初一数学竞赛 方程组的几种特殊运用

合集下载

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用二元一次方程组是初中数学中的重要内容,它涉及到两个未知数的方程组。

在本文中,我们将介绍二元一次方程组的解法以及它在实际生活中的应用。

一、解法1. 消元法消元法是求解二元一次方程组最常用的方法之一。

对于形如:a₁x + b₁y = c₁a₂x + b₂y = c₂的方程组,首先选择其中一个方程,通过系数的适当倍乘,使得其中一个未知数的系数相等。

然后将两个方程相减,消去该未知数,得到一个只含有另一个未知数的一元一次方程。

求解该方程后,代入到原方程得出另一未知数的值。

2. 代入法代入法是另一种常用的解二元一次方程组的方法。

首先选择其中一个方程,解出其中一个未知数,然后将该值代入到另一个方程中,求解得到另一个未知数的值。

二、应用1. 几何问题二元一次方程组可以应用于几何问题中。

例如,已知两条直线的方程,求解它们的交点坐标。

将两条直线的方程组成二元一次方程组,通过解方程组可以求得它们的交点坐标。

2. 商业问题二元一次方程组在商业问题中也有广泛的应用。

例如,某公司生产两种产品,已知这两种产品的生产成本和售价,求解生产和销售这两种产品的数量,以最大化利润。

通过建立二元一次方程组,并求解方程组可以得到最优解。

3. 等比数列问题等比数列问题中常常需要解二元一次方程组。

例如,已知等比数列的第一项和公比,求解前n项的和。

通过建立关于等比数列的二元一次方程组,并求解可以得到所需的结果。

总结:二元一次方程组的解法有消元法和代入法,根据问题的要求可以选择不同的方法进行求解。

而二元一次方程组在几何、商业和数列等领域都有广泛的应用,通过解方程组可以求解实际问题,提高解决问题的能力。

以上是关于初一数学二元一次方程组的解法与应用的内容论述。

通过消元法和代入法,我们可以解决二元一次方程组,并且这些方法在几何、商业和数列等领域都有广泛的应用。

希望本文对您理解和掌握二元一次方程组有所帮助。

方程组的解法与初中代数的应用

方程组的解法与初中代数的应用

方程组的解法与初中代数的应用代数是数学的一个重要分支,它研究的是数与数之间的关系。

在初中阶段,我们学习了代数的基本概念和运算法则,其中包括方程组的解法。

方程组是由多个方程组成的一组等式,求解方程组就是要找到使所有方程都成立的未知数的值。

下面我将介绍几种常见的方程组的解法,并探讨初中代数在实际生活中的应用。

一、代数中的方程组解法1. 代入法代入法是最常见的求解方程组的方法之一。

它的基本思想是,先求得一个方程中的未知数的值,然后将该值代入到另一个方程中,再求解出另一个未知数的值。

以二元一次方程组为例,假设有如下方程组:a1x + b1y = c1a2x + b2y = c2首先,我们可以从第一个方程中解出x的值:x = (c1 - b1y) / a1,然后将x的值代入到第二个方程中,得到a2((c1 - b1y) / a1) + b2y = c2。

通过整理和化简,可以求解出y的值。

最后,将求得的y的值代入到第一个方程中,即可得到x的值。

2. 消元法消元法是另一种常用的求解方程组的方法。

它的基本思想是通过适当的变换,将方程组中的某个未知数的系数变为0,从而简化计算。

以二元一次方程组为例,假设有如下方程组:a1x + b1y = c1a2x + b2y = c2我们可以通过消元法将其中一个方程中的某个未知数的系数变为0。

首先,我们可以将第一个方程乘以a2,第二个方程乘以a1,得到新的方程组:a1a2x + b1a2y = c1a2a1a2x + a1b2y = a1c2然后,将第二个方程减去第一个方程,得到新的方程:(b1a2 - a1b2)y = c1a2 -a1c2。

通过整理和化简,可以求解出y的值。

最后,将求得的y的值代入到第一个方程中,即可得到x的值。

二、初中代数在实际生活中的应用1. 比例问题比例是代数中的一个重要概念,它描述了两个数量之间的关系。

在实际生活中,我们经常会遇到比例问题,如购物打折、混合物的配制等。

如何有效地运用初一数学解题技巧中的特值法?

如何有效地运用初一数学解题技巧中的特值法?

特值法是一种常用的初一数学解题技巧,它通过选取某些特殊的值或图形,使得问题变得简单易懂,从而快速得出结论。

要有效地运用特值法,可以遵循以下步骤:理解题意:首先,要仔细阅读题目,理解题目的条件和要求,明确需要求解的问题。

选取特值:根据题目的特点和要求,选取合适的特殊值或特殊图形。

这个特殊值或图形应该能够简化问题,方便计算和推理。

代入特值:将选取的特殊值或图形代入到题目中,进行相关的计算或推理。

得出结论:通过计算或推理,得出最终的结论。

如果结论符合题目的要求,则可以结束解题过程;否则,需要重新选取特值或调整解题思路。

总结归纳:在得出结论后,要注意总结归纳解题过程和技巧,以便于以后更好地运用特值法。

举个例子,题目要求解方程组:x + y = 7 x - y = 1我们可以选取特值,令x = 4,则代入方程组得:4 + y = 7 => y = 3 4 - y = 1 => -y = -3 => y = 3由此可得方程组的解为x = 4, y = 3。

需要注意的是,特值法虽然简单易懂,但也有其局限性。

在选取特值时,要保证这个特殊值或图形能够真正简化问题,否则可能会得出错误的结论。

因此,在运用特值法时,需要仔细思考和判断。

数学竞赛中方程整数解的实用求法

数学竞赛中方程整数解的实用求法

数学竞赛中方程整数解的实用求法(本讲适合初中)近年来,在各级各类数学竞赛中,方程整数解的问题备受关注,它将古老的整数理论与传统的初中数学知识相综合,涉及面宽、范围广,往往需要灵活地运用相关概念、性质、方法和技巧. 笔者根据自己的体会讲讲求解这类问题的方法和基本思考途径,供读者参考.1 不定方程的整数解一般地,不定方程有无数组解. 但是,若加上限制条件如整数解等,就可以求出确定的解. 由于含参数的方程的整数解多能转化为不定方程求解,所以先讲不定方程整数解的求法. 常用的有下述三种方法.1.1 因式分解法这是最常用的方法,它适用于一边可以分解因式,另一边为常数的方程. 根据是正整数的惟一分解定理:每一个大于1的正整数都可以惟一地分解成素数的乘积. 方法是分解常数后构造方程组求解.例1 求方程xy +x +y =6的整数解.(1996,湖北省黄冈市初中数学竞赛)解:方程两边加上1,得xy +x +y +1=7.左边=(x +1)(y +1),右边=1×7=(-1)×(-7).故原方程的整数解由下列方程组确定:⎩⎨⎧++;=,=7111y x ⎩⎨⎧++;=,=1171y x ⎩⎨⎧++;=-,=-7111y x ⎩⎨⎧++.1171=-,=-y x 解得⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧.2882066044332211=-,=-;=-,=-;=,=;=,=y x y x y x y x 1.2 选取主元法有些含有二次项的不定方程,可以选取其中的某一变量为主元,得到关于主元的二次方程,再用根的判别式△≥0定出另一变量的取值范围,在范围内选出整数值回代得解.例2 求方程7322=yxy x y x +-+的所有整数解. (第十二届全俄数学竞赛)解:以x 为主元,将方程整理为3x 2-(3y +7)x +(3y 2-7y)=0因x 是整数,则△=[-(3y +7) ]2-4×3(3y 2-7y )≥0 ⇒931421-≤y ≤931421+ ⇒整数y =0,1,2,3,4,5.将y 的值分别代入原方程中计算知:只有y =4或5时,方程才有整数解,即x 1=5,y 1=4;x 2=4,y 2=5. 1.3 整式分离法当分式中分子的次数不小于分母的次数时,可将分子除以分母,把整式(即所得商式)分离出来.若所得余式为常数,则用倍数约数分析法求解较容易;若余式不是常数,则可以根据实际情况构造二次方程,选取原先变量为主元求解. 例3 题目同例1.解:用含y 的式子表示x ,得x =16+-y y . 分离整式得x =-1+17+y . 因x 为整数,则17+y 为整数.故y +1为7的约数,y +1=±1,±7.(笔者注:这种思考方法就是倍数约数分析法)得y =0,-2,6,-8.进而x =6,-8,0,-2.2 含参数的二次方程的整数解这类整数根问题,近年考查最频繁.实用思考途径有下列四种.2.1 途径一:从判别式入手因为一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有根x =ab 2∆±-,所以要使方程有整数根,必须△=b 2-4ac 为完全平方数,并且-b ±∆为2a 的整数倍.这是基本思想.常用方法如下.1. 当△=b 2-4ac 为完全平方式时,直接求方程的解,然后解不定方程.例4 已知方程a 2x 2-(3a 2-8a )x +2a 2-13a +15=0(其中a 为非负整数)至少有一个整数根.那么,a =_________.(1998,全国初中数学竞赛)解:显然a ≠0.故原方程为关于x 的二次方程.△=[-(3a 2-8a )]2-4a 2(2a 2-13a +15)=[a (a +2)]2是完全平方式.故x =222)2()83(aa a a a +±- 即 x 1=a a 32-=2-a 3,x 2=a a 5-=1-a5. 从而,由倍数约数分析法知a =1,3或5.2. 当△=b 2-4ac ≥0且不是完全平方式时,一般有下列三种思考途径.(1)利用题设参数的范围,直接求解.例5 设m ∈Z ,且4<m <40,方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.解:因方程有整数根,则△=[-2(2m -3)]2-4(4m 2-14m +8)=4(2m +1)为完全平方数.从而,2m +1为完全平方数.又因m ∈Z 且4<m <40,故当m =12或24时,2m +1才为完全平方数.因为x =(2m -3)±12+m ,所以,当m =12时,x 1=16,x 2=26;当m =24时,x 3=38,x 4=52.(2)先用△≥0求出参数的范围.例6 已知方程x 2-(k +3)x +k 2=0的根都是整数.求整数k 的值及方程的根.解:△=[-(k +3)]2-4k 2=-3k 2+6k +9≥0⇒ k 2-2 k -3≤0⇒-1≤k ≤3⇒整数k =-1,0,1,2,3.由求根公式知x =2)3(∆±+k ,故 当k =-1时,△=0,x =1;当k =0时,△=9,x =0或3;当k =1时,△=12不是完全平方数,整根x 不存在;当k =2时,△=9,x =1或4;当k =3时,△=0,x =3.因此,k =-1,0,2,3,x =1,0,3,4.(3)设参数法,即设△=k 2.当△=k 2为关于原参数的一次式时,用代入法;当△=k 2为关于原参数的二次式时,用分解因式法.例7 当x 为何有理数时-代数式9x 2+23x -2的值恰为两个连续正偶数的乘积?(1998,山东省初中数学竞赛)解:设两个连续正偶数为k ﹑k +2.则9x 2+23-2=k (k +2),即 9x 2+23-( k 2+2k +2)=0.由于x 是有理数,所以判别式为完全平方数,即△=232+4×9(k 2+2 k +2)=565+[6(k +1)]2令△=p 2(p ≥0),有p 2-[6(k +1)]2=565=113×5=565×1.左边=[p +6(k +1)][ p -6(k +1)],p ≥0,k >0,得)(==1,5)1(6,113)1(6⎩⎨⎧+-++k p k p或 )2(,1)1(6,565)1(6⎩⎨⎧+-++==k p k p解(1)得k =8,于是,x =2或-941; 解(2)得k =46,于是,x =-17或9130. 总之,当x =2,-941或x =-17,9130时. 9x 2+23x -2恰为两正偶数8和10,或者46和48的乘积. 2.2 途径二:从韦达定理入手1. 从根与系数的关系式中消去参数,得到关于两根的不定方程.例8 a 是大于零的实数,已知存在惟一的实数k ,使得关于x 的二次方程x 2+(k 2+ak )x +1999+ k 2+ ak =0的两个根均为质数. 求a 的值.(1999,全国初中数学联赛)解:设方程的两个质数根为p ﹑q . 由根与系数的关系,有 p +q =-(k 2+ak ), ①pq =1 999+k 2+ak . ②①+②,得 p +q +pq =1 999则(p +1)(q +1)=24×53. ③由③知,p 、q 显然均不为2,所以必为奇数.故21+p 和21+q 均为整数,且2121+⋅+q p =22×53. 若21+p 为奇数,则必21+p =5r (r =1,2,3),从而,p =2×5r -1为合数,矛盾. 因此,21+p 必为偶数.同理,21+q 也为偶数.所以,21+p 和21+q 均为整数,且4141+⋅+q p =53.不妨设p ≤q ,则41+p =1或5. 当41+p =1时,41+q =53,得p =3,q =499,均为质数.当41+p =5时,41+q =52,得p =19,q =99,q 为合数,不合题意.综上可知,p =3,q =499.代入①得k 2+ak +502=0. ④依题意,方程④有惟一的实数解.故△=a 2-4×502=0.有a =25022.利用“两根为整数时,其和、积必为整数”.例9 求满足如下条件的整数k ,使关于x 的二次方程(k -1) x 2+( k -5) x +k =0的根都是整数.解:设方程的两根为x 1﹑x 2.则x 1+ x 2=-15--k k =-1+14-k , x 1 x 2=1-k k =1+11-k , 且 x 1+x 2和x 1 x 2都是整数.从而,14-k 和11-k 都是整数. 于是,k -1为4和1的约数.故k -1=±1⇒ k =0或2.检验知,k =0或2时,方程的两根均为整数.所以,k =0或2. 2.3 途径三:联想二次函数因为一元二次方程与二次函数联系密切,所以适时地借助二次函数知识解决方程问题,往往十分奏效.例10 已知b ,c 为整数,方程5x 2+bx +c =0的两根都大于-1且小于0.求b 和c 的值.(1999,全国初中数学联赛)解:根据二次函数y =5x 2+bx +c 的图像和题设条件知: 当x =0时,5x 2+bx +c >0,有c >0; ① 当x =-1时,5 x 2+bx +c >0,有b >5+c . ②因抛物线顶点的横坐标-52⨯b 满足1-<-52⨯b <0, 则0<b <10. ③ 又因△≥0,即b 2-20c ≥0,故b 2≥20c. ④ 由①、③、④得100>b 2≥20c ,c <5.若c =1,则由②、④得0<b <6且b 2≥20,得b =5; 若c =2,则0<b <7且b 2≥40,无整数解;若c =3,则0<b <8且b 2≥60,无整数解;若c =4,则0<b <9且b 2≥80,无整数解.故所求b 、c 的值为b =5,c =1.2.4 途径四:变更主元法当方程中参数的次数相同时,可考虑以参数为主元求解. 例11 试求所有这样的正整数a ,使方程ax 2+2(2a -1)x +4(a-3)=0至少有一个整数解.(第三届祖冲之杯数学竞赛)解: 因为方程中参数a 是一次,所以可将a 用x 表示,即a =2)2()6(2++x x . ① 又a 是正整数,则2)2()6(2++x x ≥1. 解得-4≤x ≤2且x ≠-2.故x =-4,-3,-1,0,1,2.分别人入①得a =1,3,6,10.3 其他类型3.1 分类讨论型当方程中最高次项的系数含有变参数时,应先分系数为0或不为0讨论.例12 求使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数的k 值.(第十三届江苏省初中数学竞赛)解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则有 ⎪⎪⎩⎪⎪⎨⎧-=-=--=+-=+②① .111,1112121k k k x x k k k x x由①-②得x 1+x 2-x 1x 2=-2⇒(x 1-1)(x 2-1)=3.=1×3=(-1)×(-3).有⎩⎨⎧=-=-;31,1121x x ⎩⎨⎧-=--=-;31,1121x x ⎩⎨⎧=-=-;11,3121x x ⎩⎨⎧-=--=-.11,3121x x 故x 1+x 2=6或x 1+x 2=-2,即 -1-k 1=6或-1-k1=-2. 解得k =-71或k =1. 又△=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-71或k =1时,都有△>0.所以,满足要求的k 值为k =0,k =-71,k =1. 3.2 数形结合型当问题是以几何形式出现,或容易联想到几何模型的时候,可考虑用数形结合法.这是一种极为重要的解题方法,它具有形 象直观的特点,可使许多问题获得巧解.例13 以关于m 的方程m 2+(k -4)m +k =0数根为直径作⊙O.P 为⊙O 外一点,过P 切线PA 和割线PBC ,如图1,A 为切点.这时发现PA 、PB 、PC 都是整数,且PB 、BC 都不是合数,求PA 、PB 、PC 的长. 解: 设方程两根为m 1、m 2则⎩⎨⎧=-=+②① .,42121k m m k m m 又设PA =x ,PB =y ,BC =z ,则x ﹑y ﹑z 都是正整数. 由切割线定知PA 2=PB •PC =PB (PC +BC ),即 x 2=y 2+yz ⇒(x +y )(x -y )=yz . ③消去①和②中的k ,得m 1m 2=4-m 1-m 2.整理分解,得(m 1+1)(m 2+1)=5.图1因为⊙O 的直径是方程的最大整数根,不难求得最大整根m =4.进而,z =BC ≤4.又正整数z 不是合数,故z =3,2,1.当z =3时,(x +y )(x -y )=3y ,有⎩⎨⎧=-=+;,3y y x y x ⎩⎨⎧=-=+;3,y x y y x ⎩⎨⎧=-=+.1,3y x y y x 可得适合题意的解为x =2,y =1.当z =1和z =2时,没有适合题意的解,所以,PA =x =2,PB =y =1,PC =y +z =4.3.3 综合探索型当已知方程不止一个或结论不明确时,常用综合分析、假设探索法求解.例14 已知关于x 的方程4x 2-8nx -3n =2和x 2-(n +3)x -2n 2+2=0.问是否存在这样的n 的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.(2000,湖北省初中数学选拔赛)解: 由△1=(-8n )2-4×4×(-3n -2)=(8n +3)2+23>0,知n 为任意实数时,方程(1)都有实数根.设第一个方程的两根为βα、.则α+β=2n ,αβ=42n 3--. 于是,(βα-)2=(βα+)2-4αβ=4n 2+3n 2+2.由第二个方程得[x -(2n +2)][x +(n -1)]=0解得两根为x 1=2n +2,x 2=-n +1.若x 1为整数,则4n 2+3n +2=2n +2.于是n 1=0,n 2=-41. 当n =0时,x 1=2是整数;n =-41时,x =23不是整数,舍去.若x 2为整数,则4n 2+3n +2=1-n .有n 3=n 4=-21.此时x 2=23不是整数,舍去. 综合上述知,当n =0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.练 习 题1. 设a 为整数. 若存在整数b 和c ,使(x +a)(x -15)-25=(x +b )(x +c ),则a 可取的值为_________(1998,上海市鹏欣杯数学竞赛)(提示:变形后用因式分解法. a =9,-15,-39)2. 设关于x 的二次方程(k 2-6k +8)x 2+(2k 2-6k -4)x +k 2=4的两根都是整数. 求满足条件的所有实数k 的值.(2000,全国初中数学联赛)(提示:求出二根x 1=-1-42-k ,x 2=-1-24-k ,从中消去k 得x 1x 2+3x 1+2=0,分解得x 1(x 2+3)=-2.借助方程组得k =6,3,310) 3. 求所有的正整数a 、b 、c ,使得关于x 的方程x 2-3ax +2b =0,x 2-3bx +2c =0,x 2-3cx +2a =0的所有的根都是正整数. (2000,全国初中数学联赛)(提示:从根与系数的关系入手,结合奇偶性分析,得a =b =c =1.)4. 已知方程:x 2+bx +c =0及x 2+cx +b =0分别各有二整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.(1)求证:x 1<0,x 2<0,x ’1<0,x ’2<0.(2)求证:b -1≤c ≤b +1.(3)求b 、c 的值.(1993,全国初中数学竞赛)(答案:b =5,c =6或b =6,c =5.)5.x 、y 为正整数,100111=-y x .则y 的最大值为_________. (1998,重庆市初中数学竞赛)(提示:用因式分解法,结果为9 900.)6.k 为什么整数时,方程(6-k )(9-k )x 2-(117-15k )x +54=0的解都是整数?(1995,山东省初中数学竞赛)(提示:对系数(6-k)(9-k)分为0与不为0讨论,得k值为3,6,7,9,15.)一元二次方程的整数根问题(本讲适合初中)迄今为止,尚未找到使得整系数一元二次方程有整数根的充分条件,通常的方法都是通过讨论其判别式,利用根与系数的关系进行分析和归纳,即使用必要条件解题,然后通过检验确定答案.下面举例说明常用的几种方法,并指出每种方法适合的范围.整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.例1 设方程mx2-(m-2)x+m-3=0有整数解,试确定整数m的值,并求出这时方程的所有整数解.分析:若m=0,则2x-3=0,此时方程无整数解;当m≠0时,考察△=-3m2+8m+4,注意到二次项系数为负,方程有解,则-3m2+8m+4≥0.解得3724-≤m≤3724+.+因为m是整数,故只能取1,2,3.当m=1时,方程有解:-2和1;当m=2时,方程无整数解:当m=3时,方程有整数解:0.注:当判别式二次系数为负时,解不等式得关于参数的一个有限长区间,又因为参数为整数,可以讨论得解.例2 当x为何有理数时,代数式9x2+23x-2的值恰好为两个连续的偶数积.(1998,山东省初中数学竞赛)分析:设两个连续的偶数为n,n+2,问题转化为:当n为何值时,方程9x2+23x-2=n(n+2)有有理数根.有理根问题本质上也是整数根的问题,要求方程的根的判别式必须为一个整数或有理数的完全平方.考察判别式△=232+36(n2+2n+2)=36(n +1)2+565.由于n 是整数,所以判别式应为整数的完全平方.设 36(n +1)2+565=m 2(m 为大于565的自然数).移项因式分解,得(m +6n +6)(m -6n -6)=1×5×113.只有⎩⎨⎧=--=++566,11366n m n m 或 ⎩⎨⎧=--=++.166,56566n m n m 解得n =8,或n =46.分别代入原方程得方程有理数解为-941,2或9130,-17. 注:当判别式为关于某一参数的二次式,且二次项系数为正时,可采用配方法变形为:ƒ2(α) +常数(α是整数).然后采用例1的方法,通过分析得解.例3 求一实数p ,使用三次方程5x 3-5(p +1)x 2+(71p -1)x+1=66p 的三个根均为自然数.(1995,全国高中数学联赛)分析:观察可知,1是方程的解,方程可转化为(x -1)(5x 2-5px +66p -1)=0问题转化为:求一切实数p 使方程5x 2-5px +66p -1=0的解为自然数.由韦达定理知,p 为方程两根之和,即p 是自然数.仿例2得△=(5p -132)2-17 404.设(5p -132)2-17 404=n 2(n >0,n 为自然数).移项分解可得(5p -132+n)(5p -132-n)=22×19×229.又(5p -132+n),(5p -132-n)同奇偶,所以,⎩⎨⎧⨯=--⨯=+-.1921325,22921325n p n p 解得p =76.注:从表面上看,此题中的p 是一切实数,但由韦达定理判断它实际上是自然数,故可采用前法求得.例4设m 为整数,且4<m <40,又方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.(1993,天津市初中数学竞赛)分析:考察判别式△=4(2m +1),因是关于m 的一次式,故例1,例2的方法均不可用.由已知4<m <40,可知9<2m +1<81.为使判别式为完全平方数,只有2m +1=25或2m +1=49.当2m +1=25时,m =12,方程两根分别为16,26; 当2m +1=49时,m =24,方程两根分别为38,52.注:当判别式不是二次式时,可结合已知条件通过讨论得出参数的范围,进而求解;当判别式较复杂时,则应改用其他办法,参见例5.例5 α是大于零的实数,已知存在惟一的实数k ,使得关于x的方程x 2+(k 2+αk )x +1 999+k 2+αk =0的两根为质数.求α的值.(1999,全国初中数学联赛)分析:因为α、k 均为实数,判别式法不能解决.设方程两根为x 1、x 2,且x 1≤x 2,x 1、x 2均为质数,则⎪⎩⎪⎨⎧++=--=+.9991,221221k k x x k k x x αα 消掉参数得x 1+x 2+x 1x 2=1 999,即 (x 1+1)(x 2+1)=2 000=24×53.显然,x 1≠2. 于是,x 1+1,x 2+1都是偶数且x 1+1≤x 2+1.故只有如下可能:⎪⎩⎪⎨⎧⨯=+=+;521,2132221x x ⎪⎩⎪⎨⎧⨯=+=+;521,213231x x ⎩⎨⎧⨯=+⨯=+;521,5212321x x ⎪⎩⎪⎨⎧⨯=+⨯=+;521,52122221x x ⎪⎩⎪⎨⎧⨯=+⨯=+22221521,521x x ⎪⎩⎪⎨⎧⨯=+⨯=+.521,5212231x x符合题意的只有⎩⎨⎧==.499,321x x 于是,3+499=-k 2-αk .因为存在惟一的k ,故方程k 2+αk +502=0有两等根. 判别式△=α2-4×502=0,解得α=2502.注:应用韦达定理的关键在于消去参数,首先求得方程的解,在消去参数之后,要注意因式分解的使用.例6 设关于x 的二次方程(k 2-6k +8)﹒x 2+(2k 2-6k -4)x +k 2=4的两根都是整数.求满足条件的所有实数k 的值.(2000,全国初中数学联赛)分析:方程的表达式比较复杂,判别式法和韦达定理均不可用.将原方程变形得(k -2)(k -4)x 2+(2k 2-6k -4)x +(k -2)(k +2)=0. 分解因式得[(k -2)x +k +2][(k -4)x +k -2]=0.显然,k ≠2,k ≠4.解得x 1=-42--k k , x 2=-22-+k k . 消去k 得x 1x 2+3x 2+2=0∴ x 2(x 1+3)=-2.讨论得⎩⎨⎧=+-=;13,212x x 或⎩⎨⎧-=+=;13,221x x 或⎩⎨⎧-=+=.23,121x x 解x 1、x 2,代入原式得k 值为6,3,310. 注:当判别式与韦达定理均难解决时,这时反而意味着可用因式分解法求出方程的根,然后再整理转化.例7 设α为整数,若存在整数b 和c ,使得(x +α)(x -15)-25=(x +b )(x +c )成立,求α可取的值.(1998,上海市初中数学竞赛)分析:此题可转化为:当α为何值时,方程(x +α)(x -15)-25=0有两个整数根.方程可化为x 2-(15-α)x -15α-25=0视其为关于α的一次方程,整理得α(x -15)=-x 2+15x +25.易知x ≠15,∴α=1525152-++-x x x =-x +1525-x .注:此解法为分离参数法,它适合于参数与方程的根均是整数,且参数较易于分离的情况.如此题变形为α=ƒ(x ),然后利用函数的性质求解,这是一种应用较广泛的方法.上面只介绍了处理整数根问题的常用解法,这些解法的基本依据是:方程有整数根的必要条件. 基本方法是:(1)判别式讨论法(主要讨论由判别式决定的参数范围,由判别式为完全平方数求参数);(2)韦达定理法;(3)判别式与韦达定理结合法;(4)分离参数法(通过分离参数,利用根为整数的条件讨论).需说明的是,每个题的解法都不是惟一的,本文所给的只是较简洁的一种.同学们在解题时,应因题而定方法,不断求新,才能领悟数学的美感.练习题1. 求满足如下条件的所有k 值,使关于x 的方程kx +(k +1)x +(k -1)=0的根都是整数.(第十三届江苏省初中数学竞赛)(k =0,k =-71,k =1) 2. 关于x 的方程(m 3-2m 2)x 2-(m 3-3m 2-4m +8)x +12-4m =0的根均为整数,求实数m 的值.(提示:应用求根消参法,得m =1,或m =2.)3. 求所有正实数α,使方程x 2-αx +4α=0仅有整数根. (1998,全国初中数学联赛)(提示:分离参数法. α=42-x x =x +4+416-x ,讨论得α=25,或18,或16).4. 已知方程x 2+bx +c =0及x 2+cx +b =0分别各有两个整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.①求证:x 1<0,x 2<0,x ’1<0,x ’2<0;②求证:b -1≤c ≤b +1;③求b 、c 所有可能的值.(1993,全国初中数学联赛)(提示:应用韦达定理,得⎩⎨⎧==65c b ⎩⎨⎧==56c b ⎩⎨⎧==44c b )5.某顾客有钱10元,第一次在商店买x 件小商品花去y 元,第二次再去买该小商品时,发现每打(12件)降价0.8元,他比第一次多买了10件,花去2元.问他第一次买的小商品是多少件?(x 、y 为正整数)(提示:列方程128.0102=+-x x y 问题转化为:y 为何值时,方程x 2+(40-15y )x -150y =0有正整数解,利用判别式可求得x =5,或x =50.)。

初中数学知识归纳利用方程组解决实际问题

初中数学知识归纳利用方程组解决实际问题

初中数学知识归纳利用方程组解决实际问题数学是一门实用的学科,其在解决实际问题中的应用广泛而深刻。

在初中阶段,数学知识的积累逐渐丰富,方程组的求解成为了解决实际问题的重要方法之一。

本文将归纳介绍初中数学知识中利用方程组解决实际问题的相关内容。

一、方程组的定义与意义方程组是由一组方程组成的集合,其中每个方程都包含多个未知数和常数。

方程组的求解可以帮助我们找到符合多个条件的未知数的取值,进而解决实际问题中的各种关系。

方程组的求解过程是通过对方程进行等价变换,使得方程组达到最简形式,从而得到未知数的具体值。

二、线性方程组的解法1. 直接代入法直接代入法是最常见的解线性方程组的方法之一。

通过将方程组中的其中一个方程表示为其中一个未知数的函数,并代入到另一个方程中,进而得到只含一个未知数的方程。

再通过解这个方程,最终得到未知数的值。

2. 消元法消元法是解决线性方程组的常用方法。

它通过对方程组中的方程进行线性组合,逐步消去未知数,得到最简形式的方程组,从而求解未知数。

3. 矩阵法矩阵法是对线性方程组进行整体变换的一种方法。

将线性方程组按照矩阵形式表示,通过行列变换、消元等操作,将方程组转化为最简形式,从而得到未知数的值。

三、实际问题的应用1. 配对问题在实际问题中,我们经常会遇到一些给出两组数据的情况,需要通过方程组的形式来求解问题。

例如,瓶盖和瓶身的数量之和等于总瓶数,可以通过方程组来表示:```x + y = z```其中,x表示瓶盖的数量,y表示瓶身的数量,z表示总瓶数。

通过解这个方程组,可以得到瓶盖和瓶身的具体数量。

2. 比例问题比例问题是数学中常见的实际问题之一。

通过将问题中的比例关系表示为方程组的形式,可以帮助我们求解问题。

例如,某种果汁的配料比例为2:3,总量为500毫升,可以表示为:```x + y = 500x/y = 2/3```其中,x表示2的倍数,y表示3的倍数。

通过解这个方程组,可以求解出x和y的具体值,从而确定每种配料的具体数量。

解题技巧初中代数中的方程组求解方法

解题技巧初中代数中的方程组求解方法

解题技巧初中代数中的方程组求解方法代数是数学的一个分支,探究了数与符号之间的关系。

方程组是代数中的一种重要的概念,它描述了多个方程同时满足的情况。

在初中代数学习中,掌握解题技巧对于解决方程组问题至关重要。

本文将介绍一些初中代数中的方程组求解方法,帮助同学们提高解题能力。

一、图解法图解法主要适用于二元一次方程组的求解。

我们可以将每个方程表示为一条直线,并通过观察这些直线的交点来找到方程组的解。

具体操作步骤如下:1. 将每个方程表示为直线的标准形式,如y = mx + c。

2. 根据直线的斜率和截距,画出每条直线。

3. 观察直线的交点,并确定方程组的解。

图解法的优点在于可以直观地理解方程组的解,但是当方程组较复杂或存在更多未知数时,图解法的可行性就受到限制。

二、代入法代入法是一种常用的求解方程组的方法,适用于解二元一次方程组。

其基本思想是通过将一个方程中的一个未知数表示为另一个方程的式子,并进行代入计算,从而求解方程组。

步骤如下:1. 选取一个方程,将其中一个未知数表示为其他方程中的式子(可以通过将未知数代入其他方程消去)。

2. 将代入后的式子代入另一个方程中,得到一个只含有一个未知数的方程。

3. 解这个含有一个未知数的方程,得到一个解。

4. 将该解代入任意一个方程,计算出另一个未知数的值。

代入法的优点在于简单易懂,适用范围较广,但是当方程组较复杂或存在更多未知数时,代入法的计算量会增大。

三、消元法消元法是一种常用的求解方程组的方法,适用于解二元一次方程组。

通过对方程进行加减、乘除等运算,可以将方程组化简为含有一个未知数的方程,并依次求解未知数。

步骤如下:1. 确定一个方程,使其系数或常数项的系数为1,并将该方程称为主方程。

2. 将主方程的某一个系数或常数项的系数的倒数与另一个方程相乘,并将结果代入另一个方程中,得到一个新的方程。

3. 将原方程组的所有方程通过操作2逐步化简为含有一个未知数的方程。

4. 解这个含有一个未知数的方程,得到一个解。

方程组的解法及其应用

方程组的解法及其应用

方程组的解法及其应用方程组是代数学中的一个重要概念,它描述的是一组方程,其中每个方程都由一些变量及其对应的常数组成。

解一个方程组就是求出一组满足所有方程的变量值,这组值被称为方程组的解。

一般来说,解方程组的方法可以分为几种,最常用的包括代入法、消元法和矩阵法。

代入法是最简单的一种方法,它的基本思路是将其中一个未知量用另一个未知量的表达式替代,从而将方程组中的未知量数量减少一个。

举个例子,对于下面这组方程组:$$\begin{cases}2x + y = 5\\x - y = 1\end{cases}$$我们可以通过代入法求出它的解。

具体来说,我们可以将其中一个未知量($y$)用另一个未知量($x$)的表达式替代,得到:$$\begin{cases}2x + (x - 1) = 5\\x - (x - 1) = 1\end{cases}$$然后通过解这个新的方程组,可以得到$x = 2$和$y = 1$,从而得出原方程组的解为$(2,1)$。

代入法的优点是简单易懂,但是当方程组比较复杂时计算量会变得很大。

消元法是另一种解方程组的常用方法。

它的核心思想是通过一系列变换将方程组化为简单形式,从而可以很容易地求解。

最常用的消元法是高斯消元法,它的步骤如下:1. 将方程组写成增广矩阵的形式,即将系数矩阵和常数列合并在一起。

对于上面那组方程,可以写为:$$\left[\begin{array}{cc|c}2&1&5\\1&-1&1\end{array}\right]$$2. 对增广矩阵进行变换,目标是将其化为上三角矩阵。

这里的变换包括将某一行乘以一个常数、将某一行加到另一行上、交换两行等等。

具体来说,我们可以先将第二行乘以2,得到:$$\left[\begin{array}{cc|c}2&1&5\\2&-2&2\end{array}\right]$$然后将第二行减去第一行,并将结果放到第二行上:$$\left[\begin{array}{cc|c}2&1&5\\0&-3&-3\end{array}\right]$$这样,我们得到了一个上三角矩阵,其右下角的元素就是方程组的解之一($-1$)。

初中数学特殊方程组的特殊解法

初中数学特殊方程组的特殊解法

初中数学特殊方程组的特殊解法有些二元一次方程组有特殊的结构,选择适当的方法可以使方程组的求解变得简单易行:1、换元法例1 解方程组⎪⎩⎪⎨⎧=-++=--+.16y x 2y x ,1)y x (4)y x (3 分析:从形式上看这个方程组比较复杂,应该先将每一个方程都进行化简,化成二元一次方程组的一般形式,然后再选择代入法或加减法。

但是通过观察可以发现,两个未知数出现的形式只有(x +y )和(x -y )两种,可以把它们分别看成一个整体,利用换元法解(通过阅读下面的解答,你会明白什么是换元法)。

解:设.y x b ,y x a -=+= 原方程组可化为⎪⎩⎪⎨⎧=+=-.16b 2a ,1b 4a 3解得⎪⎩⎪⎨⎧==.1b ,35a 所以⎪⎩⎪⎨⎧=-=+.1y x ,35y x 解得⎪⎪⎩⎪⎪⎨⎧==.31y ,34x例2 解方程组⎩⎨⎧=-=+.35y 5|x |4,9y 2|x |3 分析:方程组中的|x|不要一开始就讨论,先用换元法将方程组化成一般形式,最后一步再去掉绝对值符号。

解:设|x |a =。

原方程组可化为⎩⎨⎧=-=+.35y 5a 4,9y 2a 3解得⎩⎨⎧-==.3y ,5a 所以⎩⎨⎧-==.3y ,5|x |所以原方程组的解为⎩⎨⎧-=-=⎩⎨⎧-==.3y ,5x ,3y ,5x 22112、连等式方程组的解法 例3 解方程组.33y x 5y x 2=+=- 分析:这是一个连等形式的方程组,可以写成如下一般形式的方程组:(1)⎪⎪⎩⎪⎪⎨⎧=-+=-;35y x 2,3y x 5y x 2 (2)⎪⎪⎩⎪⎪⎨⎧=++=-;33y x ,3y x 5y x 2 (3)⎪⎪⎩⎪⎪⎨⎧=+=-.33y x ,35y x 2 其中最简单的是方程组(3)。

如果⎩⎨⎧==b y ,a x 是方程组(3)的解,那么它一定满足35y x 2=-和33y x 5y x 2=+=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思维课 (9) 方程的几种特殊解法及相关应用
1、换元法:用某个字母取代一组繁琐的算式,以达到简化运算的效果。

例1:解方程:⎪⎪⎪
⎪⎩⎪⎪⎪⎪⎨⎧-=--=--=--151
1111
115111v
u w w u v w v u
例2:已知三个数a ,b ,c 满足
3
1=+b
a a
b ,
4
1=
+c
b b
c ,
5
1=
+a
c ca ,则
=++ca
bc ab abc 。

2、整体法:用整体的思想发现题目中易求值得整体式子,并设法化简。

例3:解关于x ,y ,z 的方程组⎪⎪⎩⎪
⎪⎨⎧=+=+=+a
cz by b ax cz c by ax 222,其中a ,b ,c 为非零常数。

例4:解方程组⎪⎪⎩⎪
⎪⎨⎧=++=++=++18
)(12)(6)(z y x z z y x y z y x x
3、灵活运用条件:解题中,要注意条件中的一些“关键词”。

例5:已知关于x ,y 的方程组⎪⎩⎪⎨⎧=++=+0
)3(0
3ay x b y ax 有非零解,求a ,b 满足的关
系式。

例6:长方体的长、宽、高分别为x ,y ,z ,都是正整数。

如果
1,1++=+=yz xz xy yz xz ,求长方体的体积。

作业:
1、已知()07212
=-+++-y x y x 。

求2223y xy x +-的值
2、若043724953=+--++n m n m y x 是关于x ,y 的二元一次方程,求n
m 的值。

3、若()()4
93,2
1,23
+
---=-=-c b c b c a b a 则的值为多少?
4、将2004写成若干个质数的乘积,如果a ,b ,c 是这些质数中的三个,且
c b a <<,求方程组⎪⎩⎪⎨
⎧-=-=-165
1
cy ax ay bx 的解。

5、已知11999199819981997433221=+=+==+=+=+x x x x x x x x x x , 且199********=++++x x x x ,解这个方程组。

相关文档
最新文档