系统动力学模型教案
第4章 系统仿真模型-系统动力学

§4-5 DYNAMO仿真计算
一、 一阶正反馈回路 二、 一阶负反馈回路 三、 两阶负反馈回路
§4-6 系统动力学建模步骤
一、系统动力学模型的建模步骤 二、 DYNAMO仿真流程框图 三、系统动力学模型的评价 课后作业
第六章 系统仿真模型——系统动力学
§6-1 系统仿真的基本概念及其实质 一、基本概念 系统仿真——(Systems simulation)是对真 实过程或系统在整个时间内运行的模仿。 ◆依系统的分析目的进行构思 ◆建立系统模型 ◆建立描述系统结构和行为、具有逻辑和数学性 质的仿真模型 ◆依仿真模型对系统进行试验和分析 ◆获得决策所需信息
第六章 系统仿真模型——系统动力学
§6-2 系统动力学概述 一、系统动力学及其发展
(二)国内外系统动力学(Systems dynamics, SD)发展
1 国外学者SD研究现状
系统动力学在国外的应用非常广泛,其应用几乎遍及 各类系统,深入到各类领域。在商业上模拟复杂竞争 环境中的商业模型;在经济学上解释了SamuelsonHicks模型;在医学研究上模拟不同药物效用对病人的 生理学反映,如测试经过胰岛素治疗后糖尿病病人血 液葡萄糖水平的医学模型;在生物学上模拟并推导了 捕食者——被捕食者问题;还有模拟地区经济模型, 模拟生态系统模型等研究。
一、基本概念 二、系统仿真的实质 三、系统仿真的作用
§4-2 系统动力学概述
一、系统动力学及其发展 二、反馈系统
§4-3 系统动力学结构模型
一、信息反馈系统的动力学特征 二、反馈系统 三、流程图(结构模型)
第六章 系统仿真模型——系统动力学
目 录
§4-4 系统动力学数学模型(结构方程式)
一、基本概念 二、 DYNAMO方程
系统动力学模型构建与Vensim软件应用教程

系统动力学模型构建与Vensim 软件应用教程第一部分系统动力学与Vensim 软件一、系统动力学概述系统动力学(SystemDynamics)是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题交叉的综合性的新学科。
系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制。
系统:相互作用诸单元的复合体,例如:社会、经济、生态系统。
反馈:系统内同一单元或同一子块其输出与输入间的关系。
对整个系统而言,"反馈"则指系统输出与来自外部环境的输入的关系。
反馈可以从单元或子块或系统的输出直接联至其相应的输入,也可以经由媒介其他单元、子块、甚至其他系统实现。
所谓反馈系统就是包含有反馈环节与其作用的系统。
它要受系统本身的历史行为的影响,把历史行为的后果回授给系统本身,以影响未来的行为。
例如:库存控制系统是一个反馈系统,如图:发货使库存量减少,当库存低于期望水平以下一定数值后,库存管理人员即按预定的方针向。
生产部门订货,货物经一定延迟到达,然后使库存量逐渐回升。
反映库存当前水平的信息经过订货与生产部门的传递最终又以来自生产部门的货物的形式返回库存。
正反馈的特点是,能产生自身运动的加强过程,在此过程中运动或动作所引起的后果将回授,使原来的趋势得到加强;负反馈的特点是,能自动寻求给定的目标,未达到(或者未趋近)目标时将不断作出响应;具有正反馈特性的回路称为正反馈回路,具有负反馈特点的回路则称为负反馈回路(或称寻的回路);分别以上述两种回路起主导作用的系统则称之为正反馈系统与负反馈系统(或称寻的系统)。
回路的概念最简单的表示方法是图形,系统动力学中常用三种图形表示法:系统结构框图(structurediagram)因果关系图(causalrelationshipdiagram)流图(stockandflowdiagram)系统动力学解决问题大体可分为五步:第一步要用系统动力学的理论、原理和方法对研究对象进行系统分析。
系统动力学模型SD1

系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学理论基本观念
(八)开放复杂系统的其他重要性质
(1)在非平衡状态下运动、发展、进化是开放复杂系统的一个重 要动态行为特征。系统动力学所研究的系统,诸如社会、经济、生 态系统,都具有这一特性。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学研究问题的过程
建立数学的规范的模型是第三个步骤。
主要任务:用系统动力学语言表述系统及其结构
1)建立L,R,A,C诸方程; 2)确定与估计参数; 3)给所有N方程,C方程与表函数赋值。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.1 系统动力学—学科基础
系统动力学的学科基础可划分为三个层次:
(1)方法论——系统方法论。即其基本原则是将所研究 对象置于系统的形式中加以考察。
(2)技术科学和基础理论——主要有反馈理论、控制论、 信息论、非线性系统理论,大系统理论和正在发展中的 系统学。 (3)应用技术——计算机模拟技术。为了使系统动力学 的理论与方法能真正用于分析研究实际系统,使系统动 力学模型成为实际系统的“实验室”,必须借助计算机 模拟技术。如:社会经济动力学:经济理论、决策理论 和组织理论等。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.2 系统动力学基ห้องสมุดไป่ตู้概念
模型:是客观存在的事物与系统的模仿、代表或替代物。 它描述客观事物与系统的内部结构、关系与法则。 如:脑力模型、物理模型、数学模型、计算机模型或者 前述模型的组合。
(完整版)第五章系统动力学模型

5.2 系统反馈结构
5.2.2 系统动力学流图
1. 变量与符号
(1)原件结构要素
原件结构要素
变量要素,它是由状态变量、速率变量、辅助变量 等组成。
关联要素,是信息链和物质链。
29
5.2 系统反馈结构
5.2.2 系统动力学流图
30
5.2 系统反馈结构
5.2.2 系统动力学流图
描述状态变量变 化快慢的变量
5.1.2 系统动力学发展历史
J.W.Forrester等在系统动力学方面的主要成果 1958年 发表著名论文《工业动力学——决策的一个重要突破口》 1961年 出版《工业动力学》(Industrial Dynamics) 1968年 出版《系统原理》(Principles of Systems) 1969年 出版《城市动力学》(Urban Dynamics) 1971年 出版《世界动力学》(World Dynamics) 1972年 学生梅多斯教授等出版《增长的极限》(The Limits to Grow2.2 系统动力学流图
出生系数是常数
32
5.2 系统反馈结构
5.2.2 系统动力学流图
辅助 变量
33
5.2 系统反馈结构
5.2.2 系统动力学流图
34
5.2 系统反馈结构
5.2.2 系统动力学流图
35
5.2 系统反馈结构
5.2.2 系统动力学流图
当模型用于经济政策分析时,通常 采用对模型施加外部干扰的办法, 以研究和揭示内部结构与其动态行 为之间的关系。
第五章 系统动力学模型
System Dynamics Model
1
目录
5.1 系统动力学学科简述 5.2 系统反馈结构 5.3 系统动力学方程基础 5.4 DYNAMO语言 5.5 典型反馈结构 5.6 系统动力学模型 5.7 仿真软件Vensim
企业安全评价的系统动力学模型研究与应用

发展趋势
随着信息技术和安全管理理念的不断发展,企业安全评 价的方法和手段也将不断更新和完善,以更好地适应企 业安全管理的需求。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 05
企业安全评价的系统动力学 模型应用
模型应用的方法和流程
确定研究问题
明确企业安全评价的研究问题,如事故原 因、风险评估等。
模型验证
通过实际数据和模拟结果验证模型的准确 性和可行性。
构建模型
根据研究问题,利用系统动力学原理构建 企业安全评价的模型。
模型应用
将模型应用于实际企业安全评价中,包括 风险评估、事故预测等。
CHAPTER 02
企业安全评价概述
企业安全评价的定义和重要性
企业安全评价是指对企业生产过程中的安全性进行综合评估 和判断,是保障企业安全生产的重要手段。
企业安全评价的重要性体现在:提高企业安全管理水平,预 防和减少事故的发生,提高员工安全意识,促进企业可持续 发展。
企业安全评价的内容和标准
企业安全评价的内容包括:作业环境安全、设备设施安全、人员操作安全、应急管理等多个方面。
企业安全评价的系统 动力学模型研究与应 用
2023-11-03
目录
• 引言 • 企业安全评价概述 • 系统动力学模型理论基础 •全评价的系统动力学模型应用 • 结论与展望
CHAPTER 01
引言
研究背景与意义
当前企业安全事故频发,对员工生命安全和经济效益造成严重影响,因此建立科 学的企业安全评价体系至关重要。
研究不足与展望
要点一
研究不足
虽然本研究已经取得了一定的成果,但是在数据采集和 处理方面还存在不足,有待进一步完善。
系统动力学第二版课程设计

系统动力学第二版课程设计1. 简介系统动力学是一种用于研究复杂系统的工具和方法。
在这门课程中,我们将学习系统动力学的基本概念和应用,以及如何使用系统动力学建立和模拟系统。
本课程设计旨在让学生通过动手实践,掌握系统动力学的基本原理和应用方法。
2. 课程学习目标本课程旨在使学生:•了解系统动力学的基本概念和原理;•掌握系统动力学建模和模拟的基本方法;•能够独立完成简单系统的建模和模拟;•了解系统动力学在实际应用中的一些案例。
3. 课程安排本课程采用线上和线下相结合的模式,包括课堂教学和实践操作。
具体安排如下:3.1. 第一周:系统动力学介绍(线上)系统动力学的概念、历史和基本原理介绍。
3.2. 第二周:系统建模与数学表达(线上)系统建模的基本方法和数学表达方式。
3.3. 第三周:系统动力学框架(线上)系统动力学框架的介绍和使用。
3.4. 第四周:库存管理模型(线下)使用系统动力学建立和模拟库存管理模型的实践操作。
3.5. 第五周:人口增长模型(线下)使用系统动力学建立和模拟人口增长模型的实践操作。
3.6. 第六周:环境污染模型(线下)使用系统动力学建立和模拟环境污染模型的实践操作。
3.7. 第七周:系统动力学在实际应用中的案例(线上)介绍系统动力学在管理、环境、经济等领域的应用案例。
3.8. 第八周:课程总结(线上)总结本课程的内容和学习效果,回顾学生的学习体验。
4. 评估方式课程的成绩评定方式如下:•出勤情况(占总成绩10%)•课堂互动和参与程度(占总成绩20%)•系统动力学建模和模拟作业(占总成绩30%)•期末综合考试(占总成绩40%)5. 参考资料•Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill Education.•Forrester, J. W. (1968). Principles of Systems. Productivity Press.•Richardson, G. P. (1991). Feedback Thought in Social Science and Systems Theory. University of Pennsylvania Press.6. 结论本课程设计通过理论教学和实践操作相结合的方式,旨在让学生通过动手实践,掌握系统动力学的基本原理和应用方法,提高系统思考和问题解决的能力,为将来在管理、环境、经济等领域的应用打下良好基础。
系统动力学模型

如:
用
表示。
系统动力学的建模步骤
例1:建立“一阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
例2,: 建立“二阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
思考题
• 物流系统的系统动力学模型构建
• 决策变量(又称流率)(r):
描述系统物质流动或信息流动积累效应变化快慢的变 量,其具有瞬时性的特征。
——反映单位时间内物质流动或信息流量的增加或 减少的量
——相对量、速度、微积分中的变化率等
决策变量符号表示:
注 意:
(3) 常数:描述系统中不随时间而变化的量,
用
表示。
如:
(4) 辅助变量:从信息源到决策变量之间,起到辅助表达信息反 馈决策作用的变量。
——流图能反映出物质ห้องสมุดไป่ตู้积累值和积累效应变化快慢的区别
2. 流图 :
流图确定反馈回路中变量状态发生变化的机制,明确表 示系统各元素间的数量关系,反映物质链与信息链的区 别,能够反映物质的积累值及积累效应变化快慢的区别。
(1). 物质链与信息链
物质链:系统中流动的实体,连接状态变量 是不使状态值变化的守恒流。
物质链符号表示:要素A→要素B
• 信息链:连接状态和变化率的信息通道,是与因果关系相连 的信息传输线路。
信息链符号表示:A O···→B
(2)状态变量与决策变量
• 状态变量(又称流位)(x):
描述系统物质流动或信息流动积累效应的变量,表 征系统的某种属性,有积累或积分过程的量
—— 绝对量、位移、微积分中的积分量等
1. 因果关系图: 2. 因果链:
3. 反馈回路:
综合“因果关系图”:
《系统动力学模型》课件

3 交通拥堵问题
利用系统动力学模型分析 交通系统中的关键影响因 素,提出拥堵缓解策略。
总结
系统动力学模型的优 点
能够综合考虑各种因素的复杂 相互关系,揭示潜在的系统行 为规律。
系统动力学模型的局 限性
构建和验证模型需要大量的数 据和计算资源,并且容易受到 参数估计误差的影响。
系统动力学模型的未 来发展
3
1 972 年
《The Limits to Growth》的发表使系统动力学模型成为一个热门研究领域。
系统动力学基本理论
系统动力学图形符号、流量与库存的关系以及系统动力学中的反馈思想是构建系统动力学模型的基本理论。
系统动力学模型的构建
步骤一:制定概念模 型
定义系统的边界和范围,确定 系统中的因素。
步骤二:建立定量模 型
全面考虑建模元素,建立动态 模型方程。
步骤三:模型验证和 仿真
模型验证的用案例
1 企业资源分配问题
通过系统动力学模型优化 企业的资源配置方案,提 高经济效益。
2 环境污染问题
应用系统动力学模型预测 环境污染的发展趋势,制 定相应的环境保护措施。
复杂性分析
适用于复杂问题,帮助发现问题背后的潜在因果 关系。
系统动力学模型的应用领域
商业与管理 公共政策 能源与资源管理
环境与可持续发展 社会科学 健康与医疗
系统动力学模型的历史发展
1
1940年代
系统动力学的基本概念和方法首先由Jay W. Forrester提出。
2
1960年代
MIT的Jay W. Forrester开始使用计算机来构建和模拟系统动力学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章系统动力学模型系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。
1 系统动力学概述2 系统动力学的基础知识3 系统动力学模型第1节系统动力学概述1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。
系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下:1 系统动力学模型的理论基础是系统动力学的理论和方法;2 系统动力学模型的研究对象是复杂反馈大系统;3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”;4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;5 系统动力学模型的关键任务是建立系统动力学模型体系;6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表;系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。
地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。
1.2 发展概况系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。
目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。
福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。
在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下:1)人才培养自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。
请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。
2)编译编写专著组织专家编译了《工业动力学》,《城市动力学》等。
编写专著有:王其藩著《系统动力学》,《高级系统动力学》;胡玉奎著《系统动力学》,王洪斌著《系统动力学教程》,贾仁安著《系统动力学教程》等。
3)引进专业软件引进的软件有:MICRO-DYNAMO,DYNAMAP2,DYNAMO I∏∏,STELLA,⋅PD PLUS等,近几年又引进的最先进实用的VENSIM专业软件。
并自行研制了一些专用软件。
4)新设课程新开设了系统动力学专业课程。
在几十所大学的管理系或管理学院以及科研单位的研究生开设了系统动力学课程。
5)组织机构与学术会议于19 年成立了全国系统动力学委员会。
组建了一些专门研究机构和教学机构。
开展了许多专项研究工作。
建立了国家总体系统动力学模型,省和地区的发展战略研究系统动力学模型,省级能源,环境预测系统动力学模型及科技,工业,农业林业等行业发展战略研究系统动力学模型等。
1986年8月,在上海召开的“全国系统动力学学术研讨会“上,140多名代表提交了95篇有关系统动力学理论和应用研究方面的论文。
1987年6月,在上海召开的国际学术会议上我国代表交流了29篇论文,占会议论文数的45%。
1988年7月,美国圣迭戈召开了国际学术年会,我国有十名代表参加,交流论文十多篇。
1989年7月,在西德斯图加特召开的国际学术年会上,我国学者交流论文14篇,有4人参加会议。
目前,在我国系统动力学已经发展成熟,并正向深入和全面应用延伸,形成了一支强大的研究力量,发展趋势看好,有理由相信,系统动力学必将在我国社会,经济,科技,管理和生态等领域的研究中发挥更大作用。
第2节系统动力学的基础知识系统动力学模型建立的基本知识,基本原理主要有:因果关系图,模型流图及模型的组成等。
现分别介绍。
2.1 因果关系1 因果关系因果关系是指由原因产生某结果的相互关系。
从哲学角度讲,原因和结果是揭示客观事物的因果联系的重要哲学概念,它们是客观事物普遍联系和相互作用的表现形式之一。
原因是某种事物或现象,是造成某种结果的条件;结果是原因所造成的事物或现象,是在一定阶段上事物发展所达到的目标状态。
通常用箭头线来表示,它有正因果关系和负因果关系两种,如图9—1。
P169原因结果+ 就业机会E 迁入人口数I- 死亡率R 总人口数P 正因果关系:两个变量呈同方向变化趋势,如:E增加,I增加;E减少,I减少。
负因果关系:两个变量呈异方向变化趋势,如:R增加,P减少;R减少,P增加。
2)因果关系环图因果关系环图是指由两个或两个以上的因果关系连接而成的闭合回路图示。
它定性描述了系统中变量之间的因果关系。
它有正负因果关系环图两种,如图9—3,图9--4所示:P169正因果关系环图:它会引起系统内部活动加强。
准则:若各因果关系均为正,则该环为正因果关系环;若各因果关系为负的个数是偶数时,则该环也为正因果关系环。
负因果关系环图:它会引起系统内部活动减弱。
准则:若各因果关系均为负,则该环为负因果关系环;若因果关系为负的个数是奇数,则该环为负因果关系环。
再如:生态学人口增长因果关系环图,如图9—5,图9--6 所示:P1702.2 系统动力学模型流图系统动力学模型流图简称SD流图,是指由专用符号组成用以表示因果关系环中各个变量之间相互关系的图示。
它能表示出更多系统结构和系统行为的信息,是建立SD模型必不可少的环节,对建立SD 模型起着重要作用。
其专用符号主要有八个:1)水平变量水平变量符号是表示水平变量的积累状态的符号,它是SD模型中最主要的变量。
它由五部分组成,即:输入速率,输出速率,流线,变量名称及方程代码(L),如图所示。
2)速率变量速率变量符号是表示水平变量变化速率的变量。
它能控制水平变量的变化速度,是可控变量。
它由三部分组成,即:输入信息变量,变量名称及方程代码(R)。
如图所示。
3)辅助变量辅助变量符号是辅助水平变量等的变量。
如图所示。
4)外生变量外生变量符号如图所示。
5)表函数表函数符号如图所示。
6)常数常数符号如图所示。
7)流线流线符号又有物质流线,信息流线,资金流线,及订货流线四种:物质流线符号是表示系统中流动着的实体,如图所示。
信息流线符号是表示联接积累与流速的信息通道,如图所示。
资金流线符号是表示资金,存款及货币的流向,如图所示。
订货流线符号是表示订货量与需求量的流向,如图所示。
8)源与沟源符号与沟符号如图所示。
2.3 系统动力学模型系统动力学模型是由六种基本方程和专门的输出语句组成。
其六种方程的标志符号分别为:L:水平变量方程; R:速率变量方程;A :辅助变量方程; N :计算初始值方程;C :赋值予常数方程; T :赋值予表函数中Y坐标值。
L 方程是积累方程;R ,A 方程是代数运算方程;C ,T ,N 方程是提供参数值方程,并在同一次模拟中其值保持不变。
1)L 方程L 方程是计算水平变量积累值的方程,其一般表示形式为:L K J JKJK POP POP DT (BR DR )鬃鬃=+? 其中,L :水平变量方程代码,表示方程性质。
DT :时间间隔,即时间增量。
.J :表示前一刻。
.K :现在时刻。
.L :未来一时刻。
J POP ⋅:过去一时刻人口数。
K POP ⋅:现在时刻人口数。
L POP ⋅:未来一时刻人口数。
JK BR ⋅:过去至现在该段时刻的人口出生率。
JK DR ⋅:过去至现在该时刻段的人口死亡率。
积累是系统内部流的堆积量,它等于过去一时刻的积累加上积累变动量,即变动增量。
积累变动量是时间间隔与输入流速和输出流速之差的乘积。
2)R 方程R 方程是计算单位时间流量的方程,即流速或速率。
其一般表示形式为:R J JK POP BRF BR ⋅⋅⨯= R J JK POP DRF DR ⋅⋅⨯=R K KL POP BRF BR ⋅⋅⨯= R K KL POP DRF DR ⋅⋅⨯=其中,JK BR ⋅:过去至现在时刻的出生率,单位(人/年);JK DR ⋅:过去至现在时刻的死亡率,单位(人/年);KL BR ⋅:现在至未来时刻的出生率;单位(人/年);KL DR ⋅:现在至未来时刻的死亡率,单位(人/年);BRF : 出生系数,单位(人/年.人);DRF : 死亡系数,单位(人/年.人);J POP ⋅:过去时刻人口总数;K POP ⋅:现在时刻人口总数。
3)A 方程A 方程是辅助变量方程,用于对辅助变量赋值,其一般表示形式为:A ),22(k K pop sum TPOP ⋅⋅=其中,K TPOP ⋅:表示现在人口总数。
),22(k pop SUM ⋅:求和函数,表示求算现在22个年龄组的总和。
4)N方程N方程是变量初始值方程,表示对变量赋初始值,起一般表示形式为:N )1POPAGEIPOP)1(AGE(其中,POP:表示各年龄组人口初始值。
(AGE)1IPOP:是表函数,表示存储22个年龄组的初始值。
)1(AGE5)T方程T方程是表函数方程,表示对相应的纵坐标Y赋值。
6)C方程C方程是常数方程,表示对常数变量赋值。
第3节系统动力学模型系统动力学模型应用分析的一般步骤为:1 明确问题明确的问题是:系统的范围:空间范围,如安徽省区域;时间范围,如1961年 --- 2050年;时间间隔,DT=1年,等等。
解决途径:计算机仿真实验。
数据资料: 人口总数,出生率,死亡率,自然增长率等。
2 明确目标人口总数变化趋势;自然增长率控制目标;出生率控制目标;死亡率控制目标等。
3 绘制系统流图1)因果关系环图主要变量清单,即列出主要变量的清单,以利于因果关系环流图的绘制。
如:总人口数,出生率,死亡率,出生系数,死亡系数。
很容易绘制出下图:2)SD 模型流图在因果关系环图的基础上可得SD 模型流图如图 所示。
4 SD 模型的建立根据上述介绍知识和分析步骤,可得简单的安徽省人口SD 模型如下:* POPULAYION SD MODEL OF ANHUIL )(K J K J J K DR BR DT POP POP ⋅⋅⋅⋅-*+=R K L K POP BRF BR ⋅⋅*=R )K L K POP DRF DR ⋅⋅*=N 60000000=POPC 005.0=BRFC 003.0=DRFSPEC DT=1/PRINT 1)POP ,2)BR ,3)DR ,PLOT POP ,BR ,DRPLOT POP说明:1)人口数分22个年龄组,即:1岁,2 — 4,5 — 9,10 — 14,。