【全国区级联考】广东省广州市天河区2017-2018学年高一上学期期末考试数学试题(解析版)

合集下载

广东省广州市普通高中2017-2018学年高一数学上学期期末考试试题06

广东省广州市普通高中2017-2018学年高一数学上学期期末考试试题06

上学期高一数学期末模拟试题06一、选择题:(每小题只有一个正确答案 ,每题5分,共60分) 1下面四个条件中,能确定一个平面的条件是( ) A .空间中任意三点B .空间中两条直线C .一条直线和一个点D .两条平行直线 2 直线053=+-y x 的倾斜角是( )A 30°B 120°C 60°D 150°3 设()338x f x x =+-,用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( )内.A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定 4直线L 1:ax +3y+1=0, L 2:2x +(a +1)y+1=0, 若L 1∥L 2,则a =( ) A .-3 B .2 C .-3或2 D .3或-25点P(x ,y)在直线x +y-4=0上,O 是坐标原点,则│OP│的最小值是( ) A .7 B. 6 C.2 2 D. 56 设入射光线沿直线 y=2x +1 射向直线 y=x , 则被y=x 反射后,反射光线所在的 直线方程是( )A .x -2y-1=0B .x -2y+1=0C .3x -2y+1=0D .x +2y+3=0 7 下列命题中错误的是( ).A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,αβ=AB ,a //α,a ⊥AB ,则a ⊥β8.三个平面两两垂直,它们的三条交线交于点O ,空间一点P 到三条交线的距离分别为2、5、7,则│O P│长为( )A.33B.22 C.23 D.329.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆A.4πB.54πC.πD.32π 10直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A .a=2,b=5 B .a=2,b=5- C .=2-,b=5 D .a=2-,b=5-11.A 、B 两点相距4cm ,且A 、B 与平面α的距离分别为3cm 和1cm ,则AB 与平面α所成的角是 ( ) A .30° B .90°C .30°或90°D .30°或90°或150°12在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为 1∶3,则锥体被截面所分成的两部分的体积之比为( )A .1∶3B .1∶9C .1∶ 33D .1∶)133(-第II 卷(非选择题 共90分)二、填空题:(本题共4小题,每小题5分,共20分)13.若方程0xa x a --=有两个解,则a 的取值范围 14.如图,在透明材料制成的长方体容器ABCD —A 1B 1C 1D 1 内灌注一些水,固定容器底面一边BC 于桌面上,再将容器倾斜 根据倾斜度的不同,有下列命题:(1)水的部分始终呈棱柱形; (2)水面四边形EFGH 的面积不会改变;(3)棱A 1D 1始终 与水面EFGH 平行;(4)当容器倾斜如图所示时,BE ·BF 是定值,其中所有正确命题的序号是 。

2017-2018学年广东省广州市普通高中高一第一学期(期末)数学试卷01及解析

2017-2018学年广东省广州市普通高中高一第一学期(期末)数学试卷01及解析

2.f(x)是( )D.4.设 0 <x 癸兀,且 J 1 —sin2x =sinx —cosx ,贝5.已知角e 的顶点与原点重合,始边与x 轴的正半轴重合, 终边在直线 y = 2x 上,则 sin2^ =(A. 一45)3 - 6.已知向量a = ( sn6,2), b =cos^ )且 a _L b ,其中0 w 侦,兀),则sin^ - cosB 等于(2、5 53.5 57.若x °是方程 x Ig x = 2的解,则x 。

属于区间A.1(0,2)B ・(2,1)C. 1,2D.2,38.已知JIsin(: -])7 2,cos2-10 7—,sin"=A.B.C.D.9.在^ABC 中,M 是BC 的中点,点P 在AM 上且满足 AA 2PM本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除上学期高一数学期末模拟试题012 也 2 - - _― 一,,设函数 f (x) =cos (x +—)—sin (x +—), x w R ,则函数 44A.最小正周期为兀的奇函数B.最小正周期为C.最小正周期为直的奇函数2D.最小正周期为直的偶函数23.若函数f (x) =sin x + m —1是奇函数,贝U m=()A. 17 二A. 0〈X £B B .— <x < ——则PA •(面PC )等于(1. 、选择题(本大题共 12道题,每小题 —4 已知cosa = —,且是第四象限的角5 A . 4 B. 33 45分,共60分),则 tan(n -口)=(C.10.若f (x) =3sin(2x +中)+ a ,对任意实数x 都有f (三+ x) = f (兰—x), 3 3且f (当=-4,贝U 实数a 的值等于( ) 3 A. — 1 B. — 7 或—1 C. 7 或 1 D. ± 7 11 .已知 0 >0,函数 f (x) =sin(^x + 生) 4 在(二,n )上单调递减.则缶的 2 取值范围( )A . [―,。

广东省广州市普通高中2017-2018学年高一数学上学期期末考试试题03

广东省广州市普通高中2017-2018学年高一数学上学期期末考试试题03

上学期高一数学期末模拟试题032一 一1.直线3ax — y —1 = 0与直线(a — 3)x + y + 1 = 0垂直,则a 的值是()11A .— 1 或B . 1 或;331 、 1 、 c.— 3或—1D .— § 或 12 1解析:选 D.由 3a (a — 3) + ( — 1) x 1 = 0,得 a = — 3或 a = 1 2.有一个几何体的三视图及其尺寸如图 (单位:cm ),则该几何体的表面积及体积为3 .把直径分别为6 cm,8 cm,10 cm 的三个铁球熔成一个大铁球,则这个大铁球的半径为 A . 3 cmB. 6 cmC. 8 cmD. 12 cm=[2 — 1 — t _2+ [t — 1— t _2+ t — t 2t 厂2+ 9 t -5 +5 ,,d (A 、B )min = -,5即A B 两点之间的最短距离为誓5. (2011年咼考四川卷)1 1 , l 2 , 13是空间三条不同的直线,则下列命题正确的是 (2, 3 A . 24 n cm 12 n cm 23C. 24 n cm ' 36 n cm2B. 15 n cm ' 12 nD.以上都不正确解析:选A.由三视图知该几何体为一个圆锥,其底面半径为 4 cm ,求表面积时不要漏掉底面积. 3cm3 cm,母线长为5 cm,高为解析:选B.设大铁球的半径为 4 3 4R 则有 T n R = 3 n3 3Z6 3 483. (6)+ 4n•(2)+?3.4 /10、3 3n •(2), 解得R= 6.4 .已知点 A (1 — t, 1 — t , t ),A上5c症.5解析:选C.由距离公式d (A 、 B (2 , t , t ),则 A B 晋B 两点距离的最小值为(D. 2B) =■ 5t 2— 2t + 2 = 显然当t =B. 1 1 丄1 2 ,1 2 // 1 3 ? 1 1 丄 1 3C. 1 1 // 1 2 //1 3? 11, 12 , 1 3 共面D. 1 1 , 1 2 ,1 3 共点?1 1 , 1 2 , 1 3 共面AC ?平面ABC圆相交的条件得 3 — 2<| C^|<3 + 2,即 1<5m + 2m^ 1<25,解得—¥<m < — |或 0<m <26 .对于直线 m n 和平面a 、A . mln , rri^a, n 〃3 C. m 〃 n , n 丄 3 , m ? a3,能得出a 丄3的一个条件是( )B. ml n , D. m//n ,a n 3 = m n ? aml a , n 丄 3m// n]m l 3 解析:选C.n 丄3 3? a 丄 3m ? aJ解析:选B. A 答案还有异面或者相交, C D 不一定7 •在空间四边形 9. 若oC : x 2+ y 2— 2mx+ m = 4 和O C :x 2+ y 2+ 2x — 4my= 8 — 4吊相交,则 m 的取值范围 是( )12 2A .(—I, -5) B . (0,2)12 2 12C .(—"5", —5)U (0,2) D. ( —了 2) 当直线l 过点(—1,0)时, 当直线l 为圆的上切线时, 解析:选C.圆C 和C 2的圆心坐标及半径分别为 G (m,0) ,「1= 2, C 2( —1,2 m ) ,「2 = 3.由两 ABCDL 若AB= BC AD= CD E 为对角线 AC 的中点,下列判断正确的 是()A .平面ABDL 平面BDCC.平面ABC L 平面 ADC解析:选D.如图所示,连接B.平面 ABC 平面ABD D.平面ABC L 平面BED8.已知直线 A . ( — 2,2) C. [1 ,2)解析:选C.I : y = x + m 与曲线y = p 1 — x 2有两个公共点,则实数 m 的取值范围是()B . (— 1,1) D. ( —<2,品 曲线y =圧丁表示单位圆的上半部分,画出直线的图象,可观察出仅当直线 I与曲线有两个交点.l 与曲线在同一坐标系中 在过点(一1,0)与点(0,1)的直线与圆的上切线之间时,直线 I m= 1; m= • 2(注:m=— _ 2,直线I 为下切线).BEBEL ACDEL AC?©平面 BD?平面ABCL 平面BDE解析:选B.如图所示,设圆柱底面半径为 r,则其高为3R- 3r ,全面积S = 2 n r 2+ 2n r (3R 23 2 9 , 3 ,亠 9°—3r ) = 6 n Rr - 4 n r =-4 n (r — 4F ) + 4 n R ,故当 r = [R 时全面积有最大值 4 n 巨12.如图所示,三棱锥 P — ABC 的高PO= 8, AC= BG= 3,/ ACB= 30°, M N 分别在 BC 和PO 上,且CM= x , PN= 2x (x € [0,3]),下列四个图象大致描绘了三棱锥 N — AMC 勺体积V 与 x 的变化关系,其中正确的是 ( )1 11 1解析:选 A.V = -S A AMC - NO= -(- X3x X Sin30 ° ) - (8 — 2x ) =— 2(x — 2)2 + 2, x € [0,3],3 3 2 2故选A.二、填空题(本大题共4小题,请把答案填在题中横线上 )10.已知圆 C : (x — a ) + (y — 2) = 4(a >0)及直线I : x — y + 3 = 0,当直线l 被圆C 截得 的弦长为2 3时,a 的值等于( )A. 2B. 2 — 1C. 2— 2D. 2+1解析:选 B.圆心(a,2)到直线I : x — y + 3= 0的距离d =1a—丁 3| =迂裂,依题意2= 4,解得 a = 2 — 1.11.已知圆锥的底面半径为 A . 2n R 2 R,高为3R,在C.f n F 2TR 2R兀 兀9-45-2B DD13. 三角形ABC的边ACAB的高所在直线方程分别为2x —3y+ 1 = 0,x + y= 0,顶点A(1,2), 求BC边所在的直线方程.解:AC边上的高线2x—3y+ 1 = 0,所以k Ac= —|.3所以AC的方程为y —2=—|(x—1),即3x + 2y —7 = 0,同理可求直线AB的方程为x —y + 1 = 0.下面求直线BC的方程,3x + 2y—7 = 0,由得顶点C(7,—7),x+ y = 0,x—y +1 = 0,由* 得顶点B( —2,—1).2x —3y+ 1 = 0,2 2所以k Bc= —3,直线BC: y+ 1 = —^(x + 2),即2x + 3y + 7 = 0.14. _____________________________________________________________________ 过点A(1 , —1) , B( —1,1)且圆心在直线x + y—2 = 0上的圆的方程是 _____________________ .解析:易求得AB的中点为(0,0),斜率为一1,从而其垂直平分线为直线y = x,根据圆的几何性质,这条直线应该过圆心,将它与直线x + y—2= 0联立得到圆心Q1,1),半径r = | OA=2.答案:(x —1)2+ (y —1)2= 415.如图所示,AB是O O的直径,PAL平面O O, C为圆周上一点,AB= 5 cm AC= 2 cm 则B到平面PAC勺距离为_______________ .解析:连接BC•/ C为圆周上的一点,AB为直径,••• BC L AC 又••• PA!平面O O, BC?平面O O •PA! BC,又T PA P AC=代•BC L平面PAC C为垂足,•BC即为B到平面PAC的距离.在Rt △ ABC中,BC=Q AB-A C=Q52- 22= ^2i(cm).答案:,21 cm16.下列说法中正确的是__________ .①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线I和平面a平行,那么过平面a内一点和直线I平行的直线在a内.解析:由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确•因为经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面.故③错误.答案:①②④三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.如图,在四棱锥P— ABCD^,平面PAD_平面ABCD AB= AD / BAD= 60°, E F 分别是AP AD的中点,求证:(1)直线EF//平面PCD⑵平面BEFL平面PAD证明:⑴因为E F分别是AP AD的中点,••• EF// PD 又••• P,。

【区级联考】广东省2017-2018学年高一(上)期末数学试题

【区级联考】广东省2017-2018学年高一(上)期末数学试题

2017-2018学年广东省高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x<2},B={x|3-2x>0},则()A. B.C. D.2.的值等于()A. B. C. D.3.函数的图象大致为()A. B. C. D.4.方程的解所在的区间是()A. B. C. D.5.设非零向量,满足则()A. B. C. D.6.已知a=log20.3,b=20.3,c=0.30.3,则a,b,c三者的大小关系是()A. B. C. D.7.已知角α的终边经过点P(3m,-4m)(m<0),则3sinα+2cosα的值等于()A. B. C. D.8.若tanα=3,则4sin2α-sinαcosα+cos2α的值为()A. B. C. 3 D.9.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是()A. f(x)=﹣x(x+2)B. f(x)=x(x﹣2)C. f(x)=﹣x(x﹣2)D. f(x)=x(x+2)10.函数的部分图像如图所示,则A.B.C.D.11.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 109312.设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,则|•|的值一定等于()A. 以,为邻边的平行四边形的面积B. 以,为两边的三角形面积C. ,为两边的三角形面积D. 以,为邻边的平行四边形的面积二、填空题(本大题共4小题,共20.0分)13.函数的单调递增区间是______.14.2弧度的圆心角所对的弧长为6sin,则这个圆心角所夹的扇形面积是______.15.若函数y=x2+(m-2)x+(5-m)有两个大于2的零点,则m的取值范围是______.16.设函数f(x)=则满足f(x)+f>1的x的取值范围是________.三、解答题(本大题共6小题,共70.0分)17.已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.(1)求A∩B;B∪(∁U A);(2)已知集合C={x|a≤x≤a+2},若C∩=C,求实数a的取值范围.18.已知向量与的夹角为,,.(I)若,求实数k的值;(II)是否存在实数k,使得?说明理由.19.已知函数f(x)=cos(2x-).(1)利用“五点法”,完成以下表格,并画出函数f(x)在一个周期上的图象;(2)求函数f(x)的单调递减区间和对称中心的坐标;(3)如何由y=cos x的图象变换得到f(x)的图象.-20.已知二次函数满足且.(1)求的解析式;(2) 当时,不等式恒成立,求的范围21.某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:经过长期观测,可近似的看成是函数,(本小题满分14分)(1)根据以上数据,求出的解析式。

推荐-广州市天河区2018学年高一上学期期末数学复习试卷 精品

推荐-广州市天河区2018学年高一上学期期末数学复习试卷 精品

广州市天河区2018-2018学年高一上学期期末数学复习试卷一、选择题1、下列各组中的两个集合M 和N, 表示同一集合的是( D ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {1}M π=, {,1,|N π= 2、直线053=+-y x 的倾斜角是( A )(A )30° (B )120° (C )60° (D )150° 3、与||y x =为同一函数的是( B ).A .2y = B. y C. {,(0),(0)x x y x x >=-< D. log a x y a =4、设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( B ). A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定5、下列各式错误的是( C ).A. 0.80.733>B. 0..50..5log 0.4log 0.6>C. 0.10.10.750.75-<D. lg1.6lg1.4> 6、设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若MN φ≠,则k 的取值范围是( B )A .]2,(-∞B .),1[+∞-C .),1(+∞-D .[-1,2] 7、直线L 1:ax +3y+1=0, L 2:2x +(a +1)y+1=0, 若L 1∥L 2,则a =( C ) A .-3 B .2 C .-3或2 D .3或-2 8、点P(x ,y)在直线x +y-4=0上,O 是坐标原点,则│OP│的最小值是( C ) A .7 B. 6 C.2 2 D. 59、圆锥平行于底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段 的比为( A )A .1:( 2 -1)B .1:2C .1: 2D .1:4 10、下列命题中错误的是( B ).A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a ⊥AB ,则a ⊥β11、直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ). A. 1,1- B. 2- C. 1- D. 112、设入射光线沿直线 y=2x +1 射向直线 y=x , 则被y=x 反射后,反射光线所在的 直线方程是( )A .x -2y-1=0B .x -2y+1=0C .3x -2y+1=0D .x +2y+3=0 二、填空题(每小题4分,共4小题16分)13、函数y=xx -++112的定义域是 {x |x 1,2≠-≥x } 14、一个圆柱和一个圆锥的底面直径..和他们的高都与某一个球的直径相等,这时 圆柱、圆锥、球的体积之比为 .3:1:215. 24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 0 ;若00()8,f x x ==则 4 .16. 如图,在正方体111ABCD A BC D -中,异面 直线1A D 与1D C 所成的角为_______度;直线1A D 与平面11AB C D 所成的角为_______度. 060,030三:解答题:17:设全集U 为R,已知A={x |1<x <7},B={x |x <3或x >5},求(1)A B (2)A B (3)(C U A) (C U B)解(1)R ; (2){x |1<x <3或5<x <7}; (3){x |x 753,1≥≤≤≤x x 或}.18. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程. 解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++=把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =MA 1∴ 所求直线l 的方程为 220x y ++=19. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C 的圆的标准方程.解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110ABk ---==-,因此线段AB 的垂直平分线'l 的方程是 11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长5r AC ===所以,圆心为C 的圆的标准方程是()()223225x y +++=20. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点.①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC .解:①证明:∵EF 是SAC 的中位线, ∴EF ∥AC ,又∵EF ⊄平面ABC ,AC ⊂平面ABC ,B∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .21、 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y . (1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈ 解析: (1) (110%)().xy a x N *=-∈ (2)111,(110%),0.9,333x x y a a a ≤∴-≤∴≤0.91lg3log 10.4,32lg31x -≥=≈-∴ 11x =.22 、已知函数1()21x f x a =-+. (1)求证:不论a 为何实数()f x 总是为增函数; (2)确定a 的值, 使()f x 为奇函数; (3)当()f x 为奇函数时, 求()f x 的值域.解析: (1)()f x 的定义域为R, 设12x x <,则121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++, 12x x <, 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数.(2)()f x 为奇函数, ()()f x f x ∴-=-,即112121x x a a --=-+++,解得: 1.2a =11().221x f x ∴=-+ (3) 由(2)知11()221x f x =-+, 211x+>,10121x∴<<+, 11110,()2122xf x ∴-<-<∴-<<+ 所以()f x 的值域为11(,).22-。

广东省2017—2018学年高一数学上学期期末考试试卷(二)

广东省2017—2018学年高一数学上学期期末考试试卷(二)

广东省2017—2018学年高一数学上学期期末考试试卷(二)(考试时间120分钟满分150分)一.单项选择题:(本大题共12小题;每小题5分,共60分)1.用列举法表示集合{(x,y)|},正确的是()A.(﹣1,1),(0,0)B.{(﹣1,1),(0,0)}C.{x=﹣1或0,y=1或0}D.{﹣1,0,1}2.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)3.已知cosα=,角α是第二象限角,则tan(2π﹣α)等于()A.B.﹣C.D.﹣4.函数f(x)=2x+3x的零点所在的一个区间()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)5.设函数f(x)=,则f(f(3))=()A.B.3 C.D.6.已知,b=log23,c=1,d=3﹣0.5,那么()A.d<a<c<b B.d<c<a<b C.a<b<c<d D.a<d<c<b7.函数的图象是()A. B. C.D.8.已知函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.[1,+∞)B.[0,2]C.[1,2]D.(﹣∞,2]9.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④10.已知cos(+α)=﹣,则sin(α﹣)的值为()A.B.﹣ C.D.﹣11.已知函数f(x)=单调递减,那么实数a的取值范围是()A.(0,1) B.(0,)C.[,)D.[,1)12.已知f(x)=2+log3x(1≤x≤9),则函数y=[f(x)]2+f(x2)的最大值为()A.6 B.13 C.22 D.33二.填空题(本大题共4个小题,每小题5分,共20分)13.cos(﹣π)+sin(﹣π)的值是.14.已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)=.15.若函数f(x)=a x﹣x﹣a(a>0,且a≠1)有两个零点,则实数a的取值范围是.16.已知函数f(x)=()x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为减函数.其中正确命题的序号为:.三.解答题:(本大题共5小题,每小题各14分,共70分,解答应写出文字说明,证明过程或演算步骤).17.计算下列各式的值:(1)0.064﹣(﹣)0+160.75+0.01;(2).18.已知,,求A∩B.19.若,且α为第四象限角,求的值.20.已知函数f(x)是定义在R上的偶函数,且x≥0时,.(Ⅰ)求f(﹣1)的值;(Ⅱ)求函数f(x)的值域A;(Ⅲ)设函数的定义域为集合B,若A⊆B,求实数a的取值范围.21.是否存在实数a,使函数f(x)=log a(ax2﹣x)在区间[2,4]上是增函数?若存在,求出a的取值范围;若不存在,说明理由.参考答案一.单项选择题:1.B.2.B.3.C.4.B.5.D.6.D7.B.8.C9.B.10.B.11.C.12.B二.填空题13.答案为:0.14.答案为:315.答案为:(1,+∞)16.答案为:②③三.解答题:17.解:(1)原式===;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)原式===log39﹣9=2﹣9=﹣7.﹣﹣﹣﹣18.解:={x|0<x≤},={x|﹣2≤x≤3},故A∩B={x|0<x≤}.19.解:==,∵,且α为第四象限角,∴=.∴==.20.解:(I)∵函数f(x)是定义在R上的偶函数∴f(﹣1)=f(1)又x≥0时,∴,即f(﹣1)=.(II)由函数f(x)是定义在R上的偶函数,可得函数f(x)的值域A即为x≥0时,f(x)的取值范围,当x≥0时,故函数f(x)的值域A=(0,1].(III)∵定义域B={x|﹣x2+(a﹣1)x+a≥0}={x|x2﹣(a﹣1)x﹣a≤0}方法一:由x2﹣(a﹣1)x﹣a≤0得(x﹣a)(x+1)≤0∵A⊆B∴B=[﹣1,a],且a≥1∴实数a的取值范围是{a|a≥1}方法二:设h(x)=x2﹣(a﹣1)x﹣aA⊆B当且仅当即∴实数a的取值范围是{a|a≥1}21.解:设u(x)=ax2﹣x,显然二次函数u的对称轴为x=.①当a>1时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为增函数,故应有,解得a>.…综合可得,a>1.…②当0<a<1 时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为减函数,应有,解得a∈∅.…综上,a>1时,函数f(x)=log a(ax2﹣x)在区间[2,4]上为增函数.…。

广东省2017—2018学年高一数学上学期期末考试试卷(共3套)

广东省2017—2018学年高一数学上学期期末考试试卷(共3套)

广东省2017—2018学年高一数学上学期期末考试试卷(一)(考试时间120分钟满分150分)一、单项选择题:(本大题共12小题,每小题5分,共60分.)1.已知集合M={x∈Z|x(x﹣3)≤0},N={x|lnx<1},则M∩N=()A.{1,2}B.{2,3}C.{0,1,2}D.{1,2,3}2.函数f(x)=lnx﹣的零点所在的大致区间是()A.B.(1,2) C.(2,3) D.(e,+∞)3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,下些说法正确的是()A.若m⊂β,α⊥β,则m⊥αB.若m⊥β,m∥α,则α⊥βC.若α∩γ=m,β∩γ=n,m∥n,则α∥βD.若α⊥γ,α⊥β,,则γ⊥β4.已知函数,设,则有()A.f(a)<f(b)<f(c) B.f(a)<f(c)<f(b)C.f(b)<f(c)<f (a)D.f(b)<f(a)<f(c)5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.6.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB内存(1MB=210KB),则开机后经过()分钟.A.45 B.44 C.46 D.477.若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.8.在平面直角坐标系中,下列四个结论:①每一条直线都有点斜式和斜截式方程;②倾斜角是钝角的直线,斜率为负数;③方程与方程y+1=k(x﹣2)可表示同一直线;④直线l过点P(x0,y0),倾斜角为90°,则其方程为x=x°;其中正确的个数为()A.1 B.2 C.3 D.49.如图所示,圆柱形容器的底面直径等于球的直径2R,把球放在在圆柱里,注入水,使水面与球正好相切,然后将球取出,此时容器中水的深度是()A.2R B.C.D.10.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.11.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°12.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C. D.二、填空题:(本大题共4小题,每小题5分,共20分)13.计算的结果是.14.已知4a=2,lgx=a,则x=.15.过点(1,2)且在两坐标轴上的截距相等的直线的方程.16.已知:在三棱锥P﹣ABQ 中,D,C,E,F分别是AQ,BQ,AP,BP的中点,PD与EQ交于点G,PC与FQ交于点H,连接GH,则多面体ADGE﹣BCHF的体积与三棱锥P﹣ABQ体积之比是.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.如图,在平行四边形OABC中,点C(1,3).(1)求OC所在直线的斜率;(2)过点C作CD⊥AB于点D,求CD所在直线的方程.18.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.(Ⅰ)求证:AB⊥平面ADE;(Ⅱ)求凸多面体ABCDE的体积.19.已知函数为奇函数,(1)求a的值;(2)当0≤x≤1时,关于x的方程f(x)+1=t有解,求实数t的取值范围;(3)解关于x的不等式f(x2﹣mx)≥f(2x﹣2m).20.某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益f(x)与投资金额x的关系是f(x)=k1x,(f(x)的部分图象如图1);投资股票等风险型产品B的收益g(x)与投资金额x的关系是,(g(x)的部分图象如图2);(收益与投资金额单位:万元).(1)根据图1、图2分别求出f(x)、g(x)的解析式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?21.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.(Ⅰ)求线段MN的长;(Ⅱ)求证:MN∥平面ABB1A1;(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.22.已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)参考答案一、单项选择题:1.A.2.C.3.B.4.B.5.B.6.A.7.B.8.B.9.C.10.A.11.D.12.C.二、填空题:13.答案为2.14.答案为:15.答案为:2x﹣y=0或x+y﹣3=016.答案为:.三、解答题:17.解:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为.∴CD所在直线方程为,即x+3y﹣10=0.18.证明:(Ⅰ)∵AE⊥平面CDE,CD⊂平面CDE,∴AE⊥CD,又在正方形ABCD中,CD⊥AD,AE∩AD=A,∴CD⊥平面ADE,又在正方形ABCD中,AB∥CD,∴AB⊥平面ADE.…解:(Ⅱ)连接BD ,设B 到平面CDE 的距离为h , ∵AB ∥CD ,CD ⊂平面CDE ,∴AB ∥平面CDE ,又AE ⊥平面CDE ,∴h=AE=1,又=,∴=,又==,∴凸多面体ABCDE 的体积V=V B ﹣CDE +V B ﹣ADE =.…19.解:(1)∵x ∈R ,∴f (0)=0,∴a=﹣1….(2)∵,∵0≤x ≤1,∴2≤3x +1≤4….∴….∴….(3)在R 上单调递减,….f (x 2﹣mx )≥f (2x ﹣2m )x 2﹣mx ≤2x ﹣2m…. x 2﹣(m +2)x +2m ≤0(x ﹣2)(x ﹣m )≤0…. ①当m >2时,不等式的解集是{x |2≤x ≤m } ②当m=2时,不等式的解集是{x |x=2}③当m <2时,不等式的解集是{x |m ≤x ≤2}….20.解:(1)设投资为x 万元,由题意,知f (1.8)=0.45,g (4)=2.5;解得k 1=,k 2=,∴f (x )=x ,x ≥0.g (x )=,x ≥0;(2)设对股票等风险型产品B 投资x 万元,则对债券等稳键型产品A 投资(10﹣x)万元,记家庭进行理财投资获取的收益为y万元,则y=,x≥0.设=t,则x=t2,0≤t≤∴y=﹣,当t=,也即x=时,y取最大值.答:对股票等风险型产品B投资万元,对债券等稳键型产品A投资万元时,可获最大收益万元.21.解:(Ⅰ)连接CN,因为ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,所以AC⊥CC1,…因为AC⊥BC,所以AC⊥平面BCC1B1.…因为MC=1,CN==,所以MN=…(Ⅱ)证明:取AB中点D,连接DM,DB1…在△ABC中,因为M为AC中点,所以DM∥BC,DM=BC.在矩形B1BCC1中,因为N为B1C1中点,所以B1N∥BC,B1N=BC.所以DM∥B1N,DM=B1N.所以四边形MDB1N为平行四边形,所以MN∥DB1.…因为MN⊄平面ABB1A1,DB1⊂平面ABB1A1…所以MN∥平面ABB1A1.…(Ⅲ)解:线段CC1上存在点Q,且Q为CC1中点时,有A1B⊥平面MNQ.…证明如下:连接BC1,在正方形BB1C1C中易证QN⊥BC1.又A1C1⊥平面BB1C1C,所以A1C1⊥QN,从而NQ⊥平面A1BC1.…所以A1B⊥QN.…同理可得A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.…22.(1)抛物线的对称轴为,①当时,即b>﹣4a时,当时,,f(x)min=f(2)=4a+2b+c=﹣2,∴,∴a=﹣2,b=3.②当时,即b≥﹣4a时,f(x)在[0,2]上为增函数,f(x)min=f(0)=0与f(x)min=﹣2矛盾,无解,综合得:a=﹣2,b=3.(2)对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,令,则,∵0<a<1,∴,(ⅰ)若,即时,g(x)在[1,2]单调递减,此时,即,得,此时,∴∴.(ⅱ)若,即时,g(x)在单调递减,在单调递增,此时,,只要,当时,,当时,,.综上得:①时,;②时,;③时,.广东省2017—2018学年高一数学上学期期末考试试卷(二)(考试时间120分钟满分150分)一.单项选择题:(本大题共12小题;每小题5分,共60分)1.用列举法表示集合{(x,y)|},正确的是()A.(﹣1,1),(0,0)B.{(﹣1,1),(0,0)}C.{x=﹣1或0,y=1或0}D.{﹣1,0,1}2.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)3.已知cosα=,角α是第二象限角,则tan(2π﹣α)等于()A.B.﹣C.D.﹣4.函数f(x)=2x+3x的零点所在的一个区间()A .(﹣2,﹣1)B .(﹣1,0)C .(0,1)D .(1,2)5.设函数f (x )=,则f (f (3))=( )A .B .3C .D .6.已知,b=log 23,c=1,d=3﹣0.5,那么( )A .d <a <c <bB .d <c <a <bC .a <b <c <dD .a <d <c <b7.函数的图象是( )A .B .C .D .8.已知函数y=x 2﹣2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .[1,2]D .(﹣∞,2]9.给定函数①,②,③y=|x ﹣1|,④y=2x +1,其中在区间(0,1)上单调递减的函数序号是( ) A .①②B .②③C .③④D .①④10.已知cos (+α)=﹣,则sin (α﹣)的值为( )A .B .﹣C .D .﹣11.已知函数f (x )=单调递减,那么实数a 的取值范围是( )A .(0,1)B .(0,)C .[,)D .[,1)12.已知f (x )=2+log 3x (1≤x ≤9),则函数y=[f (x )]2+f (x 2)的最大值为( )A .6B .13C .22D .33二.填空题(本大题共4个小题,每小题5分,共20分)13.cos(﹣π)+sin(﹣π)的值是.14.已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)=.15.若函数f(x)=a x﹣x﹣a(a>0,且a≠1)有两个零点,则实数a的取值范围是.16.已知函数f(x)=()x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为减函数.其中正确命题的序号为:.三.解答题:(本大题共5小题,每小题各14分,共70分,解答应写出文字说明,证明过程或演算步骤).17.计算下列各式的值:(1)0.064﹣(﹣)0+160.75+0.01;(2).18.已知,,求A∩B.19.若,且α为第四象限角,求的值.20.已知函数f(x)是定义在R上的偶函数,且x≥0时,.(Ⅰ)求f(﹣1)的值;(Ⅱ)求函数f(x)的值域A;(Ⅲ)设函数的定义域为集合B,若A⊆B,求实数a的取值范围.21.是否存在实数a,使函数f(x)=log a(ax2﹣x)在区间[2,4]上是增函数?若存在,求出a的取值范围;若不存在,说明理由.参考答案一.单项选择题:1.B.2.B.3.C.4.B.5.D.6.D7.B.8.C9.B.10.B.11.C.12.B二.填空题13.答案为:0.14.答案为:315.答案为:(1,+∞)16.答案为:②③三.解答题:17.解:(1)原式===;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)原式===log39﹣9=2﹣9=﹣7.﹣﹣﹣﹣18.解:={x|0<x≤},={x|﹣2≤x≤3},故A∩B={x|0<x≤}.19.解:==,∵,且α为第四象限角,∴=.∴==.20.解:(I)∵函数f(x)是定义在R上的偶函数∴f(﹣1)=f(1)又x≥0时,∴,即f(﹣1)=.(II)由函数f(x)是定义在R上的偶函数,可得函数f(x)的值域A即为x≥0时,f(x)的取值范围,当x≥0时,故函数f(x)的值域A=(0,1].(III)∵定义域B={x|﹣x2+(a﹣1)x+a≥0}={x|x2﹣(a﹣1)x﹣a≤0}方法一:由x2﹣(a﹣1)x﹣a≤0得(x﹣a)(x+1)≤0∵A⊆B∴B=[﹣1,a],且a≥1∴实数a的取值范围是{a|a≥1}方法二:设h(x)=x2﹣(a﹣1)x﹣aA⊆B当且仅当即∴实数a的取值范围是{a|a≥1}21.解:设u(x)=ax2﹣x,显然二次函数u的对称轴为x=.①当a>1时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为增函数,故应有,解得a>.…综合可得,a>1.…②当0<a<1 时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x 在[2,4]上为减函数,应有,解得a∈∅.…综上,a>1时,函数f(x)=log a(ax2﹣x)在区间[2,4]上为增函数.…广东省2017—2018学年高一数学上学期期末考试试卷(三)(考试时间120分钟满分150分)一、单项选择题:本大题共12个小题,每小题5分,共60分。

广东省广州市天河区2017-2018学年高一上学期期末数学试卷PDF版含解析

广东省广州市天河区2017-2018学年高一上学期期末数学试卷PDF版含解析

2017-2018学年广东省广州市天河区高一(上)期末数学试卷一、选择题最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(?U B)=()A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}2.直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°3.下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=2x B.f(x)=log x C.f(x)=D.f(x)=﹣x|x|4.在长方体ABCD﹣A1B1C1D1中,AB=BC=,AA1=1,则异面直线AD与BC1所成角为()A.30°B.45°C.60°D.90°5.已知直线l1的方程为Ax+3y+C=0,直线l2的方程为2x﹣3y+4=0,若l1与l2的交点在y轴上,则C的值为()A.4 B.﹣4 C.±4 D.与A有关6.设a=40.1,b=log30.1,c=0.50.1,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a7.已知圆x2+y2+2x﹣2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是()A.﹣4 B.﹣3 C.﹣2 D.﹣18.一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+49.函数的零点所在的区间为()A. B. C. D.10.过点A(3,5)作圆(x﹣2)2+(y﹣3)2=1的切线,则切线的方程为()A.x=3或3x+4y﹣29=0 B.y=3或3x+4y﹣29=0C.x=3或3x﹣4y+11=0 D.y=3或3x﹣4y+11=011.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,BC=,AC=1,∠ACB=90°,则此球的体积等于()A.πB.πC.πD.8π12.已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5 B.6 C.7 D.8二、填空题13.函数y=ln(1﹣2x)的定义域是.14.设函数f(x)=,则f(f(﹣4))=.15.若直线(a+1)x+ay=0与直线ax+2y=1垂直,则实数a=.16.已知α,β是两个平面,m,n是两条直线,则下列四个结论中,正确的有(填写所有正确结论的编号)①若m∥α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若a∥β,m?α,则m∥β;④若m⊥n.m⊥α,n∥β,则α⊥β三、解答题17.已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.18.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA的中点.(1)求证:PC∥平面BDE(2)求三棱锥P﹣CED的体积.19.已知函数f(x)=2x+2ax(a为实数),且f(1)=.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性并证明;(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.20.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=,M为BC的中点,P为侧棱BB1上的动点.(1)求证:平面APM⊥平面BB1C1C;(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.21.已知半径为的圆C,其圆心在射线y=﹣2x(x<0)上,且与直线x+y+1=0相切.(1)求圆C的方程;(2)从圆C外一点P(x0,y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.22.已知a∈R,函数f(x)═log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.2017-2018学年广东省广州市天河区高一(上)期末数学试卷参考答案与试题解析一、选择题1.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(?U B)=()A.{1,2,5,6}B.{1,2,3,4}C.{2}D.{1}【考点】交、并、补集的混合运算.【分析】根据已知中全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},结合集合交集,补集的定义,可得答案.【解答】解:∵全集U={1,2,3,4,5,6},B={2,3,4},∴?U B={1,5,6},又∵A={1,2},∴A∩(?U B)={1},故选:D.2.直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°【考点】直线的倾斜角.【分析】设直线x﹣y+3=0的倾斜角为θ.由直线x﹣y+3=0化为y=x+3,可得tanθ=,即可得出.【解答】解:设直线x﹣y+3=0的倾斜角为θ.由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°.故选C.3.下列函数在其定义域上既是奇函数又是减函数的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第一学期天河区期末考试高一数学本试卷共4页,22小题,满分150分,考试用时120分钟。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一项是符合题目要求的.1. 直线的倾斜角为()A. 45°B. 60°C. 120°D. 135°【答案】D【解析】由直线,可得直线的斜率为k=-1,设其倾斜角为α,(0°≤α<180°),则tanα=-1,∴α=135°.故选D2. 已知集合,则()A. B. C. D.【答案】A【解析】因为集合则A∩B={1,2},故选A.3. 函数的零点所在的区间是()A. B. C. D.【答案】C【解析】函数f(x)的定义域为(0,+∞),且函数f(x)单调递增,∵f(2)=lg2+2-3=lg2-1<0,f(3)=lg3>0,∴在(2,3)内函数f(x)存在零点,故选C.4. 如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A. B. C. D.【答案】C【解析】根据几何体的三视图,得;该几何体是底面为半圆,母线长为2的半圆锥体;且底面半圆的半径为1,∴该半圆锥个高为2×=,它的体积为V=故选C5. 已知,则的大小关系是()A. B. C. D.【答案】D【解析】∵0<a=0.80.7<0.80=1,b=log20.7<log21=0,c=1.30.8>1.30=1,∴b<a<c.故选B.6. 已知直线与直线平行,则实数的值是()A. B. 或0 C. D. 或0【答案】A【解析】直线l1:x+2my-1=0与直线l2:(m-2)x-my+2=0平行,若m=0,则两直线为x-1=0,2-2x=0,则重合舍去;若m=2时,两直线为x+4y-1=0,2-2y=0,不平行,舍去;即有解得,故选A.7. 如图,长方体中,,,分别是的中点,则异面直线与所成角为()A. 30°B. 45°C. 60°D. 90°【答案】D【解析】如图:连接B1G,EG∵E,G分别是DD1,CC1的中点,∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形,∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角在三角形B1GF中,B1G=∵B1G2+FG2=B1F2∴∠B1GF=90°∴异面直线A1E与GF所成角为90°,故选D8. 已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.【答案】C【解析】设直径的两个端点分别A(a,0)、B(0,b),圆心C为点(-2,1),由中点坐标公式得解得a=-4,b=2.∴半径r=∴圆的方程是:(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.9. 已知,则函数与函数的图象可能是()A. B.C. D.【答案】B【解析】∵lga+lgb=0(a>0,b>0且a≠1,b≠1),∴ab=1,∴b=,所以函数f (x)=a x与函数g(x)=-log b x互为反函数,∴二者的图象关于直线y=x对称,故选B.10. 给出下列命题:①如果不同直线都平行于平面,则一定不相交;②如果不同直线都垂直于平面,则一定平行;③如果平面互相平行,若直线,直线,则;④如果平面互相垂直,且直线也互相垂直,若,则;其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】在①中,如果不同直线m、n都平行于平面α,则m、n相交、平行或异面,故①错误;在②中,如果不同直线m、n都垂直于平面α,则由线面垂直的性质定理得m、n一定平行,故②正确;在③中,如果平面α、β互相平行,若直线m⊂α,直线n⊂β,则m、n相交、平行或异面,故③错误;在④中,如果平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n与β相交或平行,故④错误.点睛:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,熟练掌握平行垂直的基本概念,基本定理内容是解决问题的关键.11. 已知圆和两点,若圆上存在点,使得,则的最大值为()A. 7B. 6C. 5D. 4【答案】B【解析】圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径r=1,设P(a,b)在圆C上,则=(a+m,b),=(a﹣m,b),∵∠APB=90°,∴,∴=(a+m)(a﹣m)+b2=0,∴m2=a2+b2=|OP|2,∴m最小值即为|OP|的最小值,等于|OC|﹣r=5﹣1=4,∴正数m的最小值为4.故选D.点睛:这个题目考查的是用向量表示直角关系,并且用到了数形结合的方式来求最值。

涉及到找圆上的点到定点的距离的最值。

在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值。

12. 偶函数满足,且在区间与上分别递增和递减,则不等式的解集为()A. B.C. D.【答案】D【解析】∵偶函数f(x)(x∈R)满足:f(-5)=f(2)=0,且在区间[0,4]与[4,+∞)上分别递增和递减,∴函数f(x)对应的图象如图:则不等式x•f(x)<0等价为或即或即0<x<2或x>5或-5<x<-2,即不等式的解集为,故选D.点睛:本题主要考查不等式的求解,结合函数奇偶性和单调性之间的关系作出函数的图象是解决本题的关键.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 函数的定义域为____________【答案】【解析】函数有意义,可得x+1>0且2x-1≠0,解得x>-1且x≠,则定义域为{x|x >-1且x≠}.故答案为.14. 已知一个四棱柱,其底面是正方形,侧棱垂直于底面,它的各个顶点都在一个表面积为的球面上.如果该四棱柱的底面边长为1,则其侧楞长为____________.【答案】【解析】一个四棱柱,其底面是正方形,侧棱垂直于底面,则此四棱柱的外接球的球心为体对角线的中点,因为球的表面积为,所以球的半径为1cm,故体对角线长为2,设侧棱长为h,则,故答案为.15. 已知,过原点作圆的切线,则此时的切线方程为___________【答案】【解析】由圆的方程得m+2=1,即m=-1,此时圆的方程为x2+y2-4x-8y+16=0,即(x-2)2+(y-4)2=4,圆心坐标C(2,4),半径为R=2,若切线斜率不存在,则x=0,圆心到直线x=0的距离d=2,满足x=0与圆相切,若斜率存在,设y=kx,即kx-y=0,圆心到直线的距离d=,即|k-2|=,平方得k2-4k+4=1+k2,即4k=3,得k=,则切线方程为y=x,综上所述,切线方程为y=x或x=0,故答案为16. 已知函数满足对任意的,都有恒成立,那么实数的取值范围是______________【答案】【解析】∵函数f(x)满足对任意x1<x2,都有f(x1)<f(x2)成立,∴函数f(x)在定义域上是增函数,则满足,故答案为.点睛:本题主要考查函数单调性的应用,根据分段函数单调性的性质建立不等式关系是解决本题的关键,注意端点处的函数值的大小限制.三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17. 已知直线与直线,其中为常数.(1)若,求的值;(2)若点在上,直线过点,且在两坐标轴上的截距之和为0,求直线的方程.【答案】(1)或(2)或【解析】试题分析:(1),则即可求出m的值;(2)当时,P为(1,0),,不合题意;当时,P为(1,2),,符合题意.因直线在两坐标轴上的截距之和为0,当直线过原点时,可设的方程为,当直线不经过原点时,可设的方程为,将点P(1,2)带入,即可得直线的方程.试题解析:(1)∵∴解得或(2)当时,P为(1,0),,不合题意;当时,P为(1,2),,符合题意.∵直线在两坐标轴上的截距之和为0当直线过原点时,可设的方程为,将点P(1,2)带入得∴此时为;当直线不经过原点时,可设的方程为,将点P(1,2)带入得∴此时为综上可得直线的方程为或.18. 如图,三棱柱内接于一个圆柱,且底面是正三角形,如果圆柱的体积是,底面直径与母线长相等.(1)求圆柱的侧面积;(2)求三棱柱的体积.【答案】(1)(2)【解析】试题分析:(1)设底面半径为r,则母线长为2r,由V圆柱=πr2•2r=2π,求出r=1,由此能求出该圆柱的侧面积;........ ................试题解析:(1)设底面圆的直径为,由题可知∴∴圆柱的侧面积(2)因为△ABC为正三角形,底面圆的半径为1,∴可得边长AB=∴三棱柱的体积19. 已知函数是奇函数(是常数),且满足.(1)求的值;(2)试判断函数在区间上的单调性,并用定义证明.【答案】(1)a=2,b=1,c=0(2)函数在区间单调递减【解析】试题分析:(1)运用奇函数的定义,可得c=0,再由条件得到a,b的方程,解方程组即可得解;(2)运用单调性的定义证明,注意任取,作差,变形,定符号和下结论几个步骤.试题解析:(1)∵是奇函数,所以c=0,且.解得∴a=2,b=1,c=0(2)函数在区间单调递减证明:在区间任取,且令由(I)知∴∵∴∴,即∴函数在区间单调递减20. 如图,在四棱锥中,,,,平面底面,,和分别是和的中点,求证:(1)平面;(2);(3)平面平面.【答案】(1)见解析(2)见解析(3)见解析【解析】试题分析:(1)由已知得ABCD是平行四边形,从而AD∥BE,又AD⊂平面PAD,BE不在平面PAD内,即可证得BE∥平面PAD;(2)根据面面垂直的性质可得PA⊥平面ABCD,故而PA⊥BC;(3)先证CD⊥平面PAD得出CD⊥PD,故而CD⊥EF,再证四边形ABED是矩形得出CD⊥BE,从而CD⊥平面BEF,于是平面BEF⊥平面PCD.试题解析:(1)∵AB∥CD,CD=2AB,E是CD的中点,∴四边形ABED为平行四边形,∴BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,∴BE∥平面PAD.(2)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PA⊥平面ABCD.∵BC平面ABCD∴PA⊥BC(3)在平行四边形ABED中,AB⊥AD,∴ABED为矩形,∴BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD∴AB⊥平面PAD,∴CD⊥平面PAD,∴CD⊥PD.∵E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.∵CD⊂平面PCD,∴平面BEF⊥平面PCD.21. 已知圆的圆心为点,点在圆上,直线过点且与圆相交于两点,点是线段的中点.(1)求圆的方程;(2)若,求直线的方程.【答案】(1)(2)直线为或【解析】试题分析:(1)由题可设圆的方程为,因为点在圆上,所以,即可得圆的方程;试题解析:(1)由题可设圆的方程为∵点在圆上∴∴圆的方程为(2)∵点是弦的中点∴由A(-1,0),C(0,3)可得∴即圆心C到直线的距离等于1,当直线的斜率不存在时,直线为,符合题意当直线的斜率存在时,可设直线为∵,得∴直线为,即∴直线为或点睛:本题考查了直线与圆的位置关系,关键是利用垂径定理构建点到直线的距离,圆的半径,弦长的一半之间的等量关系,注意考虑直线的斜率不存在的情况.22. 已知函数是偶函数,(其中).(1)求函数的定义域;(2)求的值;(3)若函数与的图象有且只有一个交点,求的取值范围.【答案】(1)(2)(3)【解析】试题分析:(1)根据对数函数的性质有解不等式即可求出函数的定义域;(2)函数是偶函数,所以=,即有由此可求出k的值;(3)函数与的图象有且只有一个交点,即方程在上只有一解,令则,问题转化为关于t的方程(a-1)t2-在(,上只有一解,分三种情况进行讨论即可求得的取值范围.试题解析:(1)∵,且∴∴所以定义域为(2)∵是偶函数∴对任意恒成立即恒成立,∴(3)∵函数与的图象有且只有一个交点∴方程在上只有一解即方程在上只有解令则因而等价于关于的方程在上只有一个解①当时,解得,不合题意②当0<a<1时,记h(t)=(a﹣1)t2﹣at﹣1,其图象的对称轴t=<0,∴函数h(t)在(0,+∞)上递减,而h(0)=﹣1,∴方程在(,+∞)无解;③当a>1时,记h(t)=(a﹣1)t2﹣at﹣1,其图象的对称轴t=>0,h(0)=﹣1,所以,只需h()<0,即(a﹣1)﹣a﹣1<0,此恒成立,∴此时a的范围为a>1,综上所述,所求a的取值范围为a>1.点睛:本题主要考查了函数奇偶性的应用,函数与方程的思想,关键是把函数与的图象有且只有一个交点,转化为方程在上只有一解,换元法,令则,问题转化为关于t 的方程(a-1)t2-在(,上只有一解,同时也考查了对数的运算性质,考查了计算能力.。

相关文档
最新文档