八年级数学上册 1.2 定义与命题教案 (新版)浙教版(1)
浙教版数学八年级上册1.2定义与命题(1) 教学设计

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯浙教版数学八年级上1.2定义与命题(1) 教学设计课题定义与命题单元第一章学科数学年级八年级学习目标情感态度和价值观目标学生在学习之后树立科学严谨的学习方法能力目标学生能在思考探究中培养自主探究和合作交流的能力知识目标了解定义和命题的含义,掌握命题的结构重点命题的概念和结构难点命题的条件和结论改写成“如果……那么……”的形式学法自主探究法教法讲授法教学过程教学环节教师活动学生活动设计意图导入新课“鸟是动物”“鸟是动物吗”思考一下这两个句子在叙述上有什么区别?思考并回答问题创设情境,提出课题讲授新课日常交流时我们需要用到很多名称和术语,为了不产生歧义,对这些名称和术语的含义必须有明确的规定,我们把能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
比如,商店降低商品的定价出售商品叫做打折;物体单位面积受到的压力叫做压强;在同一个平面内,不想交的两条直线叫平行线。
思考做笔记结合生活实例来引出定义的概念,让学生容易理解做一做 1.说出下列数学名词的定义:2.下列语句中,属于定义的是()A.对顶角相等B.作一条直线和已知直线垂直看PPT,动手动脑回答问题做练习来巩固学到的知识如果C地水流被污染,那么__E、F_的水流也被污染。
根据上图,你还能说出其他的命题吗?思维达标测评 1.观察下面四组图形,找出每一组图形的共同特征,并对类似于这样的图形下一个定义。
如:一个图形由另一个图形改变而来,在改变的过程中保持形状不变(大小可以改变)这个图形和原图形叫做相似图形.2.观察下列各数:-30,2,0,-42,12,8,…,找出它们的共同特征,给出名称,并作出定义。
解:都是偶数。
偶数的定义:能被2整除的数是偶数。
3.判断下列语句是不是命题?是用“√”,不是用“×表示。
1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C;()与老师一起做练习,巩固提升巩固新知一天,毕达哥拉斯应邀到朋友家做客。
浙教版八年级数学上册:1.2《定义与命题》教案

浙教版八年级数学上册:1学习目的1、我会区分命题的条件和结论.2、培育我观察效果和剖析效果的才干.3、我经过探求交流,体验成功的乐趣.学习重点我对命题的概念有正确的了解,会找出命题的条件(题设)和结论.学习难点我对命题概念的了解.自主学习一、知识回忆对称号和术语的含义加以描画,作出明白的规则,这就是给出它们的____________.例如:(1)〝具有中华人民共和国国籍的人,叫做中华人民共和国公民〞是〝中华人民共和国公民〞的_________.(2)〝两点之间线段的长度,叫做这两点之间的距离〞是________________的定义.(3)_________________________________________是〝在理数〞的定义.(4)_________________________________________是〝多边形〞的定义.(5)等腰三角形的定义是_________________________________________.二、协作探求1、仔细阅读课本P165页议一议,小组内相互讨论并完成以下效果.命题是_________________________________________反之,_________________________________________就不是命题.你能举出一些命题吗?(至少写出两个)2、阅读课本P166页想一想并回答以下效果.两直线平行,同位角相等.也可以写成:假设____________,那么____________.题设(条件)____________,结论____________.命题可看做由____________和____________两局部组成. ____________是事项,_____ _______是由事项推出的事项.3、指出以下命题的条件和结论,并改写成〝假设…那么…〞的方式:(1)三条边对应成比例的两个三角形相似;条件是:____________结论是:____________改写成:____________(2)两角对应相等的两个三角形相似;条件是:____________结论是:____________改写成:____________三、阅读课本P166页做一做并回答以下效果.真命题_________________________________________. 假命题_________________________________________. 反例_________________________________________.。
2019-2020学年八年级数学上册 定义与命题教案 (新版)浙教版.doc

2019-2020学年八年级数学上册定义与命题教案(新版)浙教版
对某一件事情作出正确或不正确的判断的句子叫做命题
只需要举一个反例即可,
)
在教学中要求学生能学会在简单情况下判断一个命题的真假。
并理解反例的作用,知道利
而且实际也说明学生已基本掌握这一规律,因此我们在教学
并在习题完成之后教给学生一定的总结方法:如判断命题是否正确
、举例:前面学过的,用推理的方法得到的那
()“两点之间,线段最短”这个语句是(
、、只是命题)“同一平面内,不相交的两条直线叫做平行线”这个语句是()
证特例等方法→这些方法往往并不可靠→过推理的方式即根据已知。
浙教版数学八年级上册1.2《定义与命题》教案1

浙教版数学八年级上册1.2《定义与命题》教案1一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节内容主要介绍定义与命题的概念,让学生了解如何正确理解和运用定义与命题。
通过本节内容的学习,学生能够掌握定义与命题的基本形式和特点,提高阅读和理解数学文本的能力。
二. 学情分析学生在学习本节内容前,已经学习了实数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对抽象的概念理解较为困难,对定义与命题的运用还不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解定义与命题的概念,掌握定义与命题的基本形式和特点。
2.能够正确理解和运用定义与命题,提高阅读和理解数学文本的能力。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:定义与命题的概念、基本形式和特点。
2.难点:对定义与命题的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念和特点。
2.运用案例分析法,让学生通过具体例子理解定义与命题的运用。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和例题,用于讲解和练习。
2.准备课件和教学素材,以便于教学展示。
七. 教学过程1.导入(5分钟)利用课件展示生活中的定义与命题实例,如“平行线”、“勾股定理”等,引导学生思考:什么是定义?什么是命题?2.呈现(10分钟)讲解定义与命题的概念,阐述定义与命题的基本形式和特点。
通过PPT展示相关知识点,让学生直观地理解定义与命题。
3.操练(10分钟)根据所学内容,让学生尝试判断一些实例是否为定义与命题。
教师引导学生进行分析,纠正错误观点,巩固所学知识。
4.巩固(10分钟)学生自主完成相关练习题,教师巡回指导,解答学生疑问。
通过练习题让学生进一步理解和掌握定义与命题。
5.拓展(10分钟)探讨定义与命题在实际问题中的应用,让学生举例说明。
1.2定义与命题-浙教版八年级数学上册教案

1.2 定义与命题-浙教版八年级数学上册教案一、知识目标1.了解命题的基本定义2.掌握命题的符号表示方式3.学会命题的真值表达式的构造方法4.能够判断命题的真假二、教学重难点教学重点:1.命题的概念与符号表示方法2.命题的真值表达式构造方法3.命题的真假判断教学难点:1.真值表达式的构造方法2.命题真假的判断方法三、教学过程A. 导入新知1.引入数学中命题的基本概念,比如陈述句、命题的真假等。
2.介绍命题的符号表示方式,包括命题符号、逻辑联接符号等。
3.通过生活中的例子引导学生理解命题符号及逻辑联接符号的含义,并操练一些简单的命题符号的构造方法。
B. 理论讲授1.通过例题讲解命题的真值表达式的构造方法,要求学生熟记各逻辑联接符号的真值表。
2.对于一些特殊的命题,比如否定命题、充分必要条件命题、异或命题等,需要对其进行特别讲解。
C. 练习活动1.让学生自己构造一些命题,使用真值表达式的构造方法求出其真值表。
2.给出一些命题,让学生判断其真假,并解释判断过程。
D. 课堂小结1.老师回顾本节课的重点难点内容,检查学生掌握情况。
2.学生提出自己对问题的疑问,与老师和同学进行互动交流,并得出结论。
四、教学资源1.教材:浙教版八年级数学上册2.幻灯片:PPT等五、教学反思命题是数学中非常基础的一个概念,在后续学习中也是必要的工具之一。
本节课主要通过例子引入命题的概念,并介绍命题的符号表示方式以及真值表达式的构造方法,从而培养学生对于数学命题的敏感度。
在后续课堂中,需要将命题的应用和实际问题结合起来,让学生更好地理解和掌握命题的应用技巧。
浙教版-数学-八年级上册-1.2 定义与命题1 教案

定义与命题1●教学目标(一)教学知识点1.定义的意义2.命题的概念(二)能力训练要求1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.2.从具体实例中,了解命题的概念,并会区分命题.(三)情感与价值观要求通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.●教学重点命题的概念●教学难点命题的概念的理解●教学方法引导发现法●教具准备●教学过程Ⅰ.巧设现实情境,引入新课[师]随着时代的发展,电脑逐渐走进我们的生活,上过网或懂电脑的同学都知道什么是“黑客”.下面我们来看一段对话(电脑演示)小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(学生听后,大笑)[师]同学们为什么笑呢?[生甲]旁边那两个人的概念不清.[生乙]“黑客”“因特网”等都是电脑中的专用名词.……[师]同学们说得都很好.由此可知:人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就要研究:定义与命题Ⅱ.讲授新课[师]在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?[生甲]“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义. [生乙]“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义.[生丙]“两组对边分别平行的四边形叫做平行四边形”是“平行四边形”的定义.[生丁]“角是由两条具有公共端点的射线组成的图形”是“角”的定义.……[师]同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.接下来,我们来做一做(出示投影片)如下图,某地区境内有一条大河,大河的水流入许多小河中,图中A.B.C.D.E.F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.[生甲]如果B处工厂排放污水,那么A.B.C.d处便会受到污染.[生乙]如果B处工厂排放污水,那么E.f、g处也会受到污染的.[生丙]如果C处受到污染,那么A.B.c处便受到污染.[生丁]如果C处受到污染,那么d处也会受到污染的.[生戊]如果E处受到污染,那么A.b处便会受到污染.[生己]如果h处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……[师]很好.同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.接下来我们做练习来熟悉掌握命题的概念.Ⅲ.课堂练习1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B.C.等等.(二)例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1) 等底等高的两个三角形面积相等。
浙教版数学八年级上册1.2《定义与命题》教学设计2

浙教版数学八年级上册1.2《定义与命题》教学设计2一. 教材分析《定义与命题》是浙教版数学八年级上册第1章第2节的内容,本节内容是在学生已经掌握了实数、不等式、函数等知识的基础上,引入定义与命题的概念,让学生了解数学语言的基本表达方式,为后续的定理、公式、证明等知识的学习打下基础。
本节内容的重要性在于,它不仅帮助学生理解数学概念,而且培养了学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,能够理解和掌握实数、不等式、函数等知识。
但学生在学习过程中,可能对抽象的定义与命题理解存在一定的困难,需要教师耐心引导,让学生逐步理解并掌握定义与命题的概念。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素,能够正确书写简单命题。
2.培养学生的逻辑思维能力,提高学生运用数学语言表达数学概念的能力。
3.通过对定义与命题的学习,激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.重点:理解定义与命题的概念,掌握命题的构成要素。
2.难点:对抽象的定义与命题的理解,以及如何运用定义与命题进行数学推理。
五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念。
2.运用案例分析法,通过具体例子让学生理解定义与命题的应用。
3.采用讨论交流法,让学生在课堂上充分表达自己的观点,提高学生的逻辑思维能力。
六. 教学准备1.准备相关案例,用于讲解定义与命题的概念。
2.准备课堂练习题,用于巩固学生对定义与命题的理解。
3.准备课件,用于辅助教学。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾已学过的实数、不等式、函数等知识,为新课的学习做好铺垫。
呈现(10分钟)教师通过课件或板书,给出定义与命题的定义,让学生初步了解定义与命题的概念。
同时,教师可以通过举例,让学生理解命题的构成要素。
操练(15分钟)教师给出一些简单的定义与命题,让学生进行判断,巩固对定义与命题的理解。
巩固(10分钟)教师通过课堂练习题,让学生运用定义与命题进行数学推理,检验学生对知识的掌握程度。
浙教版八年级数学上册 1.2 定义与命题 教学设计

12. 1 定义与命题
一、教学内容分析:
说理无疑是重要的,也是十分必要的.合情推理和演绎推理都是获得数学结论的重要途径,演绎推理关注的是发展合乎逻辑的思考.推理与证明的意识,步步有据有理的表达,这都离不开定义、命题,真、假命题等概念清晰的认可,为证明做必要的准备. 通过球赛、天气预报两个情境的展示,体会一些常用术语的描述,让学生感受理解有关名称和术语的重要性,引起学生对概念的关注. 回顾学过的多个结论性的句子,其中包括正确的和不正确的,通过讨论、交流、分析,引导学生感受命题及命题的组成,进而能独立判断一个句子是不是命题,并能说出命题中的条件和结论,从而为后续学习“证明”打好基础.
二、目标设计
学习目标:1、了解定义的含义,能够叙述一些简单的数学概念的定义。
2、了解命题的定义,会把一个命题写成“如果……那么……”的形式。
学习重点:命题的定义,把一个命题写成“如果……那么……”的形式。
学习难点:某些命题有前提条件;或者有些命题的条件与结论不易区分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2定义与命题
教学目标:
知识目标:了解定义的含义.了解命题的含义.
能力目标:了解命题的结构,会把命题写成“如果……那么……”的形式. 情感目标:通过本节学习,培养学生树立科学严谨的学习方法。
教学重点、难点
重点:命题的概念.
难点:范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…” 形
式学生会感到困难,是本节课的难点.
教学过程:
一、 创设情景,导入新课 由学生观看下面两段对话:(幻灯显示)
♦小华与小刚正在津津有味地阅读《我们爱科学》.
♦坐在旁边的两个人一边听着他们的谈话,
一边也在悄悄地议论着。
哈!这个黑客终
于被逮住了.是的,现在的因特网广泛
运用于我们的生活中,给
我们带来了方便,但…….
这个黑客是个
小偷吧?可能是个喜欢穿黑衣服的贼.
♦一对父子的谈话
法律就是法国的律师
爸爸,什么叫
法律?法盲就是法国的盲人
那么什么是法
盲?
思考:为什么出现这种情况?学生讨论。
总结:可见,在交流时对名称和术语要有共同的认识才行。
得出课题(板书)
二、合作交流,探求新知
1.定义概念的教学
从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.
象这些问题中的黑客、法律、法盲等含义必须有明确的规定,即需要给出定义.
2.完成做一做
请说出下列名词的定义:
(1)无理数;(2)直角三角形;(3)角平分线;(4)频率;(5)压强.
3.命题概念的教学
1、练习:判断下列语句在表述形式上,哪些对事情作了判断?
哪些没有对事情作出判断?
(1)对顶角相等;
(2)画一个角等于已知角;
(3)两直线平行,同位角相等;
(4)a ,b 两条直线平行吗?
(5)鸟是动物;
(6)若42
=a ,求a 的值;
(7)若22b a =,则b a =.
(8)2008年奥运会在北京举行。
在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.
2、命题的结构的教学
我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.
题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”
可以改写成“如果两条直线平行,那么同位角相等”.
三、师生互动 运用新知
例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:
(1) 等底等高的两个三角形面积相等。
(2) 三角形的内角和等于180°。
(3)对顶角相等。
(4)同位角相等,两直线平行。
分析:找出命题的条件和结论是此题关键,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去.与学生一起完成。
练习:请给下列图形命名,,并给出名称的定义:
① ②
四、应用新知 体验成功
1.课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,
第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.
五、总结回顾,反思内化
学生自由发言,这节课学了什么?教师做补充.
三个内容:
⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一。