2018 初三数学中考总复习 圆的基本性质 专题复习练习 含答案

合集下载

2018届中考总复习数学:第24课时圆的基本性质(Word版)含答案

2018届中考总复习数学:第24课时圆的基本性质(Word版)含答案

第六单元 圆第二十四课时 圆的基本性质基础达标训练1. (2017兰州)如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A. 45°B. 50°C. 55°D. 60°第1题图 第2题图2. (2017长郡教育集团二模)如图,A 、D 是⊙O 上的两个点,BC 是直径.若∠D =32°,则∠OAC =( )A. 64°B. 55°C. 72°D. 58°3. (2017泸州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是( ) A. 7 B. 27 C. 6 D. 8第3题图 第4题图4. (2017周南中学一模)如图,⊙O 是△ABC 的外接圆,∠AOB =60°,AB =AC =2,则弦BC 的长为( ) A. 3 B. 3 C. 2 3 D. 45. (2017宜昌)如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,则下列结论正确的是( )A. AB =ADB. BC =CDC. AB ︵=AD ︵D. ∠BCA =∠DCA第5题图 第6题图6. (2017广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥C D ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )A. AD =2OBB. CE =EOC. ∠OCE =40°D. ∠BOC =2∠BAD7. (2017广安)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB=45,BD =5,则OH 的长度为( )A. 23B. 56C. 1D. 76第7题图 第8题图8. (2017金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( )A. 10 cmB. 16 cmC. 24 cmD. 26 cm9. (2017重庆B 卷)如图,OA ,OC 是⊙O 的半径,点B 在⊙O 上,连接AB ,BC .若∠ABC =40°,则∠AOC =________度.第9题图第10题图10. (2017青竹湖湘一二模)如图,A,B,C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°,则∠CBD=________度.11. (2017大连)如图,在⊙O中,弦AB=8 cm,OC⊥AB,垂足为C,OC=3 cm,则⊙O的半径为________cm.第11题图第12题图12. (2017长沙中考模拟卷三)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC. 若∠BAC与∠BOC互补,则弦BC的长为________.13. (8分)(2017麓山国际实验学校一模)如图,在⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=42,ON=1,求⊙O的半径.第13题图能力提升训练1. (2017麓山国际实验学校三模)在半径等于5 cm的圆内有长为5 3 cm的弦,则此弦所对的圆周角为()A. 120°B. 30°或120°C. 60°D. 60°或120°2. (2017长沙中考模拟卷四)如图,点D(0,3)、O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD的值为()A. 12 B.34 C.45 D.35第2题图第3题图3. (2017云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F 两点,与线段AC交于D点,若∠BFC=20°,则∠DBC=()A. 30°B. 29°C. 28°D. 20°4. (人教九上P122第(3)题改编)如图,PA、PB分别与⊙O相切于A、B两点,若∠P=80°,则∠C=()A. 50°B. 60°C. 70°D. 80°第4题图第5题图5. (2017荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.6. (9分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过D点的直线交AC于E点,交AB于F点,且△AEF为等边三角形.(1)求证:△DFB 是等腰三角形;(2)若DA =7AF ,求证:CF ⊥AB.第6题图拓展培优训练1. (10分)如图,已知AB 为⊙O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,垂足为E ,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.第1题图答案1. B 【解析】如解图,连接OC .∵∠BOC 和∠CDB 分别为BC ︵所对的圆心角和圆周角,∴∠BOC =2∠CDB =50°,∵AB ︵=BC ︵,∴∠AOB =∠BOC =50°.第1题解图2. D 【解析】∵BC 是直径,∠D =32°,∴∠B =∠D =32°,∠BAC =90°.∵OA =OB ,∴∠BAO =∠B =32°,∴∠OAC =∠BAC -∠BAO =90°-32°=58°.3.B 【解析】连接OC ,则OC =4,OE =3,在Rt △OCE 中,CE =OC 2-OE 2=42-32=7.∵AB ⊥CD ,∴CD =2CE =27.第3题解图4. C 【解析】根据圆周角定理可知:∠C =12∠AOB =30°,∴在等腰三角形ABC 中,12BC =AC ×cos30°=2×32=3,∴BC =2 3.5. B 【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵∠BAC 与∠CAD 分别为BC ︵与CD ︵所对的圆周角,∴BC ︵=CD ︵,∴BC =CD ;∵∠B 与∠D 不一定相等,∠B +∠BCA +∠BAC =180°,∠D +∠DCA +∠DAC =180°,∴∠BCA 与∠DCA 不一定相等,∴AB ︵与AD ︵不一定相等,∴AB 与AD 不一定相等.6. D 【解析】∵AB 是⊙O 的直径,AD 是⊙O 的非直径的弦,∴AD <AB =2OB ,故A 错误;如解图,连接OD ,∵AB ⊥CD ,∴∠CEO =90°,∠COE =∠BOD =2∠BAD= 40°,∴∠OCE =50°,∴∠COE ≠∠OCE ,∴CE ≠EO ,故B 错误;由选项B 知,∠OCE=50°≠40°,故C 错误;由选项B 知,∠BOC =2∠BAD ,故D 正确.7. D 【解析】如解图,连接OD ,∵AB 是⊙O 的直径,点H 是CD 的中点,∴由垂径定理可知:AB ⊥CD ,∵在Rt △BDH 中,cos ∠CDB =45,BD =5,∴DH =4,∴BH =BD 2-DH 2=52-42=3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,OD 2=OH 2+DH 2,∴(x +3)2=x 2+42,解得x =76,即OH =76.8. C 【解析】设弓形高为CD ,则DC 的延长线过点O ,且OC ⊥AB ,∵半径为13,∴OB =OD =13,∵弓形高为8,∴CD =8,在Rt △OBC 中,根据勾股定理得OC 2+BC 2=OB 2,∴BC =OB 2-OC 2=132-(13-8)2=12,由垂径定理得AB =2BC =24 cm .9. 8010. 70 【解析】设点E 是优弧AC ︵(不与A ,C 重合)上的一点,连接AE 、CE ,∵∠AOC =140°,∴∠AEC =70°,∴∠ABC =180°-∠AEC =110°,∴∠CBD =70°.11. 5 【解析】如解图,连接OA ,由垂径定理可知AC =BC =12AB =4,在Rt △AOC 中,AC =4,OC =3,则由勾股定理可得OA =5,即⊙O 的半径为5 cm.12. 43 【解析】如解图,作OD ⊥BC 于点D.由题意可得,根据“同弧所对的圆心角等于圆周角的两倍”可得∠BOC =2∠BAC ,又∵∠BAC 与∠BOC 互补,∴∠BAC +∠BOC =3∠BAC=180°,∴∠BAC =60°,∠BOC =120°,又∵OB =OC =4,∴∠OBC=∠OCB =180°-120°=30°,∴BD =BO·cos30°=4×3=2 3.由垂径定理可得,BC =2BD =4 3.13. (1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AMC =∠AED =∠AEN =90°,∵∠ANE =∠CNM ,∴∠BCD =∠BAM ,∴∠BAM =∠BAD ,在△ANE 与△ADE 中,⎩⎨⎧∠BAM =∠BAD AE =AE∠AEN =∠AED, ∴△ANE ≌△ADE(ASA ),∴AD =AN ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,r =OD =OE +ED =2x -1, 连接AO ,则AO =OD =2x -1,∵在Rt △AOE 中,AE 2+OE 2=AO 2,AE =22,OE =x -1,AO =2x -1, ∴(22)2+(x -1)2=(2x -1)2,解得x =2,∴r =2x -1=3,即⊙O 的半径为3.能力提升训练1. D 【解析】如解图,连接OA ,OB ,在优弧AB ︵上任取一点E ,连接AE ,BE ,在劣弧AB ︵上任取一点F ,连接AF ,BF ,过O 作OD ⊥AB ,则D 为AB 的中点,∵AB =53,∴AD =BD =53,又∵OA =OB =5,OD ⊥AB ,∴OD 平分∠AOB ,即∠AOD =∠BOD =12∠AOB ,∵在Rt △AOD 中,sin ∠AOD =AD OA =5325=32,∴∠AOD =60°,∴∠AOB =120°,又圆心角∠AOB 与圆周角∠AEB 所对的弧都为AB ︵,∴∠AEB =12∠AOB =60°,∵四边形AEBF 为⊙O 的内接四边形,∴∠AFB +∠AEB =180°,∴∠AFB =180°-∠AEB =120°,则此弦所对的圆周角为60°或120°.2. D 【解析】如解图,连接CD ,在Rt △OCD 中,OD =3,OC =4,根据勾股定理可得CD =OD 2+OC 2=32+42=5,∴在Rt △OCD中,sin ∠OCD =OD DC =35.根据“同弧所对的圆周角相等”可得出∠OBD =∠OCD ,∴sin ∠OBD =s in ∠OCD =35.3. A 【解析】∵BC ︵所对的圆周角是∠BFC ,所对圆心角是∠A ,∠BFC =20°,∴∠A =2∠BFC =40°,∵EF 是AB 的垂直平分线,且点D 在EF 上,∴DB =DA ,∴∠ABD=∠A =40°,∵AB =AC ,∴∠ABC =∠ACB =180°-∠A 2=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.4. A 【解析】如解图,连接AO 、BO ,∵PA 、PB分别与⊙O 相切于A 、B 两点,∴∠OAP =∠OBP =90°,又∵∠P =80°,∴∠AOB =360°-90°-90°-80°=100°,由圆周角定理得∠C =12∠AOB =50°.5. 60°或120° 【解析】当D 为优弧AC ︵上一点时,∵∠ADC =12∠AOC =12∠ABC ,∠ABC+∠ADC =180°,∴∠ABC =120°,∠ADC =60°;当D 为劣弧AC ︵上一点时,∠ADC =∠ABC =120°.综上,∠ADC =60°或120°.6. 证明:(1)∵AB 为圆O 的直径,∴∠ACB =90°,∵△AEF 是等边三角形,∴∠EAF =∠EFA =60°,∴在Rt △ABC 中,∠ABC =30°,∴∠FDB =∠EFA -∠ABC =30°,∴∠FBD =∠FDB ,∴FB =FD ,∴△DFB 是等腰三角形;(2)设AF =a ,则AD =7a ,AE =EF =a ,如解图,连接OC ,则△AOC 是等边三角形,由题意得,DF =BF =2-a ,∴DE =DF -EF =2-a -a =2-2a ,CE =1-a ,∵在Rt △ADC 中,DC =AD 2-AC 2=7a 2-1,∴在Rt △DCE 中,tan ∠CDE =tan30°=CE =1-a 7a 2-1=3, 解得:a 1=-2(舍去),a 2=12,在等边△AOC 中,OA =1,∴AF =12=12OA ,则根据等边三角形的性质可得CF ⊥OA ,即CF ⊥AB . 拓展培优训练1. 解:如解图,连接AC ,BC ,则∠ACB =90°, 又∵CD ⊥AB ,DE ⊥CO ,∴Rt △CDE ∽Rt △COD ,Rt △ACD ∽Rt △CBD ,∴CE ·CO =CD 2,CD 2=AD ·BD ,∴CE ·CO =AD·BD ,设AD =a ,DB =b ,a ,b 为正整数,则CO =a +b2,又∵CE =10,∴10·a +b2=ab ,整理得:(a -5)(b -5)=25,∵a >b ,∴a -5>b -5>0,得a -5=25,b -5=1;∴a =30,∴AD=30.。

2018-2019年中考数学《第六讲:圆的综合题》专题复习含答案

2018-2019年中考数学《第六讲:圆的综合题》专题复习含答案

中考数学专题辅导第六讲圆的综合专题选讲一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

人教版九年级数学中考圆的有关概念及性质专项练习及参考答案

人教版九年级数学中考圆的有关概念及性质专项练习及参考答案

人教版九年级数学中考圆的有关概念及性质专项练习基础达标一、选择题1.(2018广西贵港)如图,点A,B,C均在☉O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°∠A=66°,∴∠COB=132°.∵CO=BO,∴∠OCB=∠OBC=1(180°-132°)=24°,2故选A.2.(2018江苏盐城)如图,AB为☉O的直径,CD是☉O的弦,∠ADC=35°,则∠CAB的度数为() A.35° B.45°C.55°D.65°,∠ABC=∠ADC=35°,∵AB为☉O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=55°,故选C.3.(2018湖北襄阳)如图,点A,B,C,D都在半径为2的☉O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4B.2√2C.√3D.2√3OA⊥BC,∴CH=BH,AA⏜,⏜=AA∴∠AOB=2∠CDA=60°,∴BH=OB·sin∠AOB=√3,∴BC=2BH=2√3,故选D.二、填空题4.如图,☉O的直径AB过弦CD的中点E,若∠C=25°,则∠ADC=.∠C=25°,∴∠A=∠C=25°.∵☉O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.5.(2018江苏扬州)如图,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB=.√2AD,BD,OA,OB,∵☉O的半径为2,△ABC内接于☉O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2√2.三、解答题6.“今有圆材,埋在壁中,不知大小,以锯锯之,深1寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用现在的数学语言可以表述为:如图,CD为☉O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,求直径CD的长.,连接OA,根据垂径定理,得AE=5寸.在Rt△AOE中,设OA=x寸,则OE=(x-1)寸,根据勾股定理有52+(x-1)2=x2,解得x=13,所以直径CD=26寸.7.(2018浙江湖州)如图,已知AB是☉O的直径,C,D是☉O上的点,OC∥BD,交AD于点E,连接BC. (1)求证:AE=ED;⏜的长.(2)若AB=10,∠CBD=36°,求AAAB是☉O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED.OC⊥AD,∴AA⏜,⏜=AA∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AA ⏜的长=72π×5180=2π.能力提升一、选择题1.(2018贵州安顺)已知☉O 的直径CD=10 cm,AB 是☉O 的弦,AB ⊥CD ,垂足为M ,且AB=8 cm,则AC 的长为( ) A.2√5 cm B.4√5 cmC.2√5 cm 或4√5 cmD.2√3 cm 或4√3 cmAC ,AO ,∵☉O 的直径CD=10cm,AB ⊥CD ,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C 点位置如图1所示时,∵OA=5cm,AM=4cm,CD ⊥AB , ∴OM=√AA 2-AA 2=√52-42=3cm, ∴CM=OC+OM=5+3=8cm,∴AC=√AA 2+AA 2=√42+82=4√5cm;当C 点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5-3=2cm,在Rt △AMC 中,AC=√AA 2+AA 2=√42+22=2√5cm . 故选C.2.(2018湖北咸宁)如图,已知☉O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD=6,则弦AB 的长为( ) A.6 B.8 C.5√2 D.5√3,延长AO交☉O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为☉O的直径,∴∠ABE=90°,∴AB=√AA2-AA2=√102-62=8,故选B.二、填空题3.(2018湖北孝感)已知☉O的半径为10 cm,AB,CD是☉O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是cm.或14当弦AB和CD在圆心同侧时,如图1,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm.②当弦AB和CD在圆心异侧时,如图2,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.三、解答题4.如图,有一座拱桥是圆弧形的,它的跨度为60 m,拱高18 m,当洪水泛滥到跨度只有30 m时,要采取紧急措施.若拱顶离水面只有4 m,即PN=4 m时是否要采取紧急措施?.如图,设弧的圆心为O,由圆的对称性知点P,N,O共线,连接OA,OA',PO,设PO交AB于点M,该圆的半径为r,由题意得PM=18,AM=30,则(r-18)2+302=r2,解得r=34.当PN=4时,ON=30,所以A'N=16,则A'B'=32>30,故不需要采取紧急措施.5.(2018湖北宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x=1或x=-8(舍去)∴AC=8,BD=√82-72=√15,∴S菱形ABFC=8√15.∴S半圆=1·π·42=8π.2。

圆的基本性质(解析版)2018年数学全国中考真题-2

圆的基本性质(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。

圆的基本性质练习(含答案)

圆的基本性质练习(含答案)

圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。

任何一条直径所在的直线都是它的 _____ ③。

它的对称中心是_ ④ _____________________ 。

同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。

常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。

温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。

【中考专题】2018年 九年级数学中考 圆 专题复习(含答案)

【中考专题】2018年 九年级数学中考 圆 专题复习(含答案)

2018年九年级数学中考圆专题复习一、选择题:1.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,∠AED=115°,则∠B的度数是()A.50°B.75°C.80°D.100°2.如图,已知☉O是△ABD的外接圆,AB是☉O的直径,CD是☉O的弦,∠ABD=58°,则∠BCD等于( )A.16°B.32°C.58°D.64°3.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.64.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C=( ) A.20°B.25°C.40°D.50°5.如图,PA.PB、AB都与⊙O相切,∠P=60°,则∠AOB等于()A.50°B.60°C.70°D.70°6.如图,AB是⊙O的弦,CD与⊙O相切于点A,若∠BAD=66°,则∠B等于()A.24°B.33°C.48°D.66°7.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米8.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知CD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△CMN),则剪下的△CMN的周长是()A.9cm B.12cm C.15cm D.18cm9.如图,在Rt△ABC中,∠ACB=90°,点O在BC上,以点O为圆心,OC为半径的⊙O刚好与AB相切,交OB于点D.若BD=1,tan∠AOC=2,则⊙O的面积是()A.πB.2πC.D.10.如图,AB 为⊙O 的切线,切点为 B,连接 AO 与⊙O 交与点 C,BD 为⊙O 的直径,连接 CD,若∠A=30°,OA=2,则图中阴影部分的面积为()二、填空题:11.若圆锥的母线长为3cm ,底面半径为2cm ,则圆锥的侧面展开图的面积 cm 2.12.如图,已知AB 是的直径,BD=CB,∠CAB=30°,请根据已知条件和所给图形,写出三个正确的结论:(除AO=OB=BD 外)①、 ;②、 ;③、13.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为 .14.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D.若AC=8cm ,DE=2cm ,则OD 的长为 cm.15.如图5,PA ,PB 分别为⊙O 的切线,切点分别为A .B ,∠P=80°,则∠C=16.如图,点C 在以AB 为直径的半圆上,AB=, AC=4,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE ,DF 交EC 的延长线于点F ,当点D 从点A 运动到点B 时,线段EF 扫过的面积是 .图5 PC BAO三、解答题:17.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长.18.如图,AB为⊙O的直径,C O⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=8,tan∠BDF=0.25,求EF的长.19.如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.(1)求证:BA=BC;(2)若AG=2,cosB=0.6,求DE的长.20.如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.21.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)22.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.参考答案1.D2.B3.B4.D5.B6.A7.A8.B9.C10.A11.答案为:6πcm2.12.答案为:∠ACB=550;13.答案为:2.14.答案为:315.答案为:55°16.答案为:32;17.答案:.18. (1)证明:连接OD,∵CO⊥AB,∴∠E+∠C=90°,∵∠DFO为△EFD的外角,且FD=FE,∠ODC为△EOD的外角,且OD=OC,∴∠DFO=∠E+∠EDF=2∠E,∠DOF+∠E=∠ODC=∠C,得∠DOF+∠E+∠DFO=∠C+2∠E,即∠DOF+∠DFO=∠C+∠E=90°,∴FD是⊙O的切线. (2)解:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD∽△FDA,∴DF:AF=BD:AD,在Rt△ABD中,tan∠A=tan∠BDF=0.25,∴DF:8=0.25,∴DF=2,∴EF=2.19.(1)证明:连结OD,如图,∵DF为切线,∴OD⊥DF,∵DF⊥BC,∴OD∥BC,∴∠ODA=∠C,而OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠C,∴BA=BC;(2)作DH⊥AB于H,如图,设⊙O的半径为r,∵OD∥BC,∴∠B=∠DOG,∴cos∠DOG=cosB=0.6,在Rt△ODG中,∵cos∠DOG=,即=,∴r=3,在Rt△ODH中,∵cos∠DOH==,∴OH=,∴AH=3﹣=,在Rt△ADH中,AD==,∵∠DEC=∠C,∴DE=DC,而OA=OB,OD∥BC,∴AD=CD,∴DE=AD=.20.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)连接OF,AF,BF,∵DA=DO,CD⊥OA,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=0.5∠AOF=30°(3)过点C作CG⊥BE于点G,由CE=CB,∴EG=0.5BE=5又Rt△ADE∽Rt△CGE∴sin∠ECG=sin∠A=,∴CE==13∴CG==12,又CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得=∴AD=•CG=4.8∴⊙O的半径为2AD=9.6.21.解:如图所示.圆P即为所作的圆.22.解:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4﹣3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE•cos30°=;(3)由(2)知,BH=﹣4k,∴HC=(﹣4k),又∵PD2=PA×PC,∴(8k)2=(4﹣3)k×[4k+(25﹣4k)],解得:k=4﹣3,∴AC=3k+(25﹣4k)=24+7,∴S四边形ABCD=BD•AC=×25×(24+7)=900+.。

2018届中考数学复习圆的有关性质专项训练题含答案

2018届中考数学复习圆的有关性质专项训练题含答案

2018届初三数学中考复习 圆的有关性质 专项复习练习1.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .5B .6C .4D .32. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A .51°B .56°C .68°D .78°3. 如图是以△ABC 的边AB 为直径的半圆O ,点C 恰在半圆上,过C 作CD⊥AB 交AB 于D ,已知cos ∠ACD =35,BC =4,则AC 的长为( )A .1 B.203 C .3 D.1634. 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为( ) A .2 5 cm B .45 cmC .2 5 cm 或4 5 cmD .2 3 cm 或4 3 cm5. 如图,在⊙O 中,OA ⊥BC ,∠AOB =70°,则∠ADC 的度数为( )A .30°B .35°C .45°D .70°6.如图,⊙O 的直径AB 垂直于CD ,∠CAB=36°,则∠BCD 的大小是( )A .18°B .36°C .54°D .72°7. 如图,已知⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD=120°,AB =AD =2,则⊙O 的半径长为( )A.322 B.62 C.32 D.2338. 如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB ,CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( )A .2米B .2.5米C .2.4米D .2.1米9. 如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,∠CDB =30°,⊙O 的半径为5 cm ,则圆心O 到弦CD 的距离为( )A.52cm B .3 cm C .3 3 cm D .6 cm 10. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为( )A .2B .-1 C. 2 D .411. 如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD=5,则OH 的长度为( )A.23B.56 C .1 D.7612. 如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE.若AB =8,CD =2,则△BCE 的面积为( )A .12B .15C .16D .1813. 如图,△ABC 的顶点均在⊙O 上,若∠A =36°,则∠BOC 的度数为( )A .18°B .36°C .60°D .72°14. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA +PB 的最小值为( )A. 2 B .1 C .2 D .2215. 如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A =______.16. 如图,已知⊙O的半径为6 cm,弦AB的长为8 cm,P是AB延长线上一点,BP=2 cm,则tan∠OPA的值是______.17. 赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=____米.18. 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第27秒,点E在量角器上对应的读数是____度.19. 如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE的长为____.20.如图,A,B,C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A,B,C的另一点,则∠ADC的度数是.21. 如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点,若∠CMA=45°,则弦CD的长为____.22. 已知⊙O的直径为10,点A,B,C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.23. 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足CF FD =13,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求证:tan E=5 4 .参考答案:1---14 AADCB BDBAA DADA 15. 72°16.5 317. 2518. 10819. 820. 60°或120°21. 1422. 解:(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在Rt△CAB中,BC=10,AB=6,∴由勾股定理得AC=BC2-AB2=8.∵AD平分∠CAB,∴CD︵=BD︵,∴CD=BD.在Rt△BDC中,BC=10,CD2+BD2=BC2,易求BD=CD=5 2(2)连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAD=30°,∴∠DOB=2∠DAB=60°. 又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=523. 解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴AD︵=AC︵,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠D AE(公共角),∴△ADF∽△AED(2)∵CFDF =13,CF =2,∴FD =6,∴CD =DF +CF =8,∴CG =DG =4,∴FG =CG -CF =2 (3)∵AF=3,FG =2,∴AG =AF 2-FG 2=5,∴在Rt △AGD 中,tan ∠ADG =AGDG =54.∵∠ADF =∠AED,∴tan E =54。

2018年中考数学真题分类汇编第一期专题30圆的有关性质试题含解析

2018年中考数学真题分类汇编第一期专题30圆的有关性质试题含解析

圆的有关性质一、选择题1.(2018•山东枣庄•3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.2.(2018•四川凉州•3分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】解:△AOB中,OA=OB,∠ABO=50°,∴∠AOB=180°﹣2∠ABO=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.3. (2018•山东菏泽•3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA 的度数是()A.64°B.58°C.32°D.26°【考点】M5:圆周角定理;KD:全等三角形的判定与性质.【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=,∠OEB=90°是解题关键,又利用了圆周角定理.4. (2018•江苏盐城•3分)如图,为的直径,是的弦,,则的度数为()A.B.C. D.7.【答案】C【考点】圆周角定理【解析】【解答】解:∵,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故答案为:C【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 初三数学中考总复习 圆的基本性质 专题复习练习
1. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵
,∠COD =34°,则∠AEO 的度数是( A )
A .51°
B .56°
C .68°
D .78°
2.如图,在⊙O 中,直径CD⊥弦AB ,则下列结论中正确的是( B )
A .AC =A
B B .∠
C =12
∠BOD C .∠C =∠B D .∠A =∠BOD
3.如图,AB 是⊙O 的直径,BC 是⊙O 的弦.若∠OBC=60°,则∠BAC 的度数是( D )
A .75°
B .60°
C .45°
D .30°
4.如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为( B )
A .15°
B .18°
C .20°
D .28°
5.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD⊥AB
交AB 于点D.已知cos ∠ACD =35
,BC =4,则AC 的长为( D )
A .1 B.203 C .3 D.163
6.如图,P 是⊙O 外一点,PA ,PB 分别交⊙O 于C ,D 两点,已知AB ︵和CD ︵所对的
圆心角分别为90°和20°,则∠P=( D )
A .45°
B .20°
C .25°
D .35°
7.(2015·南宁)如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,点N 是弧MB 的中点,P 是直径AB 上的一动点.若MN =1,则△PMN 周长的最小值为( B )
A .4
B .5
C .6
D .7
8.如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是AC ︵上一点,BD 交AC 于点E ,
若BC =4,AD =45
,则AE 的长是( C )
A .3
B .2
C .1
D .1.2
9. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D =32°,则∠OAC =( )
A .64°
B .58°
C .72°
D .55°
10.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是__6__.
11.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 在格点上,则∠AED
的正切值为__12
__.
12.如图,在⊙O 中,弦AC =23,点B 是圆上一点,且∠ABC=45°,则⊙O
的半径R 为
13.(2015·东营)如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB 为0.8 m ,则排水管内水的深度为__0.8__m.
14.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若∠BOC=60°,AB =8,点
E 是劣弧AC ︵上一动点,OD ⊥BE 于点D ,则OD 的长的最大值为.
15. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连OD 交BE 于点M ,且MD =2,则BE 长为__8__.
16.如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC 的角平分线,过A ,C ,D 三点的圆O 与斜边AB 交于点E ,连接DE.
(1)求证:AC =AE ;
(2)求AD 的长.
解:(1)∵∠ACB=90°,且∠ACB 为圆O 的圆周角,∴AD 为圆O 的直径,∴∠AED =90°,又AD 是△ABC 的∠BAC 的平分线,∴∠CAD =∠EAD,∴CD =DE ,在
Rt △ACD 和Rt △AED 中,⎩
⎪⎨⎪⎧CD =ED ,AD =AD ,∴Rt △ACD ≌Rt △AED(HL),∴AC =AE (2)∵△ABC 为直角三角形,且AC =5,CB =12,∴根据勾股定理得AB =52+122=13,由(1)得到∠AED=90°,则有∠BED=90°,设CD =DE =x ,则DB =BC -CD =12-x ,EB =AB -AE =AB -AC =13-5=8,在Rt △BED 中,根据勾股定理得
BD 2=BE 2+ED 2,即(12-x)2=x 2+82
,解得x =103,∴CD =103,又AC =5,△ACD 为直角三角形,∴根据勾股定理得AD =AC 2+CD 2=5133
17.如图,等腰三角形ABC 中,BA =BC ,以AB 为直径作圆,交BC 于点E ,圆心为O.在EB 上截取ED =EC ,连接AD 并延长,交⊙O 于点F ,连接OE ,EF.
(1)试判断△ACD 的形状,并说明理由;
(2)求证:∠ADE=∠OEF.
解:(1)△ACD 是等腰三角形,连接AE ,∵AB 是⊙O 的直径,∴∠AED =90°,∴AE ⊥CD ,∵CE =ED ,∴AC =AD ,∴△ACD 是等腰三角形
(2)∵∠ADE=∠DEF+∠F,∠OEF =∠OED+∠DEF,而∠OED=∠B,∠B =∠F ,∴∠ADE =∠OEF
18.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC ,BC 的交点分别为D ,
E ,且DE ︵=BE ︵.
(1)试判断△ABC 的形状,并说明理由;
(2)已知半圆的半径为5,BC =12,求sin ∠ABD 的值.
解:(1)△ABC 为等腰三角形.理由如下:连接AE ,∵DE ︵=BE ︵,∴∠DAE =∠BAE ,
即AE 平分∠BAC,∵AB 为直径,∴∠AEB =90°,∴AE ⊥BC ,∴△ABC 为等腰三角形
(2)∵△ABC 为等腰三角形,AE ⊥BC ,∴BE =CE =12BC =12
×12=6,在Rt △ABE 中,
∵AB =10,BE =6,∴AE =102-62
=8,∵AB 为直径,∴∠ADB =90°,∴12AE·BC =12BD·AC,∴BD =8×1210=485,在Rt △ABD 中,∵AB =10,BD =485
,∴AD =AB 2-BD 2=145,∴sin ∠ABD =AD AB =14510=725。

相关文档
最新文档