取值范围是12.如果点A(1,m)在直线y=-2x+1上,那么m= .13.已知,y=-1,则x2-y2= .14.如图,E是▱ABCD边BC上一点,连结AE,并延长AE与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D= °15.已知,点O为数轴原点,数轴上的A,B两点分别对应-3,3,以AB为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.16.如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为.3121.某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)(1)请填完整表格:(2)从样本数据可以推断出部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).22.(1)研究规律:先观察几个具体的式子:(2)寻找规律:(3)请完成计算:23.(1)如图1,观察函数y=|x|的图象,写出它的两条的性质;(2)在图1中,画出函数y=|x-3|的图象;根据图象判断:函数y=|x-3|的图象可以由y=|x|的图象向平移个单位得到;(3)①函数y=|2x+3|的图象可以由y=|2x|的图象向平移单位得到;②根据从特殊到一般的研究方法,函数y=|kx+3|(k为常数,k≠0)的图象可以由函数y=|kx|(k为常数,k≠0)的图象经过怎样的平移得到.24.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.参考答案及试题解析1.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=102,∴能构成直角三角形,故本选项正确.故选:D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.2.【分析】直接利用二次根式的性质分别化简计算得出答案.【点评】此题主要考查了二次根式的加减运算,正确掌握二次根式加减运算法则是解题关键.3.【分析】利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【解答】解:A、汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数,故此选项不合题意;B、y表示一个正数x的平方根,y与x之间的关系,两个变量之间的关系不能看成函数关系,故此选项符合题意;C、电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数,故本选项不合题意;D、垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数,故本选项不合题意.故选:B.【点评】此题主要考查了函数的定义,正确把握函数定义是解题关键.对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即一一对应.4.【分析】由菱形的性质和等腰三角形的性质可得∠BCA=∠BAC=65°,由三角形中位线定理可得EF∥BC,即可求解.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=50°∴∠BCA=∠BAC=65°∵E,F分别是AB,AC的中点,∴EF∥BC∴∠AFE=∠BCA=65°故选:C.【点评】本题考查了菱形的性质,等腰三角形的性质,熟练掌握菱形的性质是本题的关键.5【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.【点评】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【解答】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、C、D正确,故选:B.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.7.【分析】利用三角形中位线定理得到DE=12BC.由直角三角形斜边上的中线等于斜边的一半得到DF=12AB.所以由图中线段间的和差关系来求线段EF的长度即可.【解答】解:∵DE是△ABC的中位线,∴DE=12BC=4.∵∠AFB=90°,D是AB的中点,∴DF=12AB=2.5,∴EF=DE-DF=4-2.5=1.5.故选:C.【点评】本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.8.【分析】根据基本作图以及菱形的判定可知甲乙都是正确的.【解答】解:甲的作法正确:∵AF=AB,BE=AB∴AF=BE,在▱ABCD中,AD∥BC.即AF∥BE.∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形(邻边相等的平行四边形是菱形).乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形.故选:C.【点评】此题主要考查了菱形形的判定,关键是掌握菱形的判定方法,根据题意画出图形,利用数形结合求解是解答此题的关键.9.【分析】由翻折的性质可知:BF=AB=4,AE=EF,设AE=EF=x,在Rt△DEF中,利用勾股定理构建方程即可解决问题.【解答】解:∵AB=4,AB:BC=2:1,∴BC=2,∵四边形ABCD是矩形,∴AD=BC=2,CD=AB=4,∠D=∠C=90°,由翻折的性质可知:BF=AB=4,AE=EF,设AE=EF=x,【点评】本题考查翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.【分析】根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【解答】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【分析】根据二次根式有意义的条件,可得x-2≥0,解不等式求范围.【解答】x-2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.12.【分析】将x=1代入m=-2x+1可求出m值,此题得解.【解答】解:当x=1时,m=-2×1+1=-1.故答案为:-1.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.13.【分析】先分解因式,再代入比较简便.【解答】解:x2-y2=(x+y)(x-y).【点评】注意分解因式在代数式求值中的作用.14.【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点评】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.15.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出,然后利用画法可得到M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.16. 【分析】作辅助线,构建三角形全等,证明Rt △AFM ≌Rt △EFN (HL ),得∠AFM=∠EFN ,再证明△AEF 是等边三角形,计算FG=2AG=2AE ,确认当AE ⊥BC 时,即AE=2时,FG 最小.【解答】解:连接AC ,过点F 作FM ⊥AC 于,作FN ⊥BC 于N ,连接AF 、EF ,∵四边形ABCD 是菱形,且∠D=60°,∴∠B=∠D=60°,AD ∥BC ,∴∠FCN=∠D=60°=∠FCM ,∴FM=FN ,∵FG 垂直平分AE ,∴AF=EF ,∴Rt △AFM ≌Rt △EFN (HL ),∴∠AFM=∠EFN ,∴∠AFE=∠MFN ,∵∠FMC=∠FNC=90°,∠MCN=120°,∴∠MFN=60°,∴∠AFE=60°,∴△AEF 是等边三角形,∴, ∴当AE ⊥BC 时,Rt △ABE 中,∠B=60°,∴∠BAE=30°,∵AB=4,∴BE=2,,∴当AE⊥BC时,即时,FG最小,最小为3;故答案为:3.【点评】本题考查了菱形的性质,等边三角形的判定,三角形全等的性质和判定,垂线段的性质等知识,本题有难度,证明△AEF是等边三角形是本题的关键.17.【分析】利用二次根式的乘法法则运算.【解答】解:原式=6-1=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】直接连接BD,交AC于点O,利用平行四边形的性质得出OA=OC,OB=OD,进而得出四边形EBFD是平行四边形求出答案即可.【解答】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AF=CE,∴OF=OE.∴四边形EBFD是平行四边形.∴DE∥BF.【点评】此题主要考查了平行四边形的判定与性质,正确得出四边形EBFD是平行四边形是解题关键.19.【分析】(1)依据一次函数图象上点的坐标特征,即可得到m的值和点B的坐标;(2)依据点C在y轴上,且△ABC的面积是1,即可得到BC=1,进而得出点C的坐标.【解答】解:(1)∵直线y=32x+b与直线y=12x交于点A(m,1),∴12m=1,∴m=2,∴A(2,1),代入y=32x+b,可得12×2+b=1,∴b=-2,∴B(0,-2).(2)点C(0,-1)或C(0,-3).理由:∵△ABC的面积是1,点C在y轴上,∴12BC×2=1,∴BC=1,又∵B(0,-2),∴C(0,-1)或C(0,-3).【点评】本题考查反比例函数与一次函数的交点问题以及三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件.20.【分析】(1)直接利用勾股定理以及勾股定理的逆定理进而分析得出答案;(2)直接利用网格结合正方形的性质分析得出答案.【解答】解:(1)线段AB点C共6个,如图所示:(2)如图所示:直线PQ只要过AC、BD交点O,且不与AC,BD重合即可.【点评】此题主要考查了应用设计与作图以及勾股定理,正确应用正方形的性质是解题关键.21.【分析】(1)根据中位数和众数的定义分别进行解答即可;(2)从中位数和众数方面分别进行分析,即可得出乙部门员工的生产技能水平较高.【解答】解:(1)根据中位数的定义可得:甲部门的中位数是第10、11个数的平均数,即77+78=77.5;2∵81出现了4次,出现的次数最多,∴乙部门的众数是81,填表如下:故答案为:77.5,81;(2)从样本数据可以推断出乙部门员工的生产技能水平较高,理由为:①乙部门在技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门在生产技能测试中,众数高于甲部门,所以乙部门员工的生产技能水平较高;故答案为:乙.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【解答】【点评】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.23.【分析】(1)根据函数的图象得到函数的性质即可;(2)画出函数y=|x-3|的图象根据函数y=|x-3|的图象即可得到结论;(3)①根据(2)的结论即可得到结果;②当k>0时或k<0时,向左或向右平移3k个单位长度.【解答】解:(1)①函数y=|x|的图象关于y轴对称;②当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;(2)函数y=|x-3|的图象如图所示:函数y=|x-3|的图象可以由y=|x|的图象向右平移3个单位得到;(3)①函数y=|2x+3|的图象可以由y=|2x|的图象向左平移32单位得到;②当k>0时,向左平移3k个单位长度;。

2013-2014学年第二学期八年级数学期末试卷

2013-2014学年第二学期八年级数学期末试卷

2013-2014学年第二学期八年级期末试卷数 学本试卷共8大题,计23小题,满分100分,考试时间120分钟一、选择题(本大题共10小题,每小题2分,共20分)【 】A.x<1B.x ≥1C.x ≤-1D.x<-12. 下列二次根式是最简二次根式的是………………………………………………………………【 】A.21B.2.0C. 3D. 8 3. 如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E,F 分别为AC 和AB 的中点,则EF 的值为…………………………………………………………………………………………【 】 A.3 B.4 C.5 D.64. 平行四边形一边长12cm ,那么它的两条对角线的长度可能是………………………【 】 A.8cm 和14cmB.10cm 和14cmC.18cm 和20cmD.10cm 和34cm5. 如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE.则∠DEC 的大小为……………………………【 】 A.78° B.75° C.60° D.45°6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为………………………【 】A .42B .32C .42 或 32D .37 或 33 7. △ABC 的周长为60,三条边之比为13∶12∶5,则这个三角形的面积为……………【 】 A.30B.90C.60D.120第3题图 第5题图米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是……………………【 】 A.干旱第50天时,蓄水量为1 200立方万米 B.干旱开始后,蓄水量每天增加20立方万米C.干旱开始时,蓄水量为200立方万米D.干旱开始后,蓄水量每天减少20立方万米9. 刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的………【 】 A .众数B .方差C .平均数D .频数10.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

福建省厦门市八年级下学期数学期末考试试卷

福建省厦门市八年级下学期数学期末考试试卷

福建省厦门市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列根式中属最简二次根式的是()A .B .C .D .2. (2分)下列函数中,自变量x的取值范围是x>2的函数是()A . y=B . y=C . y=D . y=3. (2分)(2017·槐荫模拟) 如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1 , S2 .若S=3,则S1+S2的值为()A . 24B . 12C . 6D . 34. (2分) (2020九上·来宾期末) 平行四边形ABCD两邻边长分别为2和3,它们的夹角(锐角)为60°,则平行四边形ABCD中较短的对角线的长为()A .B .C . 3D . 15. (2分)(2017·自贡) 对于一组统计数据3,3,6,5,3.下列说法错误的是()A . 众数是3B . 平均数是4C . 方差是1.6D . 中位数是66. (2分)关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③y=|x|;④y= .其中y是x函数的是()A . ①②③B . ①②③④C . ①③D . ①③④7. (2分)若式子有意义,则点P(a , b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2017八上·东台月考) 如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A . 115°B . 130°C . 120°D . 65°9. (2分) (2019八下·新密期中) 直线与直线在同一平面直角坐标系中的位置如图所示,则关于的不等式的解集为()A .B .C .D .10. (2分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A . 110°B . 80°C . 90°D . 100°二、填空题 (共6题;共9分)11. (1分) (2016七上·中堂期中) ﹣的倒数的绝对值是________.12. (1分) (2019八上·沾益月考) 一组数据1,1,2,4,这组数据的方差是________ .13. (1分) (2017八下·河东期末) 一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1<y2中.则正确的序号有________.14. (4分)我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级m 3.4190%20%八年级7.1n80%10%(1)观察条形统计图,可以发现:八年级成绩的标准差________ ,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=________ ,n=________(2)计算七年级的平均分________15. (1分)(2014·资阳) 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为________.16. (1分)(2017·吉林模拟) 若点A(x,9)在第二象限,则x的取值范围是________.三、解答题 (共7题;共69分)17. (5分)计算:(1﹣)﹣ +()﹣1 .18. (5分) (2016八上·靖远期中) 一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?19. (8分)(2014·扬州) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是________队.20. (15分)(2018·嘉兴模拟) 小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的 PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.21. (11分) (2017八上·深圳期中) 某地区的电力资源丰富,并且得到了较好的开发。

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.不等式的解集在数轴上表示正确的是()2.如果,那么下列各式中正确的是()A.B.C.D.3.下列调查适合作普查的是()A.了解一批圆珠笔笔芯的使用寿命B.了解你们班同学的身高C.了解龙年春节晚会的收视率D.了解我市居民对废电池的处理情况4.下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若D.所有的等边三角形都相似5.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为3米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米6.若分式的值为零,则x等于()A.2B.-2C.±2D.07.已知△ABC∽△DEF,如果∠A=55º,∠B=100º,则∠F=()A.55ºB.100ºC.25ºD.30º8.在方差的计算公式s=[(x-20)+(x-20)+……+(x-20)]中,数字10和20分别表示的意义可以是()A.数据的个数和平均数B.平均数和数据的个数C.数据的个数和方差D.数据组的方差和平均数9.如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),由B、O、C组成的三角形与ΔAOB相似,下列满足条件的点C是()A.(3,0)B.(2,0)C.(1,0) D(-2,0)10.一次函数的图象如图所示,当-3 < < 3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4二、填空题1.计算:.2.因式分解:= .3.某学习小组各成员期中数学测试成绩分别是90分,98分,87分,78分,65分。

这次测试成绩的极差是分.4.如图,AB∥CD,∠A=400,∠C=∠E,则∠C的度数是.5.如图,三角尺在灯泡的照射下在墙上形成影子,.现测得则这个三角尺的面积与它在墙上所形成影子图形的面积之比是.6.已知,则= .7.某公司打算至多用1000元印刷广告单。

2013-2021年福建省厦门双十中学八年级下学期期末数学卷

2013-2021年福建省厦门双十中学八年级下学期期末数学卷

2013-2021年福建省厦门双十中学八年级下学期期末数学卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列计算或化简正确的是( )A .=B =C 3=-D 3=2.顺次连接对角线相等的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.一组数据4,5,7,7,8,6的中位数和众数分别是( ) A .7,7B .7,6.5C .6.5,7D .5.5,75.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <06.如图,把直线L 沿x 轴正方向向右平移2个单位得到直线L′,则直线L /的解析式为( )A .B .C .22y x =-D .7.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm8.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长( )A .3B .23C .33D .43二、填空题9.计算123-的结果是 .10.实数P 在数轴上的位置如图所示,化简2(1)p -+2(2)p -=________.11.张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y 元,则y= .12.已知直线1l 的解析式为26y x =-,直线2l 与直线1l 关于y 轴对称,则直线2l 的解析式为 .13.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是________件.14.如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为 .15.如图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE=3,AB=8,则BF= .16.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线 A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;……依此类推,这样作的第n 个正方形对角线交点M n 的坐标为 .三、解答题17.计算:(2)(2)+()20101-()2π--121-⎪⎭⎫⎝⎛18.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.求AB 的长.19.“勤劳”是中华民族的传统美德,我校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:(1)抽取样本的容量是 . (2)根据表中数据补全图中的频数分布直方图.(3)样本的中位数所在时间段的范围是.(4)若我学校共有学生1600人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?20.如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB 交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论. 21.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式. 22.如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.23.A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的34,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小时)之间的函数关系如图2所示.(1)求客、货两车的速度;(2)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.24.(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决(设DF=x,AD=y.)保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值.25.模型建立:(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(2)已知直线l1:y=43x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(3)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P 是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD 是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.参考答案1.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.2.C【解析】试题分析:根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半.又因为原四边形的对角线相等,因此新四边形各边相等,根据四边相等的四边形是菱形,得新四边形为菱形.故选C.考点:中点四边形.3.D.【解析】试题分析:∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选D.考点:方差.4.C【分析】根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为672+=6.5,众数是7, 故选C. 【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数. 5.B 【解析】试题分析:∵一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限, ∴k <0,b >0, 故选B .考点:一次函数的性质和图象 6.B 【详解】可从直线L 上找两点:(0,0)(1,2)这两个点向右平移2个单位得到的点是(2,0)(3,2),那么再把直线L 沿x 轴正方向向右平移2个单位得到直线L′的解析式y=kx+b 上,则2032k b k b +=+=⎧⎨⎩ 解得:k=2,b=-4. ∴函数解析式为:y=2x-4. 故选B . 7.B 【解析】∵直角边AC =6 cm 、BC =8 cm ∴根据勾股定理可知:BA=√62+82=10 ∵A,B 关于DE 对称,∴BE=10÷2=5 8.C 【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC和△DCE都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C.【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.9【解析】试题分析:二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.==考点:二次根式的加减法.10.1【解析】根据图得:1<p<=p-1+2-p=1.11.y=5x+10.【解析】试题分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.试题解析:根据题意可知y=5x+10.考点:列代数式.12.y=-2x-6.【解析】试题分析:直接根据关于y轴对称的点纵坐标不变横坐标互为相反数进行解答即可.试题解析:∵关于y 轴对称的点纵坐标不变,横坐标互为相反数, ∴直线l 1:y=2x-6与直线l 2关于y 轴对称,则直线l 2的解析式为y=-2x-6. 考点:一次函数图象与几何变换. 13.5. 【解析】试题分析:本题可先算出x 的值,再把数据按从小到大的顺序排列,根据中位数定义求解. 试题解析:由平均数的定义知5736456x +++++=,得x=5,将这组数据按从小到大排列为3,4,5,5,6,7, 由于有偶数个数,取最中间两个数的平均数, 其中位数为(5+5)÷2=5. 考点:1.中位数;2.算术平均数. 14.5. 【解析】试题分析:要求DQ+PQ 的最小值,DQ ,PQ 不能直接求,可考虑通过作辅助线转化DQ ,PQ 的值,从而找出其最小值求解. 试题解析:如图,连接BP ,∵点B 和点D 关于直线AC 对称, ∴QB=QD ,则BP 就是DQ+PQ 的最小值, ∵正方形ABCD 的边长是4,DP=1, ∴CP=3,∴22435+= ∴DQ+PQ 的最小值是5.考点:1.轴对称-最短路线问题;2.正方形的性质. 15.6解:由折叠的性质知:AD=AF ,DE=EF=8﹣3=5;在Rt △CEF 中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x ,则BC=x ,BF=x ﹣4;在Rt △ABF 中,由勾股定理可得:82+(x ﹣4)2=x 2,解得x=10,故BF=x ﹣4=6.故答案为6.【点评】考查了勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力. 16.( 1-12n ,12n) 【详解】设正方形的边长为1,则正方形四个顶点坐标为O (0,0),C (0,1),B 1(1,1),A 1(1,0);根据正方形对角线定理得M 1的坐标为(1−12,12); 同理得M 2的坐标为(1−212,212); …,依此类推:M n 坐标为(1−12n ,12n ). 17.0【解析】试题分析:根据实数的运算法则进行计算即可救出答案. 试题解析:12010)21()2()1()32)(32(----++- π =234-⨯+-=0考点:实数的混合运算.18.25.由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长,再利用勾股定理求出AD的长,进而求出AB的长.【详解】∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.19.(1)100;(2)补图见解析;(3)40.5~60.5内;(4)880.【解析】试题分析:(1)注意样本是数据的个数,但是不带单位;(2)根据绘制直方图的步骤画图;(3)根据中位数的概念计算;(4)用样本估计总体可知,3015101600880 100++⨯=.试题解析:(1)样本容量=20+30+15+25+10=100;(2)如图:(3)数据共有100个,中位数是第50,51个数的平均数,中位数落在40.5~60.5内;(4)3015101600880 100++⨯=,答:大约有880名学生在寒假做家务的时间在40.5~100.5小时之间.考点:1.频数(率)分布直方图;2.总体、个体、样本、样本容量;3.用样本估计总体;4.中位数.20.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.21.(1)(-32,0);(0,3);(2)y=x+3或y=-x+3.【解析】试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;(2)由OA=32,OP=2OA得到OP=3,分类讨论:当点P在x轴正半轴上时,则P点坐标为(3,0);当点P在x轴负半轴上时,则P点坐标为(-3,0),然后根据待定系数法求两种情况下的直线解析式.试题解析:(1)把x=0代入y=2x+3,得y═3,则B点坐标为(0,3);把y=0代入y=2x+3,得0=2x+3,解得x=-32,则A点坐标为(-32,0);(2)∵OA=32,∴OP=2OA=3,当点P在x轴正半轴上时,则P点坐标为(3,0),设直线BP 的解析式为:y=kx+b ,把P (3,0),B (0,3)代入得303k b b +==⎧⎨⎩解得:1{3k b =-= ∴直线BP 的解析式为:y=-x+3;当点P 在x 轴负半轴上时,则P 点坐标为(-3,0),设直线BP 的解析式为y=kx+b ,把P (-3,0),B (0,3)代入得03{3k b b=-+= 解得:k=1,b=3所以直线BP 的解析式为:y=x+3;综上所述,直线BP 的解析式为y=x+3或y=-x+3.考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.22.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)正方形ABCD 中,AB=BC ,BF=AE ,且∠ABF=∠DAE=90°,即可证明△ABF ≌△DAE ,即可得∠DGA=90°,结论成立.(2)延长AF 交DC 延长线于M ,证明△ABF ≌△MCF ,说明△DGM 是直角三角形,命题得证.试题解析:(1)∵四边形ABCD 为正方形∴AB=BC=CD=AD ,∠ABF=∠DAE=90°,又∵E ,F 分别是边AB .BC 的中点∴AE=12AB .BF=12BC ∴AE=BF .在△ABF 与△DAE 中,{DA ABDAE ABF AE BF=∠=∠=,∴△DAE ≌△ABF (SAS ).∴∠ADE=∠BAF ,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF ⊥DE .(2)证明:延长AF 交DC 延长线于M ,∵F 为BC 中点,∴CF=FB又∵DM ∥AB ,∴∠M=∠FAB .在△ABF 与△MCF 中,{M FABCFM BFA CF FB===∠∠∠∠∴△ABF ≌△MCF (AAS ),∴AB=CM .∴AB=CD=CM ,∵△DGM 是直角三角形,∴GC=12DM =DC . 考点:1.全等三角形的判定与性质;2.直角三角形的性质;3.正方形的性质.23.(1)客车速度为60千米/时,货车的速度为45千米/时; (3)6.意义:两车行驶6小时,在距离C 处离A 地产向180千米处相遇.(或:客车在开6小时,在离C 处180千米地方与【解析】试题分析:(1)根据题意列出有关v的一元一次方程解得即可;(2)两函数的图象相交,说明两辆车相遇,即客车追上了货车.试题解析:(1)设客车速度为v千米/时,则货车速度34v千米/时,根据题意得9v+34v×2=630.9v+1.5v=630,10.5v=630,解得v=60.答:客车速度为60千米/时,货车的速度为45千米/时;(2)由图可知:设两车相遇的时间为y小时,45y+60y=630∴(9-6)×60=180∴E(6,180)∴y=6意义:两车行驶6小时,在距离C处离A地产向180千米处相遇.(或:客车在开6小时,在离C处180千米地方与贷车相遇)考点:一次函数的应用.24.(1)同意;理由见解性;(2);(3)【解析】【详解】解(1)同意. 连接EF,则∠BEG=∠D=90°,EG=AE=ED,EF=EF.∴Rt△EGF≌Rt△EDF,∴GF=DF.(2)由(1)知,GF=DF.设DF=x,BC=y,则有GF=x,AD=y.∴CF=x,DC=AB=BG=2x.∴BF=BG+GF=3x.在Rt△BCF中,BC2+CF2=BP2,即y2+x2=(3x)2.∴y=2x.∴(3)由(1)知GF=DF.设DF=x,BC=y,则有GF=x,AD=y.∵DC=n·DF∴DC=AB =BG=nx.∴CF=(n-1)x,BF=BG+GF=(n+1)x.在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2. ∴y=2x.∴(或)25.(1)证明见解析;(2)y=17x+4;(3)(4,2),(203,223),(283,383).【分析】(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知△ACD≌△CBE;(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,根据∠BAC=45°可知△ABC为等腰Rt△,由(1)可知△CBD≌△BAO,由全等三角形的性质得出C点坐标,利用待定系数法求出直线l2的函数解析式即可;(3)当点D为直角顶点,分点D在矩形AOCB的内部与外部两种情况;点P为直角顶点,显然此时点D位于矩形AOCB的外部,由此可得出结论.【详解】(1)∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC ,在△ACD 与△CBE 中,D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△EBC(AAS);(2)过点B 作BC ⊥AB 于点B ,交l 2于点C ,过C 作CD ⊥x 轴于D ,如图1,∵∠BAC=45°,∴△ABC 为等腰Rt △,由(1)可知:△CBD ≌△BAO ,∴BD=AO ,CD=OB ,∵直线l 1:y=43x+4, ∴A(0,4),B(-3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(-7,3),设l 2的解析式为y=kx+b(k≠0),∴{37k b4b=-+=,∴174kb⎧=⎪⎨⎪=⎩,∴l2的解析式:y=17x+4;(3)当点D位于直线y=2x-6上时,分两种情况:①点D为直角顶点,分两种情况:当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x-6);则OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;则△ADE≌△DPF,得DF=AE,即:12-2x=8-x,x=4;∴D(4,2);当点D在矩形AOCB的外部时,设D(x,2x-6);则OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;同1可知:△ADE≌△DPF,∴AE=DF,即:2x-12=8-x,x=203;∴D(203,223);②点P为直角顶点,显然此时点D位于矩形AOCB的外部;设点D(x,2x-6),则CF=2x-6,BF=2x-6-6=2x-12;同(1)可得,△APB≌△PDF,∴AB=PF=8,PB=DF=x-8;∴BF=PF-PB=8-(x-8)=16-x;联立两个表示BF的式子可得:2x-12=16-x,即x=283;∴D(283,383);综合上面六种情况可得:存在符合条件的等腰直角三角形;且D点的坐标为:(4,2),(203,223),(283,383).【点睛】考查的是一次函数综合题,涉及到点的坐标、矩形的性质、一次函数的应用、等腰直角三角形以及全等三角形等相关知识的综合应用,需要考虑的情况较多,难度较大.。

2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年第二学期八年级数学期末试题(含答案)

2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年福建省厦门双十中学八年级(下)期末数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分.1.(4分)下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣32.(4分)顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形3.(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁4.(4分)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,75.(4分)直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>06.(4分)如图,把直线L沿x轴正方向向右平移2个单位得到直线L′,则直线L′的解析式为()A.y=2x+1 B.y=﹣2x+2 C.y=2x﹣4 D.y=﹣2x﹣27.(4分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm8.(4分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.二、细心填一填:本大题共8小题,每小题4分,共32分.9.(4分)计算的结果是.10.(4分)实数p在数轴上的位置如图,化简+=.11.(4分)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.12.(4分)已知直线l1的解析式为y=2x﹣6,直线l2与直线l1关于y轴对称,则直线l2的解析式为.13.(4分)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.14.(4分)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.15.(4分)如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=.16.(4分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C 和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为.三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(8分)计算:(2﹣)(2+)+(﹣1)2010.18.(8分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.19.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:(1)抽取样本的容量是;(2)根据表中数据补全图中的频数分布直方图;(3)样本的中位数所在时间段的范围是;(4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?20.(8分)如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF ∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.21.(8分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式.22.(10分)如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.23.(10分)A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小时)之间的函数关系如图2所示.(1)求客、货两车的速度;(2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式;(3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.24.(12分)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G 在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.25.(14分)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x ﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.2013-2014学年福建省厦门双十中学八年级(下)期末数学试卷参考答案与试题解析一、精心选一选:本大题共8小题,每小题4分,共32分.1.(4分)下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣3【解答】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.2.(4分)顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形【解答】解:根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半.又因为原四边形的对角线相等,因此新四边形各边相等,根据四边相等的四边形是菱形,得新四边形为菱形.故选:C.3.(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.4.(4分)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,7【解答】解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.5.(4分)直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>0【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:D.6.(4分)如图,把直线L沿x轴正方向向右平移2个单位得到直线L′,则直线L′的解析式为()A.y=2x+1 B.y=﹣2x+2 C.y=2x﹣4 D.y=﹣2x﹣2【解答】解:可从直线L上找两点:(0,0)(1,2)这两个点向右平移2个单位得到的点是(2,0)(3,2),那么再把直线L沿x轴正方向向右平移2个单位得到直线L′的解析式y=kx+b上,则解得:k=2,b=﹣4.∴函数解析式为:y=2x﹣4.故选:C.7.(4分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm【解答】解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.8.(4分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.二、细心填一填:本大题共8小题,每小题4分,共32分.9.(4分)计算的结果是.【解答】解:=2﹣=.故答案为:.10.(4分)实数p在数轴上的位置如图,化简+=2p﹣2.【解答】解:根据数轴可知:1<p<2,∴p﹣1>0,∴+=|p﹣1|+|p﹣1|=p﹣1+p﹣1=2p﹣2,故答案为:2p﹣2.11.(4分)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=5x+10.【解答】解:根据题意可知y=5x+10.故答案为:5x+10.12.(4分)已知直线l1的解析式为y=2x﹣6,直线l2与直线l1关于y轴对称,则直线l2的解析式为y=﹣2x﹣6.【解答】解:∵关于y轴对称的点纵坐标不变,横坐标互为相反数,∴直线l1:y=2x﹣6与直线l2关于y轴对称,则直线l2的解析式为y=﹣2x﹣6.故答案为:y=﹣2x﹣6.13.(4分)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是5件.【解答】解:由平均数的定义知,得x=5,将这组数据按从小到大排列为3,4,5,5,6,7,由于有偶数个数,取最中间两个数的平均数,其中位数为.故答案为:5.14.(4分)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为5.【解答】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.15.(4分)如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=6.【解答】解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;在Rt△CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x,则BC=x,BF=x﹣4;在Rt△ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,故BF=x﹣4=6.故答案为:6.16.(4分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C 和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为(,).【解答】解:设正方形的边长为1,则正方形四个顶点坐标为O(0,0),C(0,1),B1(1,1),A1(1,0);根据正方形对角线定理得M1的坐标为();同理得M2的坐标为(,);M3的坐标为(,),…,依此类推:M n坐标为(,)=(,)故答案为:(,).三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(8分)计算:(2﹣)(2+)+(﹣1)2010.【解答】解:原式=4﹣3+1×1﹣2=1+1﹣2=0.18.(8分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.【解答】解:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;(2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.19.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:(1)抽取样本的容量是100;(2)根据表中数据补全图中的频数分布直方图;(3)样本的中位数所在时间段的范围是40.5~60.5;(4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?【解答】解:(1)样本容量=20+30+15+25+10=100;(2)如图:(3)数据共有100个,中位数是第50,51个数的平均数,中位数落在40.5~60.5内;(4)×1260=693.答:大约有693名学生在寒假做家务的时间在40.5~100.5小时之间.20.(8分)如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF ∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.【解答】(1)证明:∵CF∥AB,∴∠DAE=∠CFE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴AD=CF,∵AD=DB,∴DB=CF;(2)四边形BDCF是矩形,证明:∵DB=CF,DB∥CF,∴四边形BDCF为平行四边形,∵AC=BC,AD=DB,∴CD⊥AB,∴平行四边形BDCF是矩形.21.(8分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式.【解答】解:(1)把x=0代入y=2x+3,得y═3,则B点坐标为(0,3);把y=0代入y=2x+3,得0=2x+3,解得x=﹣,则A点坐标为(﹣,0);(2)∵OA=,∴OP=2OA=3,当点P在x轴正半轴上时,则P点坐标为(3,0),设直线BP的解析式为:y=kx+b,把P(3,0),B(0,3)代入得,解得,∴直线BP的解析式为:y=﹣x+3;当点P在x轴负半轴上时,则P点坐标为(﹣3,0),设直线BP的解析式为y=mx+n,把P(﹣3,0),B(0,3)代入得,解得,所以直线BP的解析式为:y=x+3;综上所述,直线BP的解析式为y=x+3或y=﹣x+3.22.(10分)如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF⊥DE;(2)求证:CG=CD.【解答】证明:(1)∵四边形ABCD为正方形∴AB=BC=CD=AD,∠ABF=∠DAE=90°,又∵E,F分别是边AB.BC的中点∴∴AE=BF.在△ABF与△DAE中,,∴△DAE≌△ABF(SAS).∴∠ADE=∠BAF,∵∠BAF+∠DAG=90°,∴∠ADG+∠DAG=90°,∴∠DGA=90°,即AF⊥DE.(2)证明:延长AF交DC延长线于M,∵F为BC中点,∴CF=FB又∵DM∥AB,∴∠M=∠FAB.在△ABF与△MCF中,,∴△ABF≌△MCF(AAS),∴AB=CM.∴AB=CD=CM,∵△DGM是直角三角形,∴.23.(10分)A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小时)之间的函数关系如图2所示.(1)求客、货两车的速度;(2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式;(3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.【解答】解:(1)设客车速度为v千米/时,则货车速度v千米/时,根据题意得9v+v×2=630.9v+1.5v=630,10.5v=630,解得v=60.答:客车速度为60千米/时,货车的速度为45千米/时;(2)y2=45(x﹣2)=45x﹣90.(3)630÷(60+45)=6.当x=6时,y=45×6﹣90=180,所以点E的坐标为(6,180).点E表示当两车行驶了6小时时,在距离点C站180千米处相遇.24.(12分)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G 在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.【解答】解:(1)同意,连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y ∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴;(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y ∵DC=n•DF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n﹣1)x]2=[(n+1)x]2∴y=2x,∴或.25.(14分)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x ﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°﹣90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△EBC(AAS);(2)解:过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图1,∵∠BAC=45°,∴△ABC为等腰Rt△,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4,∴A(0,4),B(﹣3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(﹣7,3),设l2的解析式为y=kx+b(k≠0),∴,∴,∴l2的解析式:y=x+4;(3)当点D位于直线y=2x﹣6上时,分两种情况:①点D为直角顶点,分两种情况:当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x﹣6);则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x;则△ADE≌△DPF,得DF=AE,即:12﹣2x=8﹣x,x=4;∴D(4,2);当点D在矩形AOCB的外部时,设D(x,2x﹣6);则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x;同1可知:△ADE≌△DPF,∴AE=DF,即:2x﹣12=8﹣x,x=;∴D(,);②点P为直角顶点,显然此时点D位于矩形AOCB的外部;设点D(x,2x﹣6),则CF=2x﹣6,BF=2x﹣6﹣6=2x﹣12;同(1)可得,△APB≌△PDF,∴AB=PF=8,PB=DF=x﹣8;∴BF=PF﹣PB=8﹣(x﹣8)=16﹣x;联立两个表示BF的式子可得:2x﹣12=16﹣x,即x=;∴D(,);综合上面六种情况可得:存在符合条件的等腰直角三角形;且D点的坐标为:(4,2),(,),(,).。

相关文档
最新文档