2018年上海高三一模真题汇编——三角比三角函数专题
上海市各区2018届高三数学(理科)一模试题分类汇编:三角函数 精品

上海市各区2018届高三数学(理科)一模试题分类汇编三角函数2018.01.23(普陀区2018届高三1月一模,理)3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .3. 4;(长宁区2018届高三1月一模,理)7、设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ]上单调递增,则ω的取值范围是_________. 7、]23,0((徐汇区2018届高三1月一模,理)4. 已知3sin 5x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则x = .(结果用反三角函数表示)(嘉定区2018届高三1月一模,理)6.已知θ为第二象限角,54sin =θ,则=⎪⎭⎫ ⎝⎛+4tan πθ____________.6.71-(杨浦区2018届高三1月一模,理)9. 已知函数()1cos sin )(2-+=x x x f ωω的最小正周期为π,则=ω _________. 9. 理1±;(浦东新区2018届高三1月一模,理)4.已知tan tan αβ、是方程2670x x ++=的两根,则tan()αβ+=_______. 4. 1(长宁区2018届高三1月一模,理)9、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若bc b a 322=-,B C sin 32sin = ,则角A =._________9、6π (浦东新区2018届高三1月一模,理)9.在锐角ABC 中,4,3AC BC ==,三角形的面积等于33,则AB 的长为___________. 9. 13(徐汇区2018届高三1月一模,理)2. 函数x x y 2cos 2sin =的最小正周期是 .(普陀区2018届高三1月一模,理)17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .17 C (徐汇区2018届高三1月一模,理)16. 为了得到函数2sin ,36x y x R π⎛⎫=+∈ ⎪⎝⎭的图像,只需把函数2sin ,y x x R =∈的图像上所有的点--------------------------------------------------------------------------------------------------------------------------------------( )(A) 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (B) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(C) 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(D) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(16. B浦东新区2018届高三1月一模,理)16. 方程5log sin x x 的解的个数为( )(A) 1 (B) 3 (C) 4 (D) 5 16. B(长宁区2018届高三1月一模,理)17、已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12B .122± C .1102± D .3222-± 17、A(嘉定区2018届高三1月一模,理)17.将函数x y 2sin =(R ∈x )的图像分别向左平移m (0>m )个单位,向右平移n(0>n )个单位,所得到的两个图像都与函数⎪⎭⎫⎝⎛+=62sin πx y 的图像重合,则n m + 的最小值为……………………………………………………………………………( ) A .32π B .65π C .π D .34π17.C(杨浦区2018届高三1月一模,理)17. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 1=a ,A B 2=, 则b 的取值范围为 ………( ). )(A ()3,2 . )(B ()3,1 .)(C()2,2 . )(D ()2,0 .17. A ;(普陀区2018届高三1月一模,理)20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值. 20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分 621521322335+=⨯+⨯=………………14分(杨浦区2018届高三1月一模,理)21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1) 求抛物线Γ方程;(2) 如果使“蝴蝶形图案”的面积最小,求α的大小?21. 【解】理科 (1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……6分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……7分解得 αα2sin )1(cos 2+=AF ……8分同理: αα2cos )sin 1(2-=BF ……9分 αα2cos )sin 1(2+=DF ……10分 αα2sin )cos 1(2-=CF ……11分 “蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ……12分则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8……14分(长宁区2018届高三1月一模,理)20.(本题满分14分,其中(1)小题满分6分,(2)小题满分8分)在ABC ∆中,已知3AB AC BA BC =. (1)求证tan 3tan B A =; (2)若5cos C =求角A 的大小. 20、(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B , 即cos =3cos AC A BC B . …………2分 由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B . …………4分 又∵0<A B<π+,∴cos 0 cos 0A>B>,.∴sin sin =3cos cos B AB A即tan 3tan B A =. …………6分(2)∵ 5cos 0C <C <π=,∴2525sin 1=5C ⎛⎫=- ⎪ ⎪⎝⎭.∴tan 2C =.…………8分 ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-.∴tan tan 21tan tan A BA B+=--. …………10分由 (1) ,得24tan 213tan A A =--,解得1tan =1 tan =3A A -,. …………12分∵cos 0A>,∴tan =1A .∴=4A π. …………14分(浦东新区2018届高三1月一模,理)19. (本题满分12分,第1小题6分,第2小题6分)如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,2SD AD ==(1)求证:AC SB ⊥;(2)求二面角C SA D --的大小. 19.解:(1)连接BD ,∵SD ⊥平面ABCDAC ⊆平面ABCD∴AC ⊥SD ………………4分 又四边形ABCD 是正方形,∴AC ⊥BD ∴AC ⊥平面SBD∴AC⊥SB. ………………6分(2)设SA 的中点为E ,连接DE 、CE , ∵SD=AD,CS=CA, ∴DE ⊥SA, CE ⊥SA.∴CED ∠是二面角C SA D --的平面角. …………9分 计算得:DE 2,CE 6,CD =2,则CD ⊥DE.3cos 3CED ∠=, 3arccos 3CED ∠= 所以所求二面角的大小为3arccos3.………12分(嘉定区2018届高三1月一模,理)20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x .(1)求函数)(x f 的最小正周期和单调递增区间; (2)在锐角三角形ABC 中,若1)(=A f ,2=⋅AC AB ,求△ABC 的面积.20.(本题满分14分,第1小题满分8分,第2小题满分6分)(1)⎪⎭⎫⎝⎛+=+=-+=32sin 22cos 32sin )1cos 2(3cos sin 2)(2πx x x x x x x x f , ………………………………………………(2分) 所以,函数)(x f 的最小正周期为π. ………………………………………………(1分) 由223222πππππ+≤+≤-k x k (Z ∈k ), ………………………………………(2分)得12125ππππ+≤≤-k x k (Z ∈k ), …………………………………………(2分) 所以,函数)(x f 的单调递增区间是⎥⎦⎤⎢⎣⎡+-12,125ππππk k (Z ∈k ). ……………(1分) (2)由已知,132sin 2)(=⎪⎭⎫⎝⎛+=πA A f ,所以2132sin =⎪⎭⎫ ⎝⎛+πA , ……………(1分)因为20π<<A ,所以34323πππ<+<A ,所以6532ππ=+A ,从而4π=A . …(2分)又2cos ||||=⋅⋅=⋅A AC AB AC AB ,,所以,2||||=⋅AC AB , ………………(1分) 所以,△ABC 的面积2222221sin ||||21=⨯⨯=⋅⋅⋅=A AC AB S . …………(2分)。
最新上海高三一模真题汇编——三角比三角函数专题(教师版)资料

2018年一模汇编——三角比三角函数专题一、知识梳理【知识点1】三角比求值【例1】已知α是第二象限的角,且a =αcos ,利用a 表示tan α= .【答案】aa 21-.【解析】由α是第二象限的角,a =αcos 知21sin a -=α,2sin 1tan cos a aααα-==. 【点评】熟练掌握由tan α的值求ααcos ,sin 的值的操作程序;给(一个角的三角函数)值求(另一个三角函数)值的问题,一般要用“给值”的角表示“求值”的角,再用两角和(差)的三角公式求得.【例2】已知),,0(πα∈且51cos sin -=+αα,则tan α= . 【答案】43-. 【解析】由51cos sin -=+αα平方得02524cos sin 2<-=αα,又由),0(πα∈知),2(ππα∈. 则有0cos ,0sin <>αα.2549cos sin 21)cos (sin 2=-=-αααα,得57cos sin =-αα.有54cos ,53sin -==αα,所以3tan 4α=-. 【点评】此类问题经常出现在各类考试中,而且错误率都比较高.原因是不能根据角所在的象限,对函数值进行正确的取舍.【知识点2】两角和与差公式、诱导公式、倍角公式 【例1】设12cos(),sin(),2923βααβ-=--=且,0,22ππαπβ<<<<求cos().αβ+ 【答案】-729239. 【解析】,0,22ππαπβ<<<<,.42422πβπαπαπβ∴<-<-<-<故由1cos(),29βα-=-得45sin().29βα-=由2sin(),23αβ-=得5cos().23αβ-=75cos()cos ()().22227αββααβ+⎡⎤∴=---=⎢⎥⎣⎦ 2239cos()2cos ()1.2729αβαβ+∴+=-=-【点评】两角和与差公式、诱导公式、倍角公式等在应用时,都比较注重寻求角与角的联系,尤其是建立已知角与所求角的联系.【例2】已知sin(2)2sin 0.αββ++= 求证tan 3tan().ααβ=+ 【解析】由题设:[][]sin ()+=2sin ().αβαααβ+-+即sin()cos cos()sin =2sin cos()2cos sin().αβααβαααβααβ++++-+∴3sin()cos =sin cos()αβαααβ++ ∴tan 3tan().ααβ=+【点评】注意题设中的角和结论中角的关系.【知识点3】万能公式【例1】已知),2(,0cos 2cos sin sin 622ππααααα∈=-+,求)32sin(πα+的值.【答案】261235-. 【解析】由0cos 2cos sin sin 622=-+αααα得:26tan tan 20αα+-=,则1tan 2α=或2tan 3α=-.又),2(ππα∈,所以2tan 3α=-.由万能公式得22tan 12sin 21tan 13ααα==-+,221tan 5cos 21tan 13ααα-==+.知261235)32sin(-=+πα. 【点评】先通过正余弦的齐次式处理方法求出正切值,再根据万能公式得出答案. 【知识点4】正余弦定理【例1】有一个解三角形的题因纸张破损有一个条件不清,具体如下:“在ABC ∆中,角A ,B ,C 所对的边分别为,,.a b c 已知03,45,a B ==______________,求角A .”经推断破损处的条件为三角形一边的长度,且答案提示060,A =试将条件补充完整. 【答案】622c +=. 【解析】由060,A =045,B =得075,C =正弦定理sin sin a cA C=得622c +=. 【点评】此题很容易由sin sin a bA B=得2b =,但答案不能填2b =,否则题目中的答案角A 算出来有两解不符合题意.【例2】在△ABC 中,c b a ,,分别是C B A ∠∠∠,,对边的长.已知c b a ,,成等比数列,且bc ac c a -=-22,求A ∠的大小及cBb sin 的值. 【答案】3π=∠A ,sin 3=2b Bc . 【解析】由c b a ,,成等比数列得ac b =2,则bc ac c a -=-22化成bc a c b =-+222,由余弦定理得212cos 222=-+=bc a c b A ,3π=∠A .由ac b =2得b a c b =,所以c B b sin =233sin sin sin ===πA b B a .【点评】三角形中边角运算时通常利用正弦定理、余弦定理转化为角(或边)处理.有关c b a ,,的齐次式(等式或不等式),可以直接用正弦定理转化为三角式;当知道△ABC 三边c b a ,,平方的和差关系,常联想到余弦定理解题.【知识点5】判断三角形形状【1】 在△ABC 中,若C A B sin sin cos 2=,则△ABC 的形状一定是( ) A 、等腰直角三角形; B 、直角三角形; C 、等腰三角形; D 、等边三角形. 【答案】C.【解析】在三角形ABC 中:A B B A B A B A C sin cos 2sin cos cos sin )sin(sin =+=+=, 则B A B A B A B A =⇒=-⇒=-0)sin(0sin cos cos sin .所以△ABC 是等腰三角形.【点评】判断三角形形状一般有两种思路,一是通过角的转化,二是用边的关系。
最新上海市2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 方程lg(34)1x +=的解x =2. 若关于x 的不等式0x a x b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧AB 上的一个动点,则OP AB ⋅取值范围是10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}n nb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2A n A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m =⋅(万元),m 表示污水流量,铺设管道的费 用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y 的取值范围;20. 如图,椭圆2214yx+=的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为25,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点;(1)求双曲线Γ的方程;(2)求点M的纵坐标M y的取值范围;(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤);(1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列,点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;。
(最新整理)2018高三“一模”数学试题汇编(函数)

2018高三“一模”数学试题汇编(函数)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高三“一模”数学试题汇编(函数))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高三“一模”数学试题汇编(函数)的全部内容。
2018上海各区高三“一模”数学试题分类(函数)一、填空题: 1.若全集,集合,则U R ={}02A x x x =≤≥或U C A = 2.设集合,,则{2,3,4,12}A ={}0,1,2,3B =A B = 3.已知集合,,若,则{}1,2,5A ={}2,B a ={}1,2,3,5A B = a =4.已知全集,集合,集合,则U N ={}1,2,3,4A ={}3,4,5B =()U C A B = 5.设全集,集合,,则U Z ={}1,2M ={}2,1,0,1,2P =--()U P C M = 6.已知函数,,若,则实数{}2,3A ={}1,2,B a =A B ⊆a =7.已知集合,,则{}03A x x =<<{}24B x x =≥A B = 8.已知集合,,若,则实数{}1,2,A m ={}3,4B ={}3A B = m =9.函数的定义域是()lg(2)f x x =-10.函数的定义域为()f x =11.若行列式,则 124012x -=x =12.不等式的解为 10x x-<13.不等式的解集是 11x<14.不等式的解集是 211x x +>+15.不等式的解集是 2433(1)12(2x x x --->16.不等式的解集为 111x ≥-17.已知是定义在上的奇函数,则()f x R (1)(0)(1)f f f -++=18.已知函数的反函数为,则()21f x x =-1()f x -1(5)f -=19.若函数的反函数的图像经过点,则 ()f x x α=11(,)24a =20.方程的解222log (2)log (3)log 12x x -+-=x =21.已知函数的反函数为,则,则实数2()log ()f x x a =+1()y f x -=1(2)1f -=a =22.已知函数是奇函数,当时,,且,则()y f x =0x <()2x f x ax =-(2)2f =a =23.已知函数,是函数的反函数,若的图像()1log a f x x =+1()y f x -=()y f x =1()y f x -= 过点,则实数的值是(2,4)a 24.已知函数是定义在上且周期为的偶函数,当时,()f x R 4[2,4]x ∈43()log ()2f x x =- 则 1(2f =25.已知函数是定义在上的偶函数,且在上是增函数,若,()y f x =R [0,)+∞(1)(4)f a f +≤ 则实数的取值范围是a 26.已知,函数在区间上有最小值,且有最大值为13a >()lg(1)f x x a =-+[0,31]a -0,则实数的取值范围是lg(1)a +a 27.若不等式对任意正整数恒成立,则实数的取值范围是 1(1)(1)31n na n +--⋅<++n a 28.若不等式对满足的任意实数恒成立,则实数的最大值222()x y cx y x -≤-0x y >>,x y c 为29.已知函数有三个零点,则实数的取值范围是()21f x x x a =--a 30.已知函数有三个不同的零点,则实数的取值范围是 22log (),0()3,0x a x f x x ax a x +≤⎧=⎨-+>⎩a 31.定义,已知函数、的定义域都是,则下列四个命题中为,(,),a a b F a b b a b ≤⎧=⎨>⎩()f x ()g x R 真命题的是 (写出所有真命题的序号)①若、都是奇函数,则函数为奇函数;()f x ()g x ((),())F f x g x ②若、都是偶函数,则函数为偶函数;()f x ()g x ((),())F f x g x ③若、都是增函数,则函数为增函数;()f x ()g x ((),())F f x g x ④若、都是减函数,则函数为减函数。
专题10 三角函数综合-2018年上海高考理科数学模拟题分类汇编

专题10 三角函数综合【母题原题1】【2018上海卷,18】设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。
【答案】(1);(2)或或.【解析】 【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出a 的值,再根据三角形函数的性质即可求出. 【详解】∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.【母题原题2】【2017上海卷,18】已知函数,.(1)求的单调递增区间;(2)设△ABC为锐角三角形,角A所对边,角B所对边,若,求△ABC的面积. 【答案】(1);(2)若,即有解得,即由余弦定理可得a2=b2+c2﹣2bc cos A,化为c2﹣5c+6=0,解得c =2或3, 若c =2,则即有B 为钝角,c =2不成立, 则c =3,△ABC 的面积为【母题原题3】【2017上海卷,11】设、,且,则的最小值等于________ 【答案】【命题意图】 高考对本部分内容的考查以能力为主,重点考查三角函数的性质(周期性、奇偶性、对称性、单调性、最值等),体现数形结合的思想,函数与方程的思想等的应用,均可能出现填空题与解答题中,难度中低档为主,主要有两种考查题型:(1)根据三角函数的解析式确定其性质;(2)根据三角函数的性质求相关的参数值(或取值范围).【命题规律】1. 高考对三角函数的图象与性质的考查往往集中于正弦函数、余弦函数、正切函数的图象与性质;函数y =Asin(ωx +φ)的图象及性质,主要考查三角函数图象的识别及其简单的性质(周期、单调性、奇偶性、最值、对称性、图象平移及变换等).2. 高考中主要涉及如下题型:(1) 考查周期、单调性、极值等简单性质;(2) 考查与三角函数有关的零点问题;(3) 考查图象的识别. 【方法总结】1.根据函数的图象确定函数()sin()(0,0)f x A x B A ωϕω=++>>中的参数主要方法:(1)A ,B 主要是根据图象的最高点或最低点的纵坐标确定,即2A -=最大值最小值,2B +=最大值最小值;(2)ω的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点(通常优先取非零点)的坐标确定.2.在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.“先平移,后伸缩”主要体现为由函数sin y x =平移得到函数()sin y x ϕ=+的图象时,平移ϕ个长度单位;“先伸缩,后平移” 主要体现为由函数()sin y x ω=平移得到函数()sin y x ωϕ=+的图象时,平移ϕω个长度单位. 3. 利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解. 4. 求解三角函数的周期性的方法:(1)求三角函数的周期,通常应将函数式化为只有一个函数名,且角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周期来求解.(2)三角函数的最小正周期的求法有:①由定义出发去探求;②公式法:化成sin()y A x ωϕ=+,或tan()y A x ωϕ=+等类型后,用基本结论2||T πω=或||T πω=来确定;③根据图象来判断. 5. 求解三角函数的单调性的方法:(1)三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.(2)已知三角函数的单调区间求参数的取值范围的三种方法:①子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;[ ②反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.6. 求解三角函数的奇偶性的策略:(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化简,再判断其奇偶性;(2)两个常见结论:①若函数()()sin f x A x ωϕ=+为奇函数,则()k k Z ϕπ=∈;若函数()()sin f x A x ωϕ=+为偶函数,则()2k k Z πϕπ=+∈;②若函数()()cos f x A x ωϕ=+为奇函数,则()2k k Z πϕπ=+∈;若函数()()cos f x A x ωϕ=+为偶函数,则()k k Z ϕπ=∈.7. 求解三角函数对称性的方法:(1)求函数sin()y A x ωϕ=+的对称中心、对称轴问题往往转化为解方程问题:①由sin y x =的对称中心是(0)k π,,k ∈Z ,所以sin()y A x ωϕ=+的中心,由方程x k ωϕπ+=解出x 即可;②因为sin y x =的对称轴是2x k ππ=+,k ∈Z ,所以可由2x k πωϕπ+=+解出x ,即为函数sin()y A x ωϕ=+的对称轴;注意tan y x =的对称中心为1(,0)()2k k Z π∈;(2)对于函数sin()y A x ωϕ=+,其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线0x x =或点()0,0x 是否是函数的对称轴或对称中心时,可通过检验()0f x 的值进行判断. 8. 求解三角函数的值域(最值)常见的题目类型及求解策略:(1)形如sin cos y a x b x k =++的三角函数化为sin()y A x k ωϕ=++的形式,再利用正弦曲线的知识求最值(值域);(2)形如2sin sin y a x b x k =++的三角函数,可先设sin x t =,化为关于t 的二次函数求值域(最值); (3)形如()sin cos sin cos y a x x b x x c =+±+的三角函数,可先设sin cos t x x =±,化为关于t 的二次函数求值域(最值).1.【上海市浦东新区2018届三模】设函数的图象为,下面结论中正确的是( )A . 函数的最小正周期是B . 图象关于点对称C . 图象可由函数的图象向右平移个单位得到D . 函数在区间上是增函数【答案】B 【解析】 试题分析:的最小正周期,∵,∴图象关于点对称,∴图象可由函数的图象向右平移个单位得到,函数的单调递增区间是,当时,,∴函数在区间上是先增后减.考点:三角函数图象、周期性、单调性、图象平移、对称性.2.【上海市十二校2018届高三联考】已知函数()sincos 212cos2x x f x xωωω=(0)ω>, x R ∈,若函数()f x 在区间(),2ππ内没有零点,则ω的取值范围为( )A . 10,8⎛⎤ ⎥⎝⎦ B . 50,8⎛⎤ ⎥⎝⎦ C . ][150,,148⎛⎫⋃ ⎪⎝⎭ D . ][1150,,848⎛⎤⋃ ⎥⎝⎦【答案】D本题选择D 选项.点睛:重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 3.【上海市浦东新区2018届高三三模】已知的三边成等比数列,所对的角分别为,则的取值范围是_________.【答案】.【解析】 【分析】【点睛】本题考查等比中项的定义和余弦定理、基本不等式和正弦函数的图象和性质,考查运算能力,属于中档题.4.【上海市大同中学2018届高三三模】若,,,满足:,,则的值为__________.【答案】【解析】【分析】首先对所给的方程进行恒等变形,然后结合函数的单调性和角度的范围求得的值,然后求解三角函数值即可.【详解】∵,∴(−2β)3−2sinβcosβ−2λ=0,即(−2β)3+sin(−2β)−2λ=0.由可得.故−2β和是方程x3+sinx−2λ=0的两个实数解.再由,,,所以和的范围都是,由于函数x3+sinx在上单调递增,故方程x3+sinx−2λ=0在上只有一个解,所以,,∴,则的值为.【点睛】本题主要考查函数的单调性,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.【上海市2018年5月高考模拟】已知为常数),若对于任意都有,则方程在区间内的解为__________【答案】或【解析】【分析】由,可知是函数的最小值,利用辅助的角公式求出的关系,然后利用三角函数的图象和性质进行求解即可.【详解】则,由,解得,即,,当时,,当时,,故或,故答案为或.【点睛】本题主要考查三角函数的图象和性质,以及辅助角公式的应用,属于难题.利用该公式() 可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.6.【上海市浦东新区2018届高三三模】若的图像的最高点都在直线上,并且任意相邻两个最高点之间的距离为.(1)求和的值:(2)在中,分别是的对边,若点是函数图像的一个对称中心,且,求外接圆的面积.【答案】(1) .(2) .【解析】【分析】【点睛】本题考查了二倍角的正弦函数公式,以及正弦定理的应用,熟练掌握公式是解本题的关键,是中档题.7.【上海市大同中学2018届高三三模】如图一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.(1)当时,求关于的函数关系式;(2)当时,求的最大值;(3)若探照灯每9分钟旋转“一个来回”(自转到,再回到,称“一个来回”,忽略在及处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.【答案】(1)见解析;(2);(3)2分钟.【解析】【分析】(1)由题意结合三角函数的性质可得:当时,,当时,;(2)结合(1)中函数的解析式和三角函数的性质可得当时,;(3)结合实际问题和三角函数的性质计算可得点被照到的时间为分钟.【详解】【点睛】本题主要考查三角函数的实际应用,三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.8.【上海市2018年5月高考模拟】钓鱼岛及其附属岛屿是中国固有领土,如图:点分别表示钓鱼岛、南小岛、黄尾屿,点在点的北偏东方向,点在点的南偏西方向,点在点的南偏东方向,且两点的距离约为3海里.(1)求两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在点处因故障抛锚发出求教信号.一艘国舰艇正从点正东10海里的点处以18海里/小时的速度接近渔船,其航线为 (直线行进),而我东海某渔政船正位于点南偏西方向20海里的点处,收到信号后赶往救助,其航线为先向正北航行8海里至点处,再折向点直线航行,航速为22海里/小时.渔政船能否先于国舰艇赶到进行救助?说明理由.【答案】(1)14.25(2)渔政船能先于国舰艇赶到进行救助.【解析】【分析】(1)由题意,,,在中,由正弦定理可求两点间的距离;(2)结合(1)【点睛】本题主要考查阅读能力、数学建模能力和化归思想以及正弦定理与余弦定理的应用,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.9.【上海市虹口区2018届高三下学期教学质量监控(二模)】已知中,角所对应的边分别为,(是虚数单位)是方程的根,.(1)若,求边长的值;(2)求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)解得,所以,,,由正弦定理得;(2)由余弦定理得,根据基本不等式,得,所以面积的最大值等于。
2018高三年级一模汇编-三角比三角函数

2017年高三一模汇编——三角比与三角函数一、填空题1(宝山2017一模6)若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为【参考答案】12(崇明2017一模9)已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是【参考答案】8333(奉贤2017一模12)已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 【参考答案】2π4(虹口2017一模3)设函数()sin cos f x x x =-,且()1f a =,则sin 2a = 【参考答案】05(虹口2017一模6)已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一) 【参考答案】充分非必要 6(金山2017一模4)函数xx x x x f cos sin sin cos )(=的最小正周期是__________【参考答案】π7(静安2017一模2)函数2()13sin 4f x x π⎛⎫=-+ ⎪⎝⎭的最小正周期为 【参考答案】π8(静安2017一模6)已知α为锐角,且3cos(),45πα+=则sin α= 【参考答案】2109(闵行2017一模8)集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 【参考答案】2{,}33ππ10(浦东2017一模8)函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为【参考答案】π11(普陀2017一模2)若22ππα-<<,3sin 5α=,则cot 2α= 【参考答案】72412(青浦2017一模9)将边长为10的正三角形ABC ,按“斜二测”画法在水平放置的平面上画出为△A B C ''',则△A B C '''中最短边的边长为 (精确到0.01) 【参考答案】3.6213(松江2017一模5)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为 【参考答案】π14(杨浦2017一模4)若ABC ∆中,4a b +=,o 30C ∠=,则ABC ∆面积的最大值是 。
(完整word)2018学年上海高三数学一模分类汇编——解析几何,推荐文档

2(2018崇明一模). 抛物线24y x =的焦点坐标是3(2018静安一模). 与双曲线221916x y -=有公共的渐近线,且经过点(A -的双曲线方程是5(2018闵行一模). 已知直线l 的一个法向量是1)n =-r ,则l 的倾斜角的大小是5(2018青浦一模). 在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过椭圆2214y x +=右顶点的双曲线的标准方程是5(2018金山一模). 已知1F 、2F 是椭圆221259x y +=的两个焦点,P 是椭圆上一个动点,则12||||PF PF ⨯的最大值是6(2018黄浦一模). 过点(2,1)P -作圆225x y +=的切线,则该切线的点法向式方程是 6(2018徐汇一模). 已知圆22:1O x y +=与圆O '关于直线5x y +=对称,则圆O '的方程是 7(2018静安一模). 已知点(2,3)A 到直线(1)30ax a y +-+=的距离不小于3,则实数a 的取值范围是8(2018金山一模). 已知点(2,3)A ,点(B -,直线l 过点(1,0)P -,若直线l 与线段AB 相交,则直线l 的倾斜角的取值范围是8(2018松江一模). 若直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且AB =a =8(2018虹口一模). 在平面直角坐标系中,双曲线2221x y a-=的一个顶点与抛物线212y x =的焦点重合,则双曲线的两条渐近线的方程为9(2018宝山一模). 已知抛物线C 的顶点为坐标原点,双曲线22125144x y -=的右焦点是C 的焦点F ,若斜率为1-,且过F 的直线与C 交于A 、B 两点,则||AB =9(2018普陀一模). 若直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y ,则1221x y x y +的值为9(2018奉贤一模). 已知(2,0)A ,(4,0)B ,动点P 满足PA PB =,则P 到原点的距离为10(2018奉贤一模). 设焦点为1F 、2F 的椭圆22213x y a +=(0)a >上的一点P 也在抛物线294y x =上,抛物线焦点为3F ,若32516PF =,则△12PF F 的面积为10(2018虹口一模). 设椭圆22143x y +=的左、右焦点分别为1F 、2F ,过焦点1F 的直线交椭圆于M 、N 两点,若2MNF ∆的内切圆的面积为π,则2MNF S ∆=10(2018杨浦一模). 抛物线28y x =-的焦点与双曲线2221x y a-=的左焦点重合,则这条双曲线的两条渐近线的夹角为11(2018闵行一模). 已知1F 、2F 分别是双曲线22221x y a b-=(0a >,0b >)的左右焦点,过1F 且倾斜角为30°的直线交双曲线的右支于P ,若212PF F F ⊥,则该双曲线的渐近线方程是12(2018杨浦一模). 已知点C 、D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD MC λ=u u u u r u u u u r,则实数λ的取值范围为12(2018普陀一模). 双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数()f x 的图像,关于此函数()f x 有如下四个命题: ① ()f x 是奇函数;② ()f x 的图像过点3)2或3)2-; ③ ()f x 的值域是33(,][,)22-∞-+∞U ;④ 函数()y f x x =-有两个零点; 则其中所有真命题的序号为12(2018浦东一模). 在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-u u u r u u u u r u u u r,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12||||||PF PF -为定值,则该定值为16(2018松江一模). 已知曲线1:||2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A. (,1][0,1)-∞-UB. (1,1]-C. [1,1)-D. [1,0](1,)-+∞U 16(2018青浦一模). 在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为(3,1)-,M 、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为( )A. 0个B. 2个C. 4个D. 无数个16(2018崇明一模). 直线2x =与双曲线22:14x C y -=的渐近线交于A 、B 两点,设P 为双曲线上任一点,若OP aOA bOB =+u u u r u u u r u u u r(,a b R ∈,O 为坐标原点),则下列不等式恒成立的是( ) A. 221a b +≥ B. ||1ab ≥ C. ||1a b +≥ D. ||2a b -≥16(2018静安一模). 若曲线||2y x =+与22:144x y C λ+=恰有两个不同交点,则实数λ取值范围为( )A. (,1](1,)-∞-+∞UB. (,1]-∞-C. (1,)+∞D. [1,0)(1,)-+∞U18(2018青浦一模). 已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2D 作直线l 与抛物线C 交于不同两点M 、N ,过M 作x 轴的垂线分别与直线OP 、ON 交于点A 、B ,其中O 为坐标原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.19(2018黄浦一模). 已知椭圆2222:1x y E a b+=(0a b >>)的右焦点为(1,0)F ,点(0,)B b 满足||2FB =.(1)求实数a 、b 的值;(2)过点F 作直线l 交椭圆E 于M 、N 两点,若BFM ∆与BFN ∆的面积之比为2,求直线l 的方程.20(2018松江一模). 已知椭圆2222:1x y E a b +=(0a b >>)经过点3(1,)2,其左焦点为(3,0)F -,过F 点的直线l 交椭圆于A 、B 两点,交y 轴的正半轴于点M .(1)求椭圆E 的方程;(2)过点F 且与l 垂直的直线交椭圆于C 、D 两点,若四边形ACBD 的面积为43,求直线l 的方程; (3)设1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求证:12λλ+为定值.20(2018虹口一模). 已知平面内的定点F 到定直线l 的距离等于p (0p >),动圆M 过点F 且与直线l 相切,记圆心M 的轨迹为曲线C ,在曲线C 上任取一点A ,过A 作l 的垂线,垂足为E .(1)求曲线C 的轨迹方程; (2)记点A 到直线l 的距离为d ,且3443p pd ≤≤,求EAF ∠的取值范围; (3)判断EAF ∠的平分线所在的直线与曲线的交点个数,并说明理由.20(2018杨浦一模). 设直线l 与抛物线2:4y x Ω=相交于不同两点A 、B ,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆22:(5)16C x y -+=相切于点M ,且M 为线段AB 的中点,求直线l 的方程;(3)若0OA OB ⋅=u u u r u u u r,点Q 在线段AB 上,满足OQ AB ⊥,求点Q 的轨迹方程.20(2018金山一模). 给出定理:在圆锥曲线中,AB 是抛物线2:2y px Γ=(0p >)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,若A 、B 两点纵坐标之差的绝对值||A B y y a -=(0a >),则ADB ∆的面积316ADB a S p∆=,试运用上述定理求解以下各题:(1)若2p =,AB 所在直线的方程为24y x =-,C 是AB 的中点,过C 且平行于x 轴的 直线与抛物线Γ的交点为D ,求ADB S ∆;(2)已知AB 是抛物线2:2y px Γ=(0p >)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过E 、F 且平行于x 轴的直线与抛物线2:2y px Γ=(0p >)分别交于点M 、N ,若A 、B 两点纵坐标之差的绝对值||A B y y a -=(0a >),求AMD S ∆和BND S ∆; (3)请你在上述问题的启发下,设计一种方法求抛物线:22y px =(0p >)与弦AB 围成的“弓形”的面积,并求出相应面积.20(2018普陀一模). 设点1F 、2F 分别是椭圆2222:12x y C t t+=(0t >)的左、右焦点,且椭圆C 上的点到点2F 的距离的最小值为2,点M 、N 是椭圆C 上位于x 轴上方的两点,且向量1F M u u u u r与向量2F N u u u u r 平行. (1)求椭圆C 的方程;(2)当120F N F N ⋅=u u u u r u u u u r时,求1F MN ∆的面积;(3)当21||||F N F M -=u u u u r u u u u r时,求直线2F N 的方程.20(2018徐汇一模). 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右焦点分别为1F 、2F ,且1F 、2F 与短轴的一个端点Q 构成一个等腰直角三角形,点22P 在椭圆Γ上,过点2F 作互相垂直且与x 轴不重合的两直线AB 、CD 分别交椭圆Γ于A 、B 、C 、D ,且M 、N 分别是弦AB 、CD 的中点.(1)求椭圆Γ的标准方程;(2)求证:直线MB 过定点2(,0)3R ;(3)求2MNF ∆面积的最大值.20(2018浦东一模). 已知椭圆2222:1x y a b Γ+=(0a b >>)的左、右焦点分别为1F 、2F ,设点(0,)A b ,在12AF F ∆中,1223F AF π∠=,周长为4+(1)求椭圆Γ的方程;(2)设不经过点A 的直线l 与椭圆Γ相交于B 、C 两点,若直线AB 与AC 的斜率之和为1-,求证:直线l 过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E ,点P 为椭圆Γ上的一个动点,试根据AEP ∆面积S 的 不同取值范围,讨论AEP ∆存在的个数,并说明理由.20(2018闵行一模). 已知椭圆221109x y +=的右焦点是抛物线2:2y px Γ=的焦点,直线l 与Γ相交于不同的两点11(,)A x y 、22(,)B x y .(1)求Γ的方程;(2)若直线l 经过点(2,0)P ,求OAB ∆的面积的最小值(O 为坐标原点);(3)已知点(1,2)C ,直线l 经过点(5,2)Q -,D 为线段AB 的中点,求证:||2||AB CD =.20(2018崇明一模). 在平面直角坐标系中,已知椭圆222:1x C y a+=(0a >,1a ≠)的两个焦点分别是1F 、2F ,直线:l y kx m =+(,k m R ∈)与椭圆交于A 、B 两点. (1)若M 为椭圆短轴上的一个顶点,且12MF F ∆是直角三角形,求a 的值;(2)若1k =,且OAB ∆是以O 为直角顶点的直角三角形,求a 与m 满足的关系; (3)若2a =,且14OA OB k k ⋅=-,求证:OAB ∆的面积为定值.20(2018奉贤一模). 设22{(,)|||1}M x y x y =-=,22{(,)|1}N x y x y =-=,设任意一点00(,)P x y M ∈,M 表示的曲线是C ,N 表示的曲线是1C ,1C 的渐近线为1l 和2l .(1)判断M 和N 的关系并说明理由;(2)设01x ≠±,1(1,0)A -,2(1,0)A ,直线1PA 的斜率是1k ,直线2PA 的斜率是2k ,求12k k 的取值范围;(3)过P 点作1l 和2l 的平行线分别交曲线C 的另外两点于Q 、R ,求证:PQR ∆的面积为定值.20(2018静安一模). 如图,已知满足条件|3||3|z i i -=-(其中i 为虚数单位)的复数z 在复平面xOy 对应点的轨迹为圆C (圆心为C ),设复平面xOy 上的复数z x yi =+(x R ∈,y R ∈)对应的点为(,)x y ,定直线m 的方程为360x y ++=,过(1,0)A -的一条动直线l 与直线m 相交于N 点,与圆C 相交于P 、Q 两点,M 是弦PQ 中点. (1)若直线l 经过圆心C ,求证:l 与m 垂直; (2)当||23PQ =时,求直线l 的方程;(3)设t AM AN =⋅u u u u r u u u r,试问t 是否为定值?若为定值,请求出t 的值,若t 不为定值,请说明理由.。
2018——2019年上海各区高中数学高三数学一模试卷试题汇总

第一学期教学质量检测高三数学试卷一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________.()12,2. 抛物线24=y x 的焦点坐标为_________.()10, 3. 不等式2log 1021>x 的解为____________.4(,)+∞4. 已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为_________. 225. 若函数()=y f x 的图像恒过点01(,),则函数13()-=+y fx 的图像一定经过定点____.()13,6. 已知数列{}n a 为等差数列,其前n 项和为n S .若936=S ,则348++=a a a ________.127. 在△ABC 中,内角,,A B C 的对边是,,a b c .若22)32(b a ⋅+=,c b =,则=A ___.56π 8. 已知圆锥的体积为π33,母线与底面所成角为3π,则该圆锥的表面积为 .π3 9.已知二项式n的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为________.358x 10. 已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.(,-∞11. 已知数列{}n a 满足:211007(1)2018(1)++=-++n n n na n a n a *()∈n N , 且121,2,a a ==若1lim,+→∞=n n na A a 则=A ___________. 100912. 已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. [)2,6∈-a解:当[)12,∈+∞x 时,1211041616x x ⎛⎤∈ ⎥+⎝⎦,.当()2,2∈-∞x 时,(1)若2a ≥,则()11=22x aa xf x --⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭在(),2-∞上是单调递增函数,所以()2210,2a f x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.若满足题目要求,则21100,162a -⎛⎫⎛⎤⎛⎫⊆ ⎪ ⎪⎥ ⎪⎝⎦⎝⎭⎝⎭,,所以24111,24,62162a a a -⎛⎫⎛⎫>=∴-<< ⎪⎪⎝⎭⎝⎭.又2a ≥,所以[)2,6a ∈. (2)若2a <,则()1,,21=21, 2.2a xx ax ax a f x a x ---⎧⎛⎫<⎪ ⎪⎪⎝⎭⎛⎫=⎨ ⎪⎝⎭⎛⎫⎪≤< ⎪⎪⎝⎭⎩,()f x 在(),a -∞上是单调递增函数,此时()()0,1f x ∈;()f x 在[),2a 上是单调递减函数,此时()21,12a f x -⎛⎤⎛⎫∈ ⎥ ⎪ ⎝⎭⎥⎝⎦.若满足题目要求,则211,2162aa -⎛⎫≤∴≥- ⎪⎝⎭,又2a <,所以[)2,2a ∈-.综上,[)2,6a ∈-.二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 13. “14<a ”是“一元二次方程20-+=x x a 有实数解”的( A ) (A )充分非必要条件 (B )充分必要条件(C )必要非充分条件 (D )非充分非必要条件 14. 下列命题正确的是( D )(A )如果两条直线垂直于同一条直线,那么这两条直线平行(B )如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面 (C )如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面 (D )如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行15. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( B )种.(A )72 (B )36 ( (D )81 16. 已知点()()1,2,2,0-A B ,P ⋅AP AB 的取值范围为( A )(A )[]1,7 (B )[]1,7- (C)1,3⎡+⎣ (D)1,3⎡-+⎣三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤. 17.(本小题满分14分,第1小题满分7分,第2小题满分7分 已知直三棱柱ABC C B A -111中,︒=∠===9011BAC ,AA AC AB .(1)求异面直线B A 1与11C B 所成角; (2)求点1B 到平面BC A 1的距离.解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h , 由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,A ,()01111,,C B -=,…………4分A1C CB1B 1A因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =,则B A n ,BC n 1⊥⊥. 又()011,,-=,()1011-=,,A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离33==d .…………………………14分 18.(本小题满分14分,第1小题满分7分,第2小题满分7分)已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点3455(,)P ,求()f α的值; (2)当[,]63ππ∈-x 时,求()f x 的单调递增区间和值域.解:(1)∵角α的终边与单位圆交于点3455(,)P ,∴43sin =,cos =55αα ……2分2243432()cos 2sin 2()55525αααα=-=⨯-⨯=f …4分(2)2()cos 2sin f x x x x =-2cos21x x =+- …………………6分2sin(2)16x π=+- …………………………8分由222262k x k πππππ-≤+≤+得,36k x k ππππ-≤≤+又[,]63x ππ∈-,所以()f x 的单调递增区间是[,]66x ππ∈-; ………………10分∵[,]63x ππ∈-,∴52666x πππ-≤+≤…………………………12分 ∴1sin(2)126x π-≤+≤,()f x 的值域是[2,1]-. ………………14分19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E = (6分)(2)03t <≤时,16()=20aH t t t++ (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨⎪⎩ (10分) ②39(,)1616343a a⎧>⎪⇒∈+∞⎨+≥⎪⎩ (12分) 综上,1[,)4a ∈+∞ (14分)20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知双曲线Γ: 22221(0,0)x y a b a b-=>>的左、右焦点分别是 1F 、2F ,左、右两顶点分别是 1A 、2A ,弦 AB 和CD 所在直线分别平行于x 轴与 y 轴,线段BA 的延长线与线段CD 相交于点 P (如图).(1)若(2,3)d =是Γ的一条渐近线的一个方向向量,试求Γ的两渐近线的夹角θ;(2)若1PA =,5PB = ,2PC =,4PD =,试求双曲线Γ的方程;(3)在(..1.)的条件下.....,且124A A =,点C 与双曲线的顶点不重合,直线1CA 和直线2CA 与直线:1l x =分别相交于点M 和N ,试问:以线段MN 为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.解:(1)双曲线22221x y a b-=的渐近线方程为:即0bx ay ±=,所以3b a =,…………2分 从而3tan2θ=22tan 2tan 431tan2θθθ==-, 所以arctan 3θ=………………………………………………..4分(2)设 (,)P P P x y ,则由条件知:11()()322P x PB PA PA PB PA =-+=+=,11()()122P y PC PD PC PD PC =+-=-=,即(3,1)P .…………6分所以(2,1)A ,(3,3)C ,………………………………………………………..…………7分代入双曲线方程知:2751,2781199114222222==⇒⎪⎩⎪⎨⎧=-=-b a ba b a ……9分 127527822=-y x ………………………………………………………………….. 10分 (3)因为124A A =,所以2a =,由(1)知,3b =Γ的方程为: 22143x y -=, 令00(,)C x y ,所以2200143x y -=,010:(2)2y CA y x x =++,令1x =,所以003(1,)2y M x +, 020:(2)2y CA y x x =--,令1x =,所以00(1,2y N x --, …………12分故以MN 为直径的圆的方程为:200003(1)()()022y y x y y x x --+--=+-, 即222000200033(1)()0224y y y x y y x x x -++--=-+-,即22000039(1)()0224y y x y y x x -++--=-+,…………………………………………….14分 若以MN 为直径的圆恒经过定点),(y x于是⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=-+-=0231049)1(022y x y x y 所以圆过x 轴上两个定点5(,0)2和1(,0)2-……………………………………………16分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,n A A A A (*n N ∈),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (*n N ∈),使得1k k kA B A -∆*()k N ∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .(1)求(1),(2)f f ,并猜想()f n (不要求证明); (2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)mm内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2λ≤m S 对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:11,2n b b +==数列{}n c 满足:111,n nc c +==求证:1()2n n n b f c π+<<.解:(1)(1)1f =,(2)2f = (2分) 猜想()f n n = (2分) (2)98n a n =- (5分)由21218899899999m mm m n n --<-<⇒+<<+112191,92,,9---∴=++⋅⋅⋅⋅⋅⋅m m m n (6分)21199m m m t --∴=- (7分) 352211(91)(99)(99)(99)m m m S --∴=-+-+-+⋅⋅⋅+- 352121(9999)(1999)m m --=+++⋅⋅⋅+-+++⋅⋅⋅+22129(19)(19)91091191980m m m m +---⋅+=-=-- (9分) 2λ≤m S 对任意*m N ∈恒成立min 12()83λλ⇒≤==⇒≤m S S (10分).(3)1sin,4b π=记1sin ,4n n b πθθ==,则1sin sin 2n n θθ+== *1()2n n n N πθ+⇒=∈ (12分) 1tan ,4c π=记1tan ,4n n c πϕϕ==,则1sec 1tan tan tan 2n n n n ϕϕϕϕ+-==*1()2n n n N πϕ+⇒=∈ (14分) 11sin,tan ,22n n n n b c ππ++∴==当(0,)2x π∈时,sin tan x x x <<可知: 1111sin()tan ,2222n n n n n n b f c ππππ++++=<=<= (18分)杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分) 1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u=2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为______ 12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x=-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin ,,2sin cos a f b f c f θθθθθ+⎛⎫⎛⎫===⎪⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4 (B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题(本大题共有5题,满分76分) 17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年一模汇编——三角函数专题一、知识梳理【知识点1】求值【例1】已知α是第二象限的角,且a =αcos ,利用a 表示tan α= .【答案】aa 21-.【解析】由α是第二象限的角,a =αcos 知21sin a -=α,sin tan cos aααα==. 【点评】熟练掌握由tan α的值求ααcos ,sin 的值的操作程序;给(一个角的三角函数)值求(另一个三角函数)值的问题,一般要用“给值”的角表示“求值”的角,再用两角和(差)的三角公式求得.【例2】已知),,0(πα∈且51cos sin -=+αα,则tan α= . 【答案】43-. 【解析】由51cos sin -=+αα平方得02524cos sin 2<-=αα,又由),0(πα∈知),2(ππα∈. 则有0cos ,0sin <>αα.2549cos sin 21)cos (sin 2=-=-αααα,得57cos sin =-αα.有54cos ,53sin -==αα,所以3tan 4α=-. 【点评】此类问题经常出现在各类考试中,而且错误率都比较高.原因是不能根据角所在的象限,对函数值进行正确的取舍.【知识点2】两角和与差公式、诱导公式、倍角公式 【例1】设12cos(),sin(),2923βααβ-=--=且,0,22ππαπβ<<<<求cos().αβ+ 【答案】-729239. 【解析】,0,22ππαπβ<<<<,.42422πβπαπαπβ∴<-<-<-<故由1cos(),29βα-=-得sin()2βα-=由2sin(),23αβ-=得cos()2αβ-=cos()cos ()()22227αββααβ+⎡⎤∴=---=⎢⎥⎣⎦2239cos()2cos ()1.2729αβαβ+∴+=-=-【点评】两角和与差公式、诱导公式、倍角公式等在应用时,都比较注重寻求角与角的联系,尤其是建立已知角与所求角的联系.【例2】已知sin(2)2sin 0.αββ++= 求证tan 3tan().ααβ=+ 【解析】由题设:[][]sin ()+=2sin ().αβαααβ+-+即sin()cos cos()sin =2sin cos()2cos sin().αβααβαααβααβ++++-+∴3sin()cos =sin cos()αβαααβ++ ∴tan 3tan().ααβ=+【点评】注意题设中的角和结论中角的关系.【知识点3】万能公式【例1】已知),2(,0cos 2cos sin sin 622ππααααα∈=-+,求)32sin(πα+的值.【答案】261235-. 【解析】由0cos 2cos sin sin 622=-+αααα得:26tan tan 20αα+-=,则1tan 2α=或2tan 3α=-.又),2(ππα∈,所以2tan 3α=-.由万能公式得22tan 12sin 21tan 13ααα==-+,221tan 5cos 21tan 13ααα-==+.知261235)32sin(-=+πα. 【点评】先通过正余弦的齐次式处理方法求出正切值,再根据万能公式得出答案.【知识点4】正余弦定理【例1】有一个解三角形的题因纸张破损有一个条件不清,具体如下:“在ABC ∆中,角A ,B ,C 所对的边分别为,,.a b c 已知045,a B ==______________,求角A .”经推断破损处的条件为三角形一边的长度,且答案提示060,A =试将条件补充完整.【答案】c =.【解析】由060,A =045,B =得075,C =正弦定理sin sin a cA C=得c =.【点评】此题很容易由sin sin a bA B=得b =但答案不能填b =,否则题目中的答案角A 算出来有两解不符合题意.【例2】在△ABC 中,c b a ,,分别是C B A ∠∠∠,,对边的长.已知c b a ,,成等比数列,且bc ac c a -=-22,求A ∠的大小及cBb sin 的值.【答案】3π=∠A ,sin b B c 【解析】由c b a ,,成等比数列得ac b =2,则bc ac c a -=-22化成bc a c b =-+222,由余弦定理得212cos 222=-+=bc a c b A ,3π=∠A .由ac b =2得b a c b =,所以c B b sin =233sin sin sin ===πA b B a .【点评】三角形中边角运算时通常利用正弦定理、余弦定理转化为角(或边)处理.有关c b a ,,的齐次式(等式或不等式),可以直接用正弦定理转化为三角式;当知道△ABC 三边c b a ,,平方的和差关系,常联想到余弦定理解题.【知识点5】判断三角形形状【1】 在△ABC 中,若C A B sin sin cos 2=,则△ABC 的形状一定是( ) A 、等腰直角三角形; B 、直角三角形; C 、等腰三角形; D 、等边三角形. 【答案】C.【解析】在三角形ABC 中:A B B A B A B A C sin cos 2sin cos cos sin )sin(sin =+=+=, 则B A B A B A B A =⇒=-⇒=-0)sin(0sin cos cos sin .所以△ABC 是等腰三角形.【点评】判断三角形形状一般有两种思路,一是通过角的转化,二是用边的关系。
此题也可以通过正余弦定理转化为边的关系去解题.【知识点6】解三角形应用题【例1】如图,旅客从某旅游区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从A 乘缆车到B ,在B 处停留1 分钟后,再从B 匀速步行到C . 假设缆车匀速直线运动的速度为130 米/分钟,山路AC 长1260 米 ,经测量,12cos 13A =,3cos 5C = (1)求索道AB 的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?【答案】(1)AB 的长为1040米;(2)当3537t =(min)时,甲、乙两游客距离最短. 【解析】(1)在ABC ∆中,∵12cos 13A =,3cos 5C =,∴5sin 13A =,4cos 5C =,……2分sin sin[()]5312463sin()sin cos cos sin 13513565B AC A C A C A C π=-+=+=+=⨯+⨯=…………………………5分由正弦定理sin sin AB AC C B =,得sin 1040sin ACAB C B=⨯=,……………………………7分 所以索道AB 的长为1040米………………………………………………………………8分 (2)假设乙出发t 分钟后,甲、乙两游客距离为d 米, 此时,甲行走了(10050)t +米,乙距离A 处130t 米, 由余弦定理得:222212(10050)(130)2130(10050)200(377050)13d t t t t t t =++-⨯⨯+⨯=-+……11分 ∵10400130t ≤≤,即08t ≤≤,……………………………………………………………12分 故当3537t =(min)时,甲、乙两游客距离最短……………………………………………14分【点评】熟练运用正余弦定理,读懂题意,找到函数关系,转化为函数求最值问题.【知识点7】三角函数周期、最值、单调性【例1】函数1cos sin 32cos 2)(2--=x x x x f 的最小正周期为 ;最大值为 ;单调递增区间为 ;在区间]2,0[π上,方程1)(=x f 的解集为 . 【答案】π;2;)](6,32[Z k k k ∈--ππππ;}2,,0,35,32{ππππ. 【解析】由1cos sin 32cos 2)(2--=x x x x f )652sin(22sin 32cos π+=-=x x x .所以函数)(x f 的最小正周期为π;最大值为2;单调递增区间满足22[652πππ-∈+k x ,)](22Z k k ∈+ππ,即)](6,32[Z k k k ∈--ππππ;由1)(=x f ,则21)652sin(=+πx , 62652πππ+=+k x 或652652πππ+=+k x 得3ππ-=k x 或)(Z k k x ∈=π,又由]2,0[π∈x 得解集为}2,,0,35,32{ππππ. 【点评】欲求三角函数的周期、最值、单调区间等,应注意运用二倍角正(余)弦公式,半角公式降次即:)2cos 1(21cos ),2cos 1(21sin 22x x x x +=-=;引入辅助角(特别注意3π,6π经常弄错)使用两角和、差的正弦、余弦公式(合二为一),将所给的三角函数式化为B x A y ++=)sin(ϕω的形式.函数|)sin(|ϕω+=x A y 的周期是函数)sin(ϕω+=x A y 周期的一半.【例2】已知函数()2sin (sin cos ),[0,]2f x x x x x π=+∈,求)(x f 的最大值与最小值.【答案】最大、最小值分别为12+与0.【解析】函数2()2sin 2sin cos 1cos 2sin 2)14f x x x x x x x π=+=-+=-+.由[0,]2x π∈,则32[,]444x πππ-∈-,sin(2)[4x π-∈,所以函数)(x f 的最大、最小值分别为12+与0.【点评】当自变量x 的取值受限制时,求函数)sin(ϕω+=x A y 的值域,应先确定ϕω+x 的取值范围,再利用三角函数的图像或单调性来确定)sin(ϕω+x 的取值范围,并注意A 的正负;千万不能把x 取值范围的两端点代入表达式求得.【例3】已知函数()2sin()f x x ω=,其中常数0ω>.若()y f x =在2[,]43ππ-上单调递增,则ω的取值范围为_______. 【答案】2[,]43ππωω-. 【解析】因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩. 【点评】本题一个要注意最终答案要加上题干中的0ω>这个条件,另一方面2[,]43ππωω-其实就只能是[,]22ππ-的子区间.【知识点8】三角函数对称性【例1】若函数x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称,则=a _______.【答案】33. 【解析】由x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称知0)3(=-πf ,33=a . 【点评】正(余)弦函数图像的对称中心是图像与“平衡轴”的交点.【例2】已知函数x x f 2sin )(=,且)(t x f +是偶函数,则满足条件的最小正数=t _______. 【答案】4π. 【解析】)22sin()(t x t x f +=+是偶函数,则0=x 是它图像的一条对称轴.0=x 时,函数取最大(小)值.12sin ±=t ,)(22Z k k t ∈+=ππ.所以满足条件的最小正数4π=t .【点评】正(余)弦函数图像的对称轴是平行于y 轴且过函数图像的最高点或最低点.【知识点9】三角函数图像变换【例1】要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A 、向右平移π6个单位; B 、向右平移π3个单位; C 、向左平移π3个单位;D 、向左平移π6个单位. 【答案】A【解析】cos cos y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪33⎝⎭⎝⎭sin[()]sin()2x x πππ=--=+36,故应选A. 【点评】当函数名不一样的时候,可以先通过诱导公式变成同名再作其他变换.【知识点10】三角函数性质综合【例1】已知函数()sin()f x x ωϕ=+(0,0)ωϕπ>≤≤是R 上的偶函数,其图像关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ωϕ和的值.【答案】223ωω==或,2πϕ=.【解析】由()f x 是R 上的偶函数,得()()f x f x -=,即sin()sin()x x ωϕωϕ-+=+,展开整理得:cos sin cos sin x x ϕωϕω-=,对任意x 都成立,且0ω>,所以cos 0ϕ=. 又0ϕπ≤≤,所以2πϕ=.由()f x 的图象关于点M 对称,得33()()44f x f x ππ-=-+.取0x =,得33()()44f f ππ=-, 所以3()04f π=,∴333()sin()cos4424f πωππωπ=+=.所以33cos0,0,442k ωπωππωπ=>=+又得,()k N ∈.即2(21),0,1,2,3k k ω=+=220,,()sin()[0,]3322k f x x ππω===+当时在上是减函数; 1,2,()sin(2)[0,]22k f x x ππω===+当时在上是减函数;102,,()sin()[0,]322k f x x ππωω≥≥=+当时在上不是单调函数;综上所得223ωω==或,2πϕ=【点评】此类题型一般利用奇偶性、单调性先把ω的通解解出,再根据题目条件确定k 的取值.【例2】已知()sin()(0)3f x x πωω=+>,()()63f f ππ=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω= .【答案】143. 【解析】如图所示,因为()sin()3f x x πω=+,且)3()6(ππf f =,又在区间63ππ⎛⎫⎪⎝⎭,内只有最小值、无最大值,所以()f x 在4236πππ=+处取得最小值,所以2,()432k k z πππωπ+=-∈,所以108()3k k z ω=-∈.又0ω>,所以当1k =时,3143108=-=ω;当2k =时,33831016=-=ω,此时()f x 在区间63ππ⎛⎫⎪⎝⎭,内有最大值,故314=ω.【点评】结合三角函数图像解题更加直观.【知识点11】反三角函数和最简三角方程【例1】已知()sin arcsin f x x x =+,若2(1)(1)0f a f a -+-<,求实数a 的取值范围.【答案】.【解析】()sin arcsin f x x x =+的定义域是[1,1][,]22ππ-∈-, 而sin x 和arcsin x 在[1,1]-上都是增函数,又都是奇函数, ∴ ()f x 在[1,1]-上既是增函数,又是奇函数.222(1)(1)0(1)(1)(1)f a f a f a f a f a -+-<⇒-<--=-∴2211111111a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩解得a的取值范围为. 【点评】熟记反三角函数的定义域、值域及基本性质是解决反三角类型的关键.【例2】求k 的取值范围 ,使得关于x 的方程0sin sin 2=+-k x x 在[,]22ππ-上 (1)无解; (2)仅有一解; (3)有两解.【答案】(1)),41()2,(+∞⋃--∞∈k ;(2)}41{)0,2[⋃-∈k ; (3))41,0[∈k ; 【解析】用分离参数的方法x x k sin sin 2+-=,只需要考虑k 与函数x x y sin sin 2+-=的交点个数就是方程解的个数, 令]1,1[,sin -∈=t x t ,则函数t t y +-=2,画出二次函数t t y +-=2在]1,1[-∈t 上的图像, 观察常值函数k y =与二次函数t t y +-=2的交点个数,可知(1)当),41()2,(+∞⋃--∞∈k 时,两函数图像没有交点,即原方程无解; (2)当}41{)0,2[⋃-∈k 时,两函数图像只有一个交点,即原方程只有一个解; (3)当)41,0[∈k 时,两函数图像有两个交点,即原方程有两个解.【点评】分离参数是处理方程有解问题的常用方法,此题也可以用换元法,转化为二次方程根的分布问题.二、一模真题汇编一、填空题1. (宝山区2018年一模3题)函数22cos (3)1y x π=-的最小正周期为 .【答案】13.2. (青浦区2018年一模4题)函数2()cos cos f x x x x =+的最大值为 . 【答案】32. 3. (虹口区2018年一模4题)在ABC ∆中,A ∠、B ∠、C ∠所对边分别是a 、b 、c ,若::2:3:4a b c =,则cos C = . 【答案】14-. 4. (虹口区2018年一模9题)已知sin y x =和cos y x =的图像的连续的三个交点A 、B 、C 构成三角形ABC ∆,则ABC ∆的面积等于 ..5. (松江区2018年一模5题)已知角α的终边与单位圆221x y +=交于点01(,)2P y ,则cos2α= .【答案】1-2.6. (松江区2018年一模7题)函数sin 2y x =的图像与cos y x =的图像在区间[0,2]π上交点的个数是 . 【答案】4.7.(杨浦区2018年一模3题)已知3cos 5θ=-,则sin()2πθ+= .【答案】2.8.(杨浦区2018年一模9题)在ABC ∆中,若sin A 、sin B 、sin C 成等比数列,则角B 的最大值为 . 【答案】3π.9.(杨浦区2018年一模11题)已知函数()cos (sin )f x x x x =x R ∈,设0a >,若函数()()g x f x α=+为奇函数,则α的值为 .【答案】()*=26k k N ππα-∈. 10.(徐汇区2018年一模8题)某船在海平面A 处测得灯塔B 在北偏东30°方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距 海里(精确到0.1海里). 【答案】4.2.11.(长宁嘉定区2018年一模3题)已知4sin 5α=,则cos()2πα+= . 【答案】45-. 12.(长宁嘉定区2018年一模8题)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若()()a b c a b c ac ++-+=,则B = .【答案】23π.13.(普陀区2018年一模2题)若1sin 4θ=,则3cos()2πθ+= . 【答案】14.14.(普陀区2018年一模6题)函数2()2cos 2xf x x =+的值域为 . 【答案】[1,3]-.15.(浦东区2018年一模11题) 已知函数()sin f x x ω=(0ω>),将()f x 的图像向左平移2πω个单位得到函数()g x 的图像,令()()()h x f x g x =+,如果存在实数m ,使得对任意的实数x ,都有 ()()(1)h m h x h m ≤≤+成立,则ω的最小值为 . 【答案】π.16.(奉贤区2018年一模4题)已知tan 2θ=-,且⎪⎭⎫⎝⎛∈ππθ,2,则cos θ= .【答案】5-17.(奉贤区2018年一模12题)已知函数()()sin f x x ωϕ=+()0,02ωϕπ>≤<是R 上的偶函数,图 像关于点⎪⎭⎫ ⎝⎛0,43πM 对称,在⎥⎦⎤⎢⎣⎡2,0π是单调函数,则符合条件的数组(),ωϕ有________对. 【答案】4.18.(崇明区2018年一模6题)若函数)0(1)3sin(2>+-=ωπωx y 的最小正周期是π,则ω= .【答案】2.二、选择题1.(青浦区2018年一模14题)已知函数()2sin()25f x x ππ=+,若对任意实数x ,都12()()()f x f x f x ≤≤, 则21||x x -的最小值是( )A 、π;B 、2π;C 、2;D 、4.【答案】C.2. (长宁嘉定区2018年一模13题)设角α的始边为x 轴正半轴,则“α的终边在第一、二象限”是“sin 0α>”的( )A 、充分非必要条件;B 、必要非充分条件;C 、充分必要条件;D 、既非充分又非必要条件. 【答案】A.3.(浦东区2018年一模16题)关于x 的方程2arcsin(cos )0x x a ++=恰有3个实数根1x 、2x 、3x ,则222123x x x ++=( )A 、1;B 、2;C 、22π; D 、22π.【答案】B.三、解答题1. (宝山区2018年一模18题)已知函数2()12sin 2xf x =-. (1)求()f x 在3[,]22ππ上的单调递减区间;(2)设ABC ∆的内角A 、B 、C 所对应的边依次为a 、b 、c ,若2114111ca b ---=-且1()2f C =,求ABC ∆面积的最大值,并指出此时ABC ∆为何种类型的三角形.【答案】(1)()cos f x x =,在[,]2ππ递减;(2)3,等边三角形.2.(青浦区2018年一模19题)如图,某大型厂区有三个值班室A 、B 、C ,值班室A 在值班室B 的正北方向2千米处,值班室C 在值班室B 的正东方向23千米处.(1)保安甲沿CA 从值班室C 出发行至点P 处,此时1PC =,求PB 的距离;(2)保安甲沿CA 从值班室C 出发前往值班室A ,保安乙沿AB 从值班室A 出发前往值班室B ,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【答案】(1)=7PB ;(2)两人不能通话的时间为8157-小时. 【解析】(1)在Rt ABC ∆中,=223AB BC =,;所以30C ∠=︒, 在PAB ∆中=123PC BC =,,由余弦定理可得:2222cos30BP BC PC BC PC =+-︒()2232312123=72=+-⨯⨯⨯,=7PB . (2)在Rt ABC ∆中,=223AB BC =,,224AC BA BC =+=.设甲出发后的时间为t 小时,则由题意可知04t ≤≤, 设甲在线段CA 上的位置为点M ,则=4-AM t ①当01t ≤<时,设乙在线段AB 上的位置为点Q ,则=2AQ t ,如图所示,在AMQ ∆中,由余弦定理得()()()222242224cos6071679MQ t t t t t t =-+-⨯⨯-︒=-+>,解得8157t -<或8157t +>,所以81507t -≤<. ②当14t ≤≤时,乙在值班室B 处,在ABM ∆中,由余弦定理得:()()22244224cos606129MB t t t t t =-+-⨯⨯-︒=-+>,解得36t <-或36t >+,又14t ≤≤,不合题意舍去. 综上所述81507t -≤<时,甲乙间的距离大于3千米,所以两人不能通话的时间为8157-小时. 【考点】解三角形.3.(虹口区2018年一模18题)已知函数())cos(2)2f x x x πωπω=-+-,其中x R ∈,0ω>,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间; (2)求此函数在[0,]2x π∈的最大值和最小值.【答案】(1)()2sin(2)6f x x π=+,2ω=,[,]36k k ππππ-++,k ∈Z ;(2)最大值为2,最小值1-.4.(松江区2018年一模17题)在ABC ∆中,6AB =,AC =18AB AC ⋅=-. (1)求BC 边的长; (2)求ABC ∆的面积.【答案】(1)BC 2)9.5.(徐汇区2018年一模18题) 如图是函数()sin()f x A x ωϕ=+(0A >,0ω>,02πϕ<<)图像的一部分,M 、N 是它与x 轴的两个交点,C 、D 分别为它的最高点和最低点,(0,1)E 是线段MC 的中点. (1)若点M 的坐标为(1,0)-,求点C 、点N 和点D 的坐标;(2)若点M 的坐标为(,0)m -(0m >),且2344MC MD π⋅=-,试确定函数()f x 解析式.【答案】(1)(1,2)C ,(3,0)N ,(5,2)D -;(2)()2sin()4f x x π=+.6.(普陀区2018年一模19题)设函数()sin()f x x ωϕ=+(0ω>,||2πϕ<),已知角ϕ的终边经过点(1,,点11(,)M x y 、22(,)N x y 是函数()f x 图像上的任意两点,当12|()()|2f x f x -=时,12||x x -的最小值是2π. (1)求函数()y f x =的解析式;(2)已知ABC ∆面积为C 所对的边c =cos ()4C f π=,求ABC ∆的周长.【答案】(1)()sin(2)3f x x π=-;(2)ABC C ∆=7.(金山区2018年一模18题)已知函数()2cos 21f x x x =+-(x R ∈). (1)写出函数()f x 的最小正周期以及单调递增区间;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,求b 的值.【答案】(1)()2sin(2)16f x x π=+-,T π=,[,]36k k ππππ-+,k ∈Z ;(28.(浦东区2018年一模18题)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(2,1)m =,(cos ,cos cos )n c C a B b A =+,且m n ⊥.(1)求C ;(2)若227c b =,且ABC S ∆=b 的值. 【答案】(1)23C π=;(2)2b =. 【解析】(1)由m n ⊥,∴2cos cos cos 0c C a B b A ++=,……………………2分由正弦定理得:2sin cos sin cos sin cos 0C C A B B A ++=,……2分 ∴()2sin cos sin 0C C A B ++=;2sin cos sin 0C C C +=;由sin 0C ≠,∴1cos 2C =-,……………………2分∴23C π=;……………………1分 (2)由2222cos c a b ab C =+-,∴22272cos b a b ab C =+-,∴2260a ab b +-=,∴2a b =;……………………4分 由23ABC S ∆=1sin 232ab C =132232b b ⋅⋅=,……………2分 ∴2b =.……………………1分 【考点】三角函数.9.(闵行区2018年一模17题)已知函数33()sin 2f x x x ωω=(其中0ω>). (1)若函数()f x 的最小正周期为3π,求ω的值,并求函数()f x 的单调递增区间;(2)若2ω=,0απ<<,且3()2f α=,求α的值.【答案】(1)2()3sin()36f x x π=+,[3,3]2k k ππππ-++,k ∈Z ;(2)4π或12π.10.(奉贤区2018年一模19题)如图,某公园有三条观光大道AC BC AB ,,围成直角三角形,其中直角边m BC 200=,斜边m AB 400=.(1)若甲乙都以每分钟m 100的速度从点B 出发,甲沿BA 运动,乙沿BC 运动,乙比甲迟2分钟出发,求乙出发后的第1分钟末甲乙之间的距离;(2)现有甲、乙、丙三位小朋友分别在点F E D ,,.设θ=∠CEF ,乙丙之间的距离EF 是甲乙之间距离DE 的2倍,且3π=∠DEF ,请将甲乙之间的距离DE y =表示为θ的函数,并求甲乙之间的最小距离.【答案】(1)10072)1003[0,]22sin 3y πθθ=∈+ ⎪⎝⎭5036y πθ=时,取最小值【解析】(1)可用余弦定理求得3B π∠=2分300,100D E BD BE ==设甲在处,乙在处, 2分2222cos 700DE BD BE BDBE B DE =+-=所以 3分(2),3DEB B BDE πθ∠=∠=三角形中, 1分2002cos BE BC CE y θ=-=- 1分[0,]sin sin 2DE BE y B DEB πθ==∈∠∠由得 1分 (式子出来3分),[0,]22sin 3y πθπθ=∈⎛⎫+ ⎪⎝⎭ 1分6y πθ=时,取最小值分答:6y πθ=时,取最小值分【考点】解三角形.11. (崇明区2018年一模18题)(本题满分14分,本题共有2个小题,第(1)小题满分6分;第(2)小题满分8分.)已知1cos 2cos sin 32)(2-+=x x x x f(1)求)(x f 的最大值及该函数取得最大值时x 的值;(2)在ABC ∆中,c b a 、、分别是角A ,B ,C 所对的边,若7=a ,3=b ,且3)2(=Af ,求边c的值.【答案】(1)当6ππ+=k x ,Z k ∈时,函数取得最大值2;(2)2=c 或4=c .【解析】(1)1cos 2cos sin 32)(2-+=x x x x fx x cos 2sin 3+= )62sin(2π+=x ……………………………………3分所以当2262πππ+=+k x ,Z k ∈,即6ππ+=k x ,Z k ∈时,函数取得最大值2……………………………………6分(2)3)6sin(2)2(=+=πA A f因为),0(π∈A ,所以6π=A 或2π……………………………………3分 当6π=A 时,由bc a c b A 2cos 222-+=得:0432=--c c所以4=c 或1-=c (舍去)……………………………………6分当6π=A 时,222=-=b a c ……………………………………7分综上所述:2=c 或4=c ……………………………………8分【考点】三角函数.12. (长宁嘉定区2018年一模19题)一根长为L 的铁棒AB 欲通过如图所示的直角走廊,已知走廊的宽2AC BD m ==.(1)设BOD θ∠=,试将L 表示为θ的函数; (2)求L 的最小值,并说明此最小值的实际意义.【答案】(1)22sin cos L θθ=+;(2)min L =.。