stata在只有OR值和可信区间时的META分析过程

合集下载

Stata率的meta分析

Stata率的meta分析

用stata软件做单个样本率的meta分析
本实例采用的数据是本人的另一个贴子用的数据是这个贴子中我能用stata做患病率的meta 分析了,大家交流交流啊- 丁香园论坛中网友在别的文章中看到并上传的一个森林图:这个森林图中的数据其实不太好,因为异质性太大,但数据简单,也就给大家摸拟一下。

重要的是知道怎样用stata软件做单样本率meta分析就可以了。

在stata中要做meta分析,最重要的就是要知道两个变量,一个是ES也就是效应量,另一个是seES,也就效应量,所有关于率的meta,做meta的关键也就是如何去寻找这两个东东了, 我这里采用的就是直接用率做为ES,而ES的标准误其实也不难求出,大家可以看看孙振球教授《医学统计学》中的这个例子或许会有所启发:如下图
这个是基于正态近似法的公式,在样本量较,数据正态时使用,这算ES的标准误也是如用的这个公式
下面开始具体操作:
1,输入数据,数据的格式是study,率,以及样本量
第二步:generate ser=sqrt(r*(1-r)/n)
3,用随机效应模型进行分析命令如下:metan r ser, random label(namevar=study)
继续
4,输入如下命令得到漏斗图:metafunnel r ser。

Stata在Meta分析中应用

Stata在Meta分析中应用

Begg's funnel plot with pseudo 95% confidence limits .5
logor
0
-.5
0
.1
.2
.3
s.e. of: logor
例2 Gotzsche收集了有关短程小剂量强的松 VS安慰剂或非甾体抗炎药治疗类风湿性关 节炎的7个临床随机对照试验(RCTs),观察 类风湿性关节炎患者的关节压痛指数 (rechie’s index)。
Experimental treatment Control treatment First author Publication year
No Mean SD No Mean SD
Jasni
1968
9 16.2
Jadad量表由 Alejandro Jadad-Bechara 制定,作为哥 伦比亚的一名医生,他还是牛津大学内纳菲尔德麻醉剂部 研究减轻疼痛的研究员。Jadad和他的组员在1996年的 《临床对照试验杂志》上发表了一篇有关盲法效应的文章 。在该文章的附录中,通过评价,给不同临床试验评分, 从最差的0分到最高的5分。Jadad认为随机对照试验是现 代医学研究的一大进步,在一本2007年写的一本书中, 他说“这是一种最简单,但又最有效、最具有革命性的研 究形式”。
Meta-analysis fixed-effects estimates (exponential form) Study ommited
MRC-1
CDP
MRC-2
GASP
PARIS
AMIS
ISIS-2
0.80
0.84
0.90
0.96
1.02
Publication bias命令: metabias logor selogor, graph(begg)

meta分析的实施步骤

meta分析的实施步骤

Meta分析的实施步骤简介Meta分析是一种通过综合多个独立研究结果来获得更准确和可靠的结论的统计方法。

它可以解决单个研究可能无法得出一致结论的问题,还可以提供更大样本量和更广泛范围的评估。

本文将介绍meta分析的实施步骤,并以列点的方式给出详细说明。

实施步骤1.明确研究目的:–确定要分析的研究问题和目标。

–确定研究领域和主题,以便确定适当的文献检索策略。

2.文献检索和筛选:–制定文献检索策略,包括选择适当的数据库和关键词。

–检索和筛选符合研究目的和标准的相关文献,如纳入和排除标准。

3.数据提取:–建立数据提取表格或工具,包括提取的变量和相关数据。

–独立提取数据,并双重检查以确保准确性。

4.质量评估:–评估纳入研究的质量和偏倚风险。

–使用适当的工具、量表或评估标准进行评估。

5.效应量的计算:–根据研究设计和数据类型选择适当的效应量测量方法。

–计算每个研究的效应量和标准误差。

6.数据合并:–使用统计软件进行meta分析的数据合并。

–选择合适的模型(例如,固定效应模型或随机效应模型)进行合并。

7.统计分析和解释:–分析合并效应量,并计算相应的置信区间和p值。

–进行敏感性分析和亚组分析,以探究可能的异质性和系统误差。

8.结果报告和解释:–撰写meta分析报告,包括研究背景、方法、结果和讨论等部分。

–解释结果的实际意义和潜在影响,讨论研究结果的局限性和不确定性。

9.提出结论:–总结meta分析的主要结论和发现。

–提出未来研究的建议和方向。

总结通过执行上述meta分析的实施步骤,研究者可以综合多个独立研究的结果,提供更准确和可靠的结论。

这种方法对于整合和综合现有证据,获得更具统计学意义的结论具有重要意义。

然而,执行meta分析时需要详细考虑文献检索、数据提取、质量评估等关键步骤,并以透明和系统的方式进行分析和报告。

meta分析数据处理流程方法

meta分析数据处理流程方法

meta分析数据处理流程方法
Meta分析是一种统合多个研究结果以得出综合结论的统计分析方法。

进行meta分析的数据处理流程大致可以分为以下几个步骤:
1.明确研究问题与纳入标准:首先,需要明确meta分析的目标和
研究问题。

基于这个目标,制定包括纳入和排除研究的标准。

2.文献搜索与筛选:通过系统性地搜索电子数据库和其他资源来识
别相关研究,使用事先定义的纳入和排除标准来筛选研究。

3.数据提取与管理:对于筛选后纳入的研究,提取关键信息和数据,
如样本大小、干预措施和结果等。

可能需要使用电子表格或专门的软件来管理这些数据。

4.质量评估:评估纳入研究的质量,识别可能的偏倚风险。

这可以
通过使用标准化的评估工具来完成。

5.统计分析:使用meta分析的统计方法来综合研究结果。

这通常
涉及计算效应量的合并估计值和进行异质性测试。

可能会使用固定效应或随机效应模型,具体取决于研究间异质性的程度。

6.解释结果与报告:对分析结果进行解释,并考虑异质性的来源、
研究质量、可能的偏倚等因素。

最后,编写报告或发表文章,详细描述meta 分析的方法、结果和结论。

7.灵敏度分析:进行灵敏度分析来检查结果的稳健性,即改变一些
分析假设(如纳入标准、效应量模型等)对结果的影响。

8.评估发表偏倚:使用统计方法((如漏斗图和Egger测试)来评估
是否存在发表偏倚,即未发表的负面或无显著结果研究可能对综合结果的影响。

完成以上步骤后,meta分析可以为某一领域的研究提供一个全面和客观的综述,帮助科研人员和决策者更好地理解和应用现有证据。

手把手教你用Stata进行Meta分析Meta简明教程(7)

手把手教你用Stata进行Meta分析Meta简明教程(7)

⼿把⼿教你⽤Stata进⾏Meta分析Meta简明教程(7)Meta简明教程⽬录1. 认识⼀下meta⽅法! | Meta简明教程(1)2. ⼀⽂初步学会Meta⽂献检索 | Meta简明教程(2)3. 如何搞定“⽂献筛选” | Meta简明教程(3)4.Meta分析⽂献质量评价 | Meta简明教程(4)5.Meta分析数据提取| Meta简明教程(5)6.⼀⽂学会revman软件| Meta简明教程(6)Meta简明教程(7)上⼀期介绍了Revman 软件对⼆分类数据、连续型数据、诊断性试验数据、⽣存-时间数据进⾏meta分析,本期将利⽤Stata对以上数据进⾏meta分析。

⼤家可以到本公众号下载Stata软件(重磅推荐:分类最全的统计分析相关软件,了解⼀下?请关注、收藏以备⽤)Stata12.0 界⾯⼀、⼆分类数据分析数据形式例:研究阿司匹林(aspirin)预防⼼肌梗死(MI)7个临床随机对照试验,观察死亡率,数据提取如下:操作步骤1.构建数据1)启动Stata 12.0 软件后,可以直接点击⼯具栏中DataEditor (edit)按钮。

也可在在菜单栏中点击Data→Data Editor→ DataEditor (edit),出现以下界⾯。

2)点击变量名位置,依次输⼊研究名称(research),阿司匹林组死亡数(a),阿司匹林组存活数(b),安慰剂组死亡数(c),安慰剂组存活数(d)3)录⼊数据:在变量值区域输⼊数据2. 数据分析1)导⼊meta模块:在Command窗⼝中进⾏编程,⾸先需要在Stata中安装meta模块:在Command窗⼝输⼊“sscinstall metan”,选中点回车。

结果窗⼝中出现下⾯的结果,说明已经安装了meta模块。

2)输⼊meta分析代码:在Command窗⼝输⼊ “Command窗⼝输⼊ “metan a b c d, or fixed”,点回车,完成结果分析。

《2024年Stata在Meta分析中的应用》范文

《2024年Stata在Meta分析中的应用》范文

《Stata在Meta分析中的应用》篇一一、引言Meta分析是一种综合多个独立研究结果的方法,旨在通过合并不同研究的数据来得出更全面、更准确的结论。

随着统计软件的发展,Stata作为一种强大的统计分析工具,在Meta分析中得到了广泛应用。

本文将介绍Stata在Meta分析中的应用,并探讨其优势和局限性。

二、Stata在Meta分析中的应用1. 数据准备与处理在Meta分析中,首先需要收集各个独立研究的数据,包括研究设计、样本大小、实验组和对照组的效应指标等。

Stata提供了强大的数据处理功能,可以方便地导入和处理这些数据。

同时,Stata还支持多种数据格式的转换和整合,使得数据准备和处理的流程更加高效。

2. 模型选择与构建Meta分析中常用的模型包括固定效应模型和随机效应模型。

Stata提供了多种Meta分析模型的选择和构建功能,用户可以根据研究特点和数据特征选择合适的模型。

此外,Stata还支持模型的扩展和调整,如考虑异质性、发表偏倚等。

3. 效应指标计算与合并效应指标是Meta分析的核心内容之一,常用的效应指标包括相对危险度、比值比、加权平均数等。

Stata提供了多种效应指标的计算和合并方法,包括固定效应法、随机效应法等。

用户可以根据需要选择合适的效应指标和合并方法,得出更准确的综合结果。

4. 结果解释与可视化Stata具有强大的结果解释和可视化功能,可以将Meta分析的结果以图表的形式展示出来,使得结果更加直观易懂。

同时,Stata还支持多种结果解释的方法,如森林图、漏斗图等,帮助用户更好地理解Meta分析的结果。

三、Stata在Meta分析中的优势1. 强大的统计分析功能:Stata具有丰富的统计分析功能,可以满足Meta分析的各种需求。

2. 操作简便:Stata的界面友好,操作简便,用户可以快速上手。

3. 数据处理能力强:Stata支持多种数据格式的转换和整合,使得数据准备和处理的流程更加高效。

《2024年Stata在Meta分析中的应用》范文

《2024年Stata在Meta分析中的应用》范文

《Stata在Meta分析中的应用》篇一摘要:本文将介绍Stata软件在Meta分析中的应用。

首先概述Meta 分析的概念、背景及其重要性。

然后介绍Stata软件的基本功能和其在Meta分析中的应用优势。

通过一个实际案例,详细阐述Stata在Meta分析中的具体操作步骤和结果解读。

最后,总结Stata在Meta分析中的价值和未来发展趋势。

一、引言Meta分析是一种通过综合多个独立研究结果来得出综合结论的统计方法。

在医学、社会科学等领域,Meta分析被广泛应用于证据综合和系统评价。

Stata作为一种功能强大的统计分析软件,在Meta分析中发挥着重要作用。

本文将详细介绍Stata在Meta分析中的应用。

二、Meta分析概述2.1 定义与背景Meta分析是一种通过收集、整理和综合多个独立研究结果来得出综合结论的统计方法。

它可以帮助研究者对多个研究结果进行定量综合,提高证据的可靠性和说服力。

2.2 Meta分析的重要性Meta分析在医学、社会科学等领域具有重要价值。

通过对多个研究的综合分析,可以更准确地评估干预措施的效果,为政策制定和临床实践提供有力依据。

三、Stata软件基本功能及其在Meta分析中的应用优势3.1 Stata软件基本功能Stata是一款功能强大的统计分析软件,具有数据管理、描述性统计、推断性统计等功能。

它支持多种统计方法,包括回归分析、方差分析、生存分析等。

3.2 Stata在Meta分析中的应用优势Stata在Meta分析中具有以下优势:(1)操作简便:Stata具有友好的用户界面和丰富的命令系统,使得操作简便快捷。

(2)功能全面:Stata支持多种Meta分析方法,包括固定效应模型、随机效应模型等。

(3)结果直观:Stata可以生成直观的图表和统计结果,便于结果解读。

四、Stata在Meta分析中的具体应用案例4.1 案例背景以一项关于药物治疗糖尿病效果的Meta分析为例,介绍Stata在Meta分析中的具体应用。

meta分析stata演示文稿

meta分析stata演示文稿

数据
计量资料
亚组分析---design
亚组分析---location
随机效应模型,异质性太大
漏斗图
ES:效应量(例如血糖下降变 seES:效应量的标准误
直接复制,可得白色的图
WMD
Begg's funnel plot with pseudo 95% confidence limits .5
Stata软件实现步骤
基线数据的录入与导入; 菜单操作或者编写程序; 生成森林图以及所需要的图形; 数均值、标准差,一篇文献,低中高剂量
Wmd 单位统一 ,加权均值,如血糖的单位都是 mmol/l
Msd 标准化均值
wmd
森林图操作步骤
发表的文献中符合要求的数据进行合并,计算出其 合并效应。
举例说明
1、计量资料的meta分析
运动、饮食与降空腹血糖 检索文献、检索词筛选出80-90篇 读摘要筛选30-40篇,精读剩下12篇 State软件做分析,得出合并效应森林图
检索文献流程图
合并效应森林图
几个关键的步骤
文献的纳入与排除(检索策略与纳入标准); 纳入文献的质量评估(几种评估量表); 森林图的生成与亚组分析(合并效应WMD,SMD); 漏斗图的制作及其意义;
前瞻性RR 回顾性OR
表2.1 Aspirin预防心梗死亡的临床试验结果基线情况
study year
Aspirin group
Placebo group
total
death
total
death
MRC-1 1974
615
49
624
67
CDP 1976
758
44
771
64
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档