【配套K12】北京市各区2017年中考数学二模试题汇编 代数综合题(无答案)

合集下载

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

应用题(2017昌平二模)22. 2016年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2016年底,“ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”,“ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2016年“摩拜单车”的投放数量约为多少万台?(2017房山二模)21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.(2017通州二模)23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发32小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.(2017西城二模)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.(2017东城二模)22.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m 2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2017丰台二模)25.2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间只比自驾车多52小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.(2017石景山二模)21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?。

北京市海淀区2017年中考二模数学试题及答案

北京市海淀区2017年中考二模数学试题及答案

北京市海淀区2017年中考二模数学试题及答案海淀区九年级第二学期期末练数学试卷2017年6月学校:________ 班级:________ 姓名:________ 准考证号:________本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。

注意事项:1.在试卷和答题卡上准确填写学校名称、班级和姓名。

2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

4.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A'B'和AB的长短,其中正确的是A。

A'B'。

ABB。

A'B' = ABC。

A'B' < ABD。

不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是图略)3.下列计算正确的是A。

2a - 3a = aB。

a3/2 = a6C。

-2a = 32D。

a ÷ a = 14.如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE 交BC于E点,则EC的长为图略)5.共享单车提供了便捷、环保的出行方式。

___同学在___打开某共享单车APP,如图,"-"为___同学的位置,"★"为检索到的共享单车停放点。

为了到达距离最近的共享单车停放点,下列四个区域中,___同学应该前往的是图略)6.在单词happy中随机选择一个字母,选到字母为p的概率是A。

1/5B。

2/5C。

3/5D。

1/47.如图,OA为⊙O的半径,弦BC⊥OA于P点。

若OA=5,AP=2,则弦BC的长为图略)8.在下列函数中,其图象与x轴没有交点的是A。

y = 2xB。

y = -3x + 1C。

y = x2D。

y = 1/x9.如图,在等边三角形三个顶点和中心处的每个"○"中各填有一个式子,使得每条边上的三个式子之和相等,则a/b的值为图略)10.利用量角器可以制作锐角正弦值速查卡。

2017年北京市西城区中考数学二模试卷-含详细解析

2017年北京市西城区中考数学二模试卷-含详细解析

2017年北京市西城区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.据报道,到2020年北京地铁规划线网将由19条线路组成,总长度将达到561500米,将561500用科学记数法表示为()A. B. C. D.2.下列运算中,正确的是()A. B. C. D.3.将不等式x-1>0的解集表示在数轴上,下列表示正确的是()A. B.C. D.4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A. B. C. D.5.介于下列哪两个整数之间()A. 0与1B. 1与2C. 2与3D. 3与46.如图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为()A.B.C.D.7.对于反比例函数y=,当1<x<2时,y的取值范围是()A. B. C. D.8.如图,AB为半圆O的直径,C为的中点,若AB=2,则图中阴影部分的面积是()A.B.C.D.9.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A. 点B. 点C. 点D. 点10.某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A. ①②B. ①④C. ②④D. ③④二、填空题(本大题共6小题,共18.0分)11.如图,长方体中所有与棱AB平行的棱是______.12.关于x的方程x2-4x+k=0有两个相等的实数根,则实数k的值为______.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是______度.14.在平面直角坐标系xOy中,⊙O的半径是5,点A为⊙O上一点,AB⊥x轴于点B,AC⊥y轴于点C,若四边形ABOC的面积为12,写出一个符合条件的点A的坐标______.15.如图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式______.16.《数书九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3-4x2-35x+8的值1008.请参考上述方法,将多项式x3+2x2+x-1改写为:______,当x=8时,这个多项式的值为______.三、计算题(本大题共3小题,共15.0分)17.计算:-2-1+(-π)0-4sin45°.18.解方程组.19.已知x2-3x-4=0,求代数式(x+1)(x-1)-(x+3)2+2x2的值.四、解答题(本大题共10小题,共57.0分)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?21.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.23.直线y=-2x+4与x轴交于点A,与y轴交于点B,直线y=kx+b(k,b是常数,k≠0)经过点A,与y轴交于点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴的上方,点P在直线y=-2x+4上,若PC=PB,求点P的坐标.24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%.根据以上材料解答下列问题:(1)补全统计表:(2)选择适当的统计图将2012-2016年北京市社会消费品零售总额比上一年的增长率表示出来,并在图中表明相应数据;(3)根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为______,你的预估理由是______.25.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE∥BC交⊙O于点E,连接BE交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.26.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小东探究过程,请补充完整:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,补充下列条件中能判定四边形ABCD是平行四边形的是______(写出一个你认为正确选项的序号即可);(A)BC=AD(B)∠BAD=∠BCD(3)AO=CO(2)将(1)中的命题用文字语言表述为:①命题1______;②画出图形,并写出命题1的证明过程;(3)小东进一步探究发现:若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形,画出符合题意的四边形ABCD,进而小东发现:命题2“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.27.在平面直角坐标系xOy中,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的对称轴及线段AB的长;(2)抛物线的顶点为P,若∠APB=120°,求顶点P的坐标及a的值;(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.28.△ABC是等边三角形,以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1.①求证:AC垂直平分BD;①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.29.在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1,y1),B(x2,y2),C(x3,y3),对于△ABC的横长、纵长、纵横比给出如下定义:将|x1-x2|,|x2-x3|,|x3-x1|中的最大值,称为△ABC的横长,记作D x;将|y1-y2|,|y2-y3|,|y3-y1|中的最大值,称为△ABC的纵长,记作D y;将叫做△ABC的纵横比,记作λ=.例如:如图1,△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(-1,-2),则D x=|2-(-1)|=3,D y=|3-(-2)|=5,所以λ==.(1)如图2,点A(1,0),①点B(2,1),E(-1,2),则△AOB的纵横比λ1=______△AOE的纵横比λ2=______;②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标;③点M是双曲线y=上一个动点,若△AOM的纵横比为1,求点M的坐标;(2)如图3,点A(1,0),⊙P以P(0,)为圆心,1为半径,点N是⊙P 上一个动点,直接写出△AON的纵横比λ的取值范围.答案和解析1.【答案】B【解析】解:将561500用科学记数法表示为:5.615×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:A、a3+a3=2a3,错误;B、不是同类项,不能合并,错误;C、a2•a2=a4,错误;D、(a5)2=a10,正确;故选D根据幂的乘方、同类项合并、同底数幂的乘法的运算法则解答即可.此题考查幂的乘方、同类项合并、同底数幂的乘法问题,关键是根据幂的乘方、同类项合并、同底数幂的乘法法则计算.3.【答案】A【解析】解:x-1>0,所以x>1,用数轴表示为:.故选A.先解不等式得到x>1,然后利用数轴表示不等式的方法对各选项进行判断.本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.4.【答案】C【解析】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为:.故选:C.由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:∵4<5<9,∴2<<3.故选:C.依据被开放数越大对应的算术平方根越大求解即可.本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.6.【答案】B【解析】解:如图,由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,又∵∠1+∠2+∠3+∠4=225°,∴∠5=135°,∴∠AED=45°,又∵ED∥AB,∴∠1=∠AED=45°,故选:B.根据多边形的外角和等于360°,即可得到∠5的度数,进而得出∠AED的度数,再根据平行线的性质进行解答即可.本题考查的是多边形的内角和外角以及平行线的性质,掌握多边形的外角和等于360°是解题的关键.7.【答案】D【解析】解:∵k=6>0,∴在每个象限内y 随x 的增大而减小,又∵当x=1时,y=6,当x=2时,y=3,∴当1<x <2时,3<y <6.故选D .利用反比例函数的性质,由x 的取值范围并结合反比例函数的图象解答即可. 本题主要考查反比例函数的性质,当k >0时,在每一个象限内,y 随x 的增大而减小;当k <0时,在每一个象限,y 随x 的增大而增大.8.【答案】C【解析】解:∵AB 为直径,∴∠ACB=90°, ∵C 为的中点, ∴=,∴AC=BC ,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA=OC ,∴S 阴影部分=S 扇形AOC ==.故选C .先利用圆周角定理得到∠ACB=90°,则可判断△ACB 为等腰直角三角形,接着判断△AOC 和△BOC 都是等腰直角三角形,于是得到S △AOC =S △BOC ,然后根据扇形的面积公式计算图中阴影部分的面积.本题考查了扇形面积的计算:(1)圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.9.【答案】A【解析】解:如图所示:连接BC,并延长,即可得出,观测点的位置应在点O1.故选:A.根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.10.【答案】B【解析】解:由直方图可知,男生身高人数最多的为D组,即众数在D组,故①正确;由A与B的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C组,故②错误;∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵女生身高在160cm至170cm(不含170cm)的学生有40×(30%+15%)=18人,∴身高在160cm至170cm(不含170cm)的学生有(420+400)×=400(人),故④正确;故选:B.根据中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;用男女生身高的样本中160cm至170cm所占比例乘以男女生总人数可判断④.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.【答案】DC,EF,HM【解析】解:由图可得,长方体中所有与棱AB平行的棱有3条:DC,EF,HM,故答案为:DC,EF,HM.根据平行线的性质以及正方体的特征进行判断即可.本题主要考查了平行线的性质以及正方体的特征,解题时注意:在平面内不相交的两条直线平行.12.【答案】4【解析】解:∵方程x2-4x+k=0有两个相等的实数根,∴△=(-4)2-4k=0,即-4k=-16,k=4故本题答案为:4.若一元二次方程有两等根,则根的判别式△=b2-4ac=0,建立关于k的方程,求出k的取值.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根13.【答案】135【解析】解:∵四边形ABCD是正方形,AC是对角线,∴AB=BC,∠BAE=45°,∵AE=BC,∴∠ABE=∠AED==67.5°,同理可求得:∠AED=67.5°,∴∠BED=2×67.5°=135°.故答案为135.根据正方形的性质可知:AB=BC,因为AE=BC,所以AB=AE,即三角形ABE 是等腰三角形,因为∠BAE是45°,所以可求出∠BEA,同理可求出∠AED的度数,进而求出∠BED的度数.本题考查了正方形的性质:四边相等、对角线平分对角以及等腰三角形的判定和性质和三角形内角和定理的运用.14.【答案】(3,4)【解析】解:设点A坐标为(x,y),则AO2=x2+y2=25,由xy=12或xy=-12,当xy=12时,可得(x+y)2-2xy=25,即(x+y)2-24=25,∴x+y=7或x+y=-7,①若x+y=7,即y=7-x,代入xy=12得x2-7x+12=0,解得:x=3或x=4,当x=3时,y=4;当x=4时,y=3;即点A(3,4)或(4,3);②若x+y=-7,则y=-7-x,代入xy=12得:x2+7x+12=0,解得:x=-3或x=-4,当x=-3时,y=-4;当x=-4时,y=-3;即点A(-3,-4)或(-4,-3);当xy=-12时,可得(x+y)2-2xy=25,即(x+y)2+24=25,∴x+y=1或x+y=-1,③若x+y=1,即y=1-x,代入xy=-12得x2-x-12=0,解得:x=-3或x=4,当x=-3时,y=4;当x=4时,y=-3;即点A(-3,4)或(4,-3);④若x+y=-1,则y=-1-x,代入xy=-12得:x2+x-12=0,解得:x=3或x=-4,当x=3时,y=-4;当x=-4时,y=3;即点A(3,-4)或(-4,3);故答案为:(3,4),(答案不唯一).设点A坐标为(x,y),由圆的半径为5可得x2+y2=25,根据矩形的面积为xy=12或xy=-12,分情况分别解和可得点A的坐标.本题主要考查坐标与图形的性质,熟练掌握两点的距离公式和解二元二次方程组是解题的关键.15.【答案】c2=a2+b2【解析】解:依题意得:ab+c2+ab=(a+b)(a+b),整理,得c2=a2+b2.故答案是:c2=a2+b2.该图形的面积与3个直角三角形组成一个直角梯形,根据三角形的面积公式、梯形的面积公式进行解答.本题考查了勾股定理的证明,解题时,采用了分割法求图形的面积.16.【答案】x[x(x+2)+1]-1;647【解析】解:x3+2x2+x-1=x[x(x+2)+1]-1,当x=8时,原式=647,故答案为:x[x(x+2)+1]-1;647仿照题中的方法将原式改写,把x的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,弄清题中的方法是解本题的关键.17.【答案】解:-2-1+(-π)0-4sin45°=3-+1-4×=3+-2=+【解析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:,把①代入②得:3x+2(x-1)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为.【解析】方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【答案】解:原式=x2-1-x2-6x-9+2x2=2x2-6x-10=2(x2-3x-4)-2,当x2-3x-4=0时,原式=-2.【解析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:设第一批衬衫每件进价为x元,根据题意,得•=,解得x=150,经检验x=150是原方程的解,且满足题意,答:第一批衬衫每件进价为150元.【解析】设第一批衬衫每件进价为x元,则第二批每件进价为(x-10)元.根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.21.【答案】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【解析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.22.【答案】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【解析】(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.23.【答案】解:(1)由直线y=-2x+4与x轴交于点A,与y轴交于点B,令y=0,则-2x+4=0,解得x=2,∴A(2,0),∵OC=OA,∴C(0,2)或(0,-2),∵直线y=kx+b(k,b是常数,k≠0)经过点A和点C,∴ 或,解得k=1或k=-1;(2)∵B(0,4),C(0,2),且PC=PB,∴P的纵坐标为3,∵点P在直线y=-2x+4上,把y=3代入y=-2x+4解得x=,∴P(,3).【解析】(1)令y=0,求得x的值,即可求得A的坐标为(2,0),由OC=OA得C(0,2)或(0,-2),然后根据待定系数法即可求得k的值;(2)由B、C的坐标,根据题意求得P的纵坐标,代入y=-2x+4即可求得横坐标.本题考查了一次函数图象上点点坐标特征,分类讨论思想运用是本题点关键.24.【答案】7702.8;8375.1;9098.1;10338;11005.1;5.45%;从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%【解析】解:(1)补全统计表如下:(2)2012-2016年北京市社会消费品零售总额比上一年的增长率统计图如下:(3)从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,故2017年北京市社会消费品零售总额比上一年的增长率约为6.5%-1.05%=5.45%,故答案为:5.45%,从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%.(1)根据2012-2016年北京市社会消费品零售总额完成统计表即可;(2)根据2012-2016年北京市社会消费品零售总额比上一年的增长率,画出2012-2016年北京市社会消费品零售总额比上一年的增长率折线统计图即可;(3)根据从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,即可得出2017年北京市社会消费品零售总额比上一年的增长率.本题主要考查了统计图、统计表的选择,解题时注意:折线统计图的特点:能清楚地反映事物的变化情况,显示数据变化趋势.25.【答案】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE∥BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC;(2)解:∵BD是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD2,∴OD=.【解析】(1)根据切线的性质得到∠ACB=90°,根据平行线的性质得到OE⊥AC,根据垂径定理即可得到结论;(2)根据切线的性质得到∠ABD=90°,根据等腰三角形的性质得到∠CBD=∠2,解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,垂径定理,角平分线的判定,勾股定理,正确的识别图形是解题的关键.26.【答案】B或C;一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形【解析】解:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,则当∠BAD=∠BCD或AO=CO时,四边形ABCD是平行四边形;故答案为:B或C;(2)①选择C,文字语言表述为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;故答案为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;②已知:如图,在四边形ABCD中,AB∥CD,对角线AC与BD交于点O,AO=CO.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO,∵AO=CO,∴△AOB≌△COD,∴AB=CD,又∵AB∥CD,∴四边形ABCD是平行四边形.(3)如图所示,四边形ABCD满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形.(1)根据四边形ABCD中,对角线AC与BD相交于点O,AB∥CD,补充条件即可判定四边形ABCD是平行四边形;(2)先将符号语言转化为文字语言,再写出已知、求证和证明过程即可;(3)根据等腰三角形以及轴对称变换即可得到反例,或根据平行四边形以及圆周角定理即可得到反例.本题主要考查了平行四边形的判定以及命题与定理的运用,解决问题的关键是掌握平行四边形的判定方法,解题时注意:一组对边平行且相等的四边形是平行四边形.27.【答案】解:(1)令y=0得:ax2+2ax-3a=0,即a(x+3)(x-1)=0,解得:x=-3或x=1,∴A(-3,0)、B(1,0).∴抛物线的对称轴为直线x=-1,AB=4.(2)如图1所示:设抛物线的对称轴与x轴交于点H.∵∠APB=120°,AB=4,PH在对称轴上,∴AH=2,∠APB=60°.∴PH=.∴点P的坐标为(-1,-).将点P的坐标代入得:-=-4a,解得a=.(3)如图2所示:以AB为直径作⊙H.∵当∠ANB=90°,∴点N在⊙H上.∵点N在抛物线上,∴点N为抛物线与⊙H的交点.∴点P在圆上或点P在圆外.∴HP≥2.∵将x=-1代入得:y=-4a.∴HP=4a.∴4a≥2,解得a≥.∴a的取值范围是a≥.【解析】(1)令y=0得:ax2+2ax-3a=0,解关于x的方程可求得点A和点B的横坐标,然后可求得AB的长,利用抛物线的对称性可得到抛物线的对称轴方程;(2)如图1所示,利用抛物线的对称性可知:AH=2,∠APB=60°,然后可求得PH=,从而可的点P的坐标,最后将点P的坐标代入抛物线的解析式可求得a的值;(3)以AB为直径作⊙H,则点N在⊙H上,当点P在⊙H上或点P在⊙H外时,∠ANB=90°,故此HP≥2,接下来,依据HP≥2列不等式求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,二次函数的性质,找出∠ANB=90°的条件是解题的关键.28.【答案】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°,①以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,∴CD=CA,∠ACD=∠ACB=60°,∴BO=DO,CO⊥BD,∴AC垂直平分BD;②△MND是等边三角形,如图1,由①知AC垂直平分BD,∴NB=ND,∠CBD=∠ABC=30°,∴∠1=∠2,∴∠BND=180°-2∠2,∵ND=NM,∴NB=NM,∴∠3=∠4,∠BNM=180°-2∠4,∴∠DNM=360°-180°+2∠2-180°+2∠4=2(∠2+∠4)=60°,∴△MND是等边三角形;(2)连接AD,BN,如图2,由题意知,△ACD是等边三角形,∴∠ADC=60°,AD=CD,与(1)同理可证∠1=∠2,∠3=∠NBM,∠BND=180°-2∠2,∠BNM=180°-2∠NBM,∴∠MND=∠BND-∠BNM=2(∠NBM-∠2)=60°,∵ND=NM,∴△MND是等边三角形,∴DN=DM,∠NDM=60°,∠ADC=∠NDM,∴∠NDA=∠MDC,在△AND与△MDC中,∴△AND≌△CMD,∴NA=MC.【解析】(1)根据等边三角形的性质和旋转的性质证明即可;(2)根据等边三角形的性质和全等三角形的判定方法,证明△AND≌△CMD,再利用全等三角形的对应边相等证明即可.本题主要考查线段的旋转、全等三角形的性质和判定、等边三角形的性质等,解决此题的关键是能将三角形的判定和性质、等边三角形的相关性质灵活的应用.29.【答案】;1【解析】解:(1)由题意△AOB的纵横比λ1=,△AOE的纵横比λ2==1,故答案为,1.②由点F在第四象限,若△AOF的纵横比为1,则F(1,-1)(在第四象限的角平分线上即可).③如图设M(x M,y M).a、当0<x M≤1时,点M在y=上,则y M>0,此时△AOM的横长D x=1,△AOM的纵长为D y=y M,∵△AOM的纵横比为1,∴D y=1,∴y M=1或-1(舍弃),∴x M=,∴M(,1).b、当x M>1时,点M在y=上,则y M>0,此时△AOM的横长D x=x M,△AOM的纵长为D y=y M,∵△AOM的纵横比为1,∴D y=D x,∴x M=y M∴y M=±(舍弃),c、当x M<0时,点M在y=上,则y M<0,此时△AOM的横长D x=1-x M,△AOM的纵长为D y=-y M,∵△AOM的纵横比为1,∴1-x M=-y M,∴x M=或(舍弃),∴y M=-,∴M′(,-),综上所述,点M坐标为(,1)或(,-).(2)如图3中,当N(0,1+)时,可得△AON的纵横比λ的最大值==1+,当AN′与⊙P相切时,切点在第二象限时,可得△AON的纵横比λ的最小值,∵OP=,OA=1,∴PA=2.AN′==,∴tan∠APN′=,∴∠APN′=60°,易知∠APO=30°,作N′H⊥OP于H.∴∠HPN′=30°,∴N′H=,PH=,此时△AON的纵横比λ==,∴≤λ≤1+.(1)①根据纵横比的定义计算即可;②点F在第四象限的角平分线上即可;③分三种情形讨论即可.(2)如图3中,当N(0,1+)时,可得△AON的纵横比λ的最大值==1+,当AN′与⊙P相切时,切点在第二象限时,可得△AON的纵横比λ的最小值;本题考查反比例函数综合题、三角形的横长、纵长、纵横比λ的定义、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考创新题目.。

2017年北京中考二模数学28题汇总(几何综合9个区)

2017年北京中考二模数学28题汇总(几何综合9个区)

2017年北京中考二模数学28题汇总(几何综合9个区)1.(2017北京昌平中考二模_28)(7分) 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE2.(2017北京通州中考二模_28)(7分)在△ABC 中,AB =BC ,∠ABC =90°. 以AB 为斜边作等腰直角三角形ADB . 点P 是直线DB 上一个动点,连接AP ,作PE ⊥AP 交BC 所在的直线于点E.备用图A B CD(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证P A=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断P A=PE是否仍然成立.3.(2017北京房山中考二模_28)(7分)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为BC边上的一个动点(不与B、C重合). 点P关于直线AC、AB的对称点分别为M、N,连结MN交AB于点F,交AC于点E.(1)当点P为BC的中点时,求∠M的正切值;图2图1MEFNNFE MABCP P CBA (2)当点P 在线段BC 上运动(不与B 、C 重合)时,连接AM 、AN ,求证: ① △AMN 为等腰直角三角形;②△AEF ∽△BAM .4.(2017北京朝阳中考二模_28)(7分)在△ABC 中,∠ACB =90°,以AB 为斜边作等腰直角三角形ABD ,且点D 与点C 在直线AB 的两侧,连接CD .(1) 如图1,若∠ABC =30°,则∠CAD 的度数为 . (2)已知AC =1,BC =3. ①依题意将图2补全;②求CD 的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD 长的几种想法: 想法1:延长CB ,在CB 延长线上截取BE =AC ,连接DE .要求CD 的长,需证明 △ACD ≌△BED ,△CDE 为等腰直角三角形.想法2:过点D 作DH ⊥BC 于点H ,DG ⊥CA ,交CA 的延长线于点G ,要求CD 的长,需证明△BDH ≌△ADG ,△CHD 为等腰直角三角形. ……请参考上面的想法,帮助小聪求出CD 的长(一种方法即可). (3)用等式表示线段AC ,BC ,CD 之间的数量关系(直接写出即可).5.(2017北京海淀中考二模_28)(7分)在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点. (1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD .图1图2小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α. 想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA6.(2017北京石景山中考二模_28)(7分)已知在Rt BAC △中,90BAC ∠=°,AB AC =,点D 为射线BC 上一点(与点B 不重合),过点C 作CE ⊥BC 于点C ,且CE BD =(点E 与点A 在射线BC 同侧),连接AD ,ED .(1)如图1,当点D 在线段BC 上时,请直接写出ADE ∠的度数.(2)当点D 在线段BC 的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED 与AC 相交于点P ,若2AB =,直接写出CP 的最大值.图1 图2图1 图2 备用图7.(2017年北京平谷中考二模_28)(7分)在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF…….请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.8.(2017年北京怀柔中考二模_28)(7分)在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A,B 两点重合),点C 是BN 延长线上的动点(不与点N 重合),且AM=BC ,CN=BM ,连接CM 与AN 交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM=45°.小伟把这个猜图1 A B N 备用图 A B N想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.他们的一种作法是:过点M在AB下方作MD⊥AB于点M,并且使MD=CN.通过证明△AMD≅△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.9.(2017年北京顺义中考二模_28)(7分)在平面直角坐标系xOy中,对于点和⊙C给出如下定义:若⊙O上存在两个点,,使得,则称为⊙C的关联点.已知点,,,(1)当⊙O的半径为1时,①在点M,N,,中,⊙O的关联点是___________________________ ;②过点作直线l交轴正半轴于点,使,若直线l上的点是⊙O的关联点,求的取值范围;(2)若线段上的所有点都是半径为的⊙O的关联点,求半径的取值范围.。

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

生活实际问题(2017房山二模)12. 如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为________米.(2017房山二模)13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是_________元.(2017朝阳二模)15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车其中合理的是(填序号).(2017朝阳二模)22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案:小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了.根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.(2017怀柔二模)22.为倡导市民绿色出行,提高市民环保意识和健康意识,怀柔区建立了城市公共自行车系统,共建64个站点,投放2300辆自行车.并于2016年8月15日正式投入运营.办理借车卡和借车服务费标准如下:首次办理借车卡免收工本费,本地居民收取300元保证金及预充值消费50元、外地居民收取500元保证金及预充值消费50元.借车服务费用实行分段合计,还车刷卡时,从借车卡中结算扣取,每次借车1小时(含)为免费租用期;超过免费租用期1小时以内(含)的收取1元;超过免费租用期2小时到4小时以内(含)的,每小时收取2元;超过免费租用期4个小时以上的,每小时收取3元;一天20元封顶(不足一小时按1小时计).刘亮妈妈到点首次办了一张借车卡.第一次,她用了5小时20分钟后才还车.后来妈妈又借车出行了30次,卡中预充值的费用就全部用完了,妈妈说后来的这30次,每次从卡中扣除的服务费都是1元或3元.请你通过列方程或方程组的方法帮刘亮妈妈算一算她扣除1元和3元服务费各几次.(2017怀柔二模)26. 某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:(1)若设每件降价x (x 为整数)元,每星期售出商品的利润为y 元,请写出x 与y 之间的函数关系式,并求出自变量x 的取值范围;(2)请画出上述函数的大致图象.(3)当降价多少元时,每星期的利润最大?最大利润是多少?小丽解答过程如下:解:(1)根据题意,可列出表达式:y=(60-x)(300+20x)-40(300+20x),即y=-20x 2+100x+6000.∵降价要确保盈利,∴40<60-x ≤60.解得0≤x <20.(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:(3)∵a=-20<0, ∴当x=2b a-=2.5时,y 有最大值,y=244ac b a -=6125. 所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x 的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.。

各区中考数学二模试题汇编 代数综合题(无答案)(2021年整理)

各区中考数学二模试题汇编 代数综合题(无答案)(2021年整理)

北京市各区2017年中考数学二模试题汇编代数综合题(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市各区2017年中考数学二模试题汇编代数综合题(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市各区2017年中考数学二模试题汇编代数综合题(无答案)的全部内容。

x y-x y=-–111-1O代数综合题【2017昌平二模】27. 在平面直角坐标系xOy 中,抛物线)0(42≠-=m mx mx y 与x 轴交于A ,B 两点(点A 在点B的左侧).(1)求点A ,B 的坐标及抛物线的对称轴;(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式; (3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求26221+-+a ax x 的值.【2017房山二模】27. 对于一个函数,如果它的自变量x 与函数值y —1≤x ≤1时,-1≤y ≤1,则称这个函数为“闭函数”. 例如:y =x ,y =-x 均是“闭函数”(如右图所示). 已知()02≠++=a c bx ax y 是“闭函数”,且抛物线经过点A (1,-1)和点B (-1, 1) . (1)请说明a 、c 的数量关系并确定b 的取值; (2)请确定a 的取值范围.【2017通州二模】27.已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值;(2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.【2017朝阳二模】27.在平面直角坐标系xOy中,抛物线y=mx2—2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m的取值范围.【2017海淀二模】27.抛物线22=-+-与x轴交于A,B两点(A点在B点的左侧),与y轴交于点C,抛物y x mx m24线的对称轴为x =1. (1)求抛物线的表达式;(2)若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标;(3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段CD 有公共点,请直接写出t 的取值范围.【2017东城二模】27。

2017北京市西城区初三数学二模试题及答案(word版)

2017北京市西城区初三数学二模试题及答案(word版)

2017北京市西城区初三数学二模试题及答案(word版)D3. 不等式x-1>0的解集在数轴上表示正确的是(A) (B) (C) (D)4.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出一个小球,标号为奇数的概率为(A) 15(B) 25(C) 35(D) 4555(A) 0与1 (B) 1与2 (C) 2与3 (D) 3与46.右图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为(A)55°(B)45°(C)35°(D)25°7.已知反比例函数6y x =,当1<x <2时,y 的取值范围是(A) 1<y <3 (B) 2<y <3 (C) 1<y <6 (D) 3<y <68.如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若AB =2,则图中阴影部分的面积是( )(A) 2π (B) 122π+(C) 4π (D) 124π+9. 如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在(A) O 1 (B)O 2 (C) O 3 (D) O 410.某大型文体活动需要招募一批学生作为志愿者参与服务.已知报名的男生有420人,女生有400人,他们身高在155≤x<175,随机抽取该校男生、女生进行抽样调查.已知该校共有女生400人,男生420人,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据统计图表提供的信息,下列说法中①估计报名者中男生的身高的众数在D组;②估计报名者中女生的身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计报名者中身高在160≤x<170之间的学生约有400人其中合理的是(A)①②(B) ) ①④(C)②④(D) ③④二、填空题(本题共18分,每小题3分) 11. 如图, 在长方体中,所有与棱AB 平行的棱是 .12.关于x 的方程240x x k -+=有两个相等的实数根,则k 的值为 .13.如图,正方形ABCD ,AC 为对角线,点E 在AC 上,且AE =AB ,则∠BED 的度数为 °.14. 在平面直角坐标系xOy 中,⊙O 半径是5,点A 为⊙O 上一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,若四边形ABOC 面积为12,写出一个符合条件的点A 坐标 .15. 右图是由三个直角三角形组成的梯形,根据图形,A C EMHFD写出一个正确的等式 .16.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如在计算“当8=x 时,多项式8354323+--x x x 的值”,按照秦九昭算法,可先将多项式8354323+--x x x 一步地进行改写:()8354383543223+--=+--x x x x x x ()[]83543+--=x x x按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少. 计算当8x =时,多项式的值为1008. 请参考上述方法,将多项式3221x x x ++-改写为: ,当8x =时,多项式的值为 .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17112()4sin 453π----. 18.方程组为1328y x x y =-⎧⎨+=⎩19.已知2340x x --=,求代数式22(1)(1)(3)2x x x x +--++的值.20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.21.如图, 在Rt △ABC 中,∠ABC =90 °,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E , BF ∥DE 交CD 于点F . 求证: DE =BF .22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ACB=90 °. 对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)CD=2,∠COD=60 °.求△BED的面积.23.直线24=-+与x轴交于点A,与y轴交于点B,直线y x=+(k,b是常数,k≠0)经过点A,与y轴交于y kx b点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴上方,上点P在第一象限,且在直线24=-+上,若PC=PB,求点P的坐标.y x24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额.在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售额7702.8.5亿元,比上一年增长11.6%。

北京市各城区中考二模数学——几何综合题24题汇总

北京市各城区中考二模数学——几何综合题24题汇总

图2图1ED C B AA C EDBC EDBC MBC北京市各城区中考二模数学——几何综合题24题汇总1、(门头沟二模)24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.2、(丰台二模)24.如图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是________, AFBE =________.(2)如图2,当CEF △绕点C 顺时针旋转α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当CEF △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果63AD =-α的度数.3、(平谷二模)24.(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当3BD CEAC AD==时, BPD ∠的度数____________________.4、(顺义二模) 24.在△ABC 中, AB = AC ,∠A =30︒,将线段 BC 绕点 B 逆时针旋转 60︒得到线段 BD ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上. (1)如图 1,直接写出 ∠ABD 和∠CFE 的度数; (2)在图1中证明: A E =CF ; (3)如图2,连接 CE ,判断△CEF 的形状并加以证明.5、(石景山二模)24.将△ABC 绕点A 顺时针旋转α得到△ADE ,DE 的延长线与BC 相交于点F ,连接AF .(1)如图1,若BAC ∠=α=︒60,BF DF 2=,请直接写出AF 与BF 的数量 关系;(2)如图2,若BAC ∠<α=︒60,BF DF 3=,猜想线段AF 与BF 的数量关 系,并证明你的猜想;(3)如图3,若BAC ∠<α,图2A BCDEF F EDBA DEAAFA图24-1图24-2图24-3EQPDCB AmBF DF =(m 为常数),请直接写出BFAF的值 (用含α、m 的式子表示). 解:6、(海淀二模)24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a , b 为常数,且 a b <. 将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图7、(西城二模)24.在△ABC ,∠BAC 为锐角,AB >AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系;(2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE =60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若3AC AB +,求∠BAC 的度数.8、(通州二模)23.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .(1)如图l ,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,请你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确的.9、(东城二模)24.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC =4,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)当∠BQD =30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化?如果不变,求出AB CDAB D图1 图2图3ABCDE F FEDCBAFEDCBAGFBD ENG FDBA EM图2线段ED 的长;如果变化请说明理由;(3)在整个运动过程中,设AP 为x ,BD 为y ,求y 关于x 的函数关系式,并求出当△BDQ为等腰三角形时BD 的值.10、(朝阳二模)24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .11、(密云二模)24.已知等腰Rt ABC ∆和等腰Rt AED ∆中,∠ACB=∠AED=90°,且AD=AC (1)发现:如(图1),当点E 在AB 上且点C 和点D 重合时,若点M 、N 分别是DB 、EC 的中点,则MN 与EC 的位置关系是 ,MN 与EC 的数量关系是(2)探究:若把(1)小题中的△AED 绕点A 旋转一定角度,如(图2)所示,连接BD 和EC,并连接DB 、EC 的中点M 、N,则MN 与EC 的位置关系和数量关系仍然能成立吗?若成立,以顺时针旋转45°得到的图形(图3)为例给予证明数量关系成立,若不成立,请说明理由;请以逆时针旋转45°得到的图形(图4)为例给予证明位置关系成立,12、(延庆二模)13、(房山二模) 24. 边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中,AB 边交DF 于点M ,BC 边交DG 于点N . (1)求边DA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论.14、(昌平二模)24.【探究】如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF⊥AC 于点F ,AE ,BF 相交于点M ,连接DE ,DF . 则DE ,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADB EC M FADBE CMF MABCDF E图3图2图1P EC 图2 C B 图115、(怀柔二模)24.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE、EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为 .(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.16、(大兴二模)25. 已知:E是线段AC上一点,AE=AB,过点E作直线EF,在EF上取一点D,使得∠EDB=∠EAB,联结AD.(1)若直线EF与线段AB相交于点P,当∠EAB=60°时,如图1,求证:ED =AD+BD;(2)若直线EF与线段AB相交于点P,当∠EAB= α(0º﹤α﹤90º)时,如图2,请你直接写出线段ED、AD、BD之间的数量关系(用含α的式子表示);(3)若直线EF与线段AB不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED、AD、BD之间的数量关系,并证明你的结论. 17、(燕山二模)24.如图1,已知ABC∆是等腰直角三角形,︒=∠90BAC,点D是BC 的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系是;(2)将正方形DEFG绕点D逆时针方向旋转)3600(︒≤<︒αα,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若4==DEBC,当AE取最大值时,求AF的值.图1 图2ABEF图AB CEF图ABCEF图3FGED CAB BACDEGF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y
-x y=-
–11
1
-1O
代数综合题
【2017昌平二模】
27. 在平面直角坐标系xOy 中,抛物线)0(42
≠-=m mx mx y 与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求点A ,B 的坐标及抛物线的对称轴;
(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式;
(3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42
≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求
2622
1+-+a ax x 的值.
【2017房山二模】
27. 对于一个函数,如果它的自变量x 与函数值y 满足:当-1≤x ≤1时, -1≤y ≤1,则称这个函数为“闭函数”. 例如:y =x ,y =-x 均是“闭函数”(如右图所示). 已知()02≠++=a c bx ax y 是“闭函数”,且抛物线
经过点A (1,-1)和点B (-1, 1) .
(1)请说明a 、c 的数量关系并确定b 的取值; (2)请确定a 的取值范围.
【2017通州二模】
27.已知:二次函数1422
-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;
②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,
结合函数的图象,求m 的取值范围.
【2017朝阳二模】
27.在平面直角坐标系xOy 中,抛物线y =mx 2
-2mx +2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;
(2)点C ,D 在x 轴上(点C 在点D 的左侧),且与点B 的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.
【2017海淀二模】
27.抛物线2
2
24y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴
为x =1.
(1)求抛物线的表达式;
(2)若CD ∥x 轴,点D 在点C 的左侧,1
2
CD AB =
,求点D 的坐标; (3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段
CD 有公共点,请直接写出t 的取值范围.
【2017东城二模】
27.在平面直角坐标系xOy 中,抛物线22
21y x mx m m =-+--+.
(1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;
(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
(3)若有两点()1,0A -,()1,0B ,且该抛物线与线段AB 始终有交点,请直接写出m 的取值范围.
【2017燕山二模】
27. 在平面直角坐标系xoy 中,抛物线c bx x y ++=2
经过点
A(0,-3),B(4,5).
(1)求此抛物线表达式及顶点M 的坐标;
(2)设点M 关于y 轴的对称点是N ,此抛物线在A ,B 两点之间的部分记为
图象W(包含A,B 两点),经过点N 的直线l :n mx y +=与图象W 恰一个有公共点,结合图象,求m 的取值范围.
【2017西城二模】
27.在平面直角坐标系xOy 中,抛物线y =ax 2
+2ax -3a (a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧).
(1)求抛物线的对称轴及线段AB 的长;
(2)若抛物线的顶点为P ,若∠APB =120 °,求顶点P 的坐标及a 的值; (3)若在抛物线上存在点N ,使得∠ANB =90 °,结合图形,求a 的取值范围.
【2017石景山二模】
27.在平面直角坐标系xOy 中,抛物线1C :2
y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),对称轴
与x 轴交于点3,0(),且4AB =.
(1)求抛物线1C 的表达式及顶点坐标;
(2)将抛物线1C 平移,得到的新抛物线2C 的顶点为(0,1)-,
抛物线1C 的对称轴与两条抛物线1C ,2C 围成的封闭图形为M .
直线:(0)l y kx m k =+≠经过点B .若直线l 与图形M 有公共点,
求k 的取值范围.
【2017怀柔二模】
27. 在平面直角坐标系xOy 中,直线1y x =+与y 轴交于点A ,并且经过点B(3,n). (1)求点B 的坐标;
(2)如果抛物线2
441y ax ax a =-+- (a >0)与线段AB 有唯一公共点,求a 的取值范围.
【2017顺义二模】
27.如图,在平面直角坐标系xOy 中,抛物线2
y x bx c =-++经过A (﹣1,0),B (3,0)两点. (1)求抛物线的表达式;
(2)抛物线2
y x bx c =-++在第一象限内的部分记为图象G ,如果过点P
(-3,4)的直线y =mx +n (m ≠0)与图象G 有唯一公共点,请结合图
象,求n 的取值范围.
【2017平谷二模】
27.在平面直角坐标系xOy 中,抛物线()2
4440y mx mx m m =-++≠的顶点为P .P ,M 两点关于原点O 成中
心对称.
(1)求点P ,M 的坐标;
(2)若该抛物线经过原点,求抛物线的表达式;
(3)在(2)的条件下,将抛物线沿x 轴翻折,翻折后的图象在05x ≤≤的部分记为图象H ,点N 为抛物线对称轴上的一个动点,经过M ,N 的直线与图象H 有两个公共点,结合图象求出点N 的纵坐标n 的取值范围.
【2017门头沟二模】
27.在平面直角坐标系xOy 中,抛物线2
2
234y x mx m m =-+-+-的对称轴是直线x =1 (1)求抛物线的表达式;
(2)点1()D n y ,,2(3)E y ,
在抛物线上,若12y y >,请直接写出n 的取值范围; (3)设点()M p q ,为抛物线上的一个动点,当12p -<<时,点M 关于y 轴的对称点形成的图象与直线
4y k x =-(0k ≠)有交点,求k 的取值范围.
【2017丰台二模】
27.在平面直角坐标系xOy 中,抛物线122
12
+-+=a x ax y 与y 轴交于点C ,与x 轴交于A ,B 两点(点A

点B 左侧),且点A 的横坐标为﹣1. (1)求a 的值;
(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A ,B 两点),先向下平移 3个单位,再向左平移m (0 m )个
单位,平移后的图象记为图象G ,若图象G 与直线PP′无交点,求m 的取值范围.。

相关文档
最新文档