系统动力学模型部分集
系统动力学建模 PPT

因果关系图
因果图重要性
• 因果关系图在构思模型的初级阶段起着非 常重要的作用,它既可以在构模过程中初步 明确系统中诸变量间的因果关系,又可以 简化模型的表达,使人们能很快地了解系 统模型的结构假设,使实际系统抽象化和 概念化,非常便于交流和讨论。
流图法
• 流图法又叫结构图法,它采用一套独特的符 号体系来分别描述系统中不同类型的变量 以及各变量之间的相互作用关系。流图中 所采用的基本符号及涵义见图
国民经济流转模型方框问和交流
10
因果关系图法
• 在因果关系图中,各变量彼此之间的因果关系是 用因果链来连接的。因果链是一个带箭头的实线 (直线或弧线),箭头方向表示因果关系的作用方 向,箭头旁标有“+”或“-”号,分别表示两种极性 的因果链。
• a.正向因果链 A→+B:表示原因A 的变化(增或 减)引起结果B 在同一方向上发生变化(增或减)。
系统分析
• 这一步骤首先要对所需研究的系统作深入、广泛 的调查研究,通过与用户及有关专家的共同讨论、 交换意见,确定系统目标,明确系统问题,收集 定性、定量两方面的有关资料和数据,了解和掌 握国内外在解决类似系统问题方面目前所处的水 平、状况及未来的发展动向,并对前人所做工作 的长处与不足作出恰如其份的分析。对其中合理 的思想和方法要注意借鉴、吸收,对其中不足之 处要探究其原因,提出改进的设想。
模型的基本模块
• 根据系统动力学关于系统基本结构的理论, 任何大规模的复杂系统都可以用多个系统 基本结构按照特定的方式联结而成。系统 的基本模块是典型基本结构的形式,也是 由系统的基本单元、单元的运动以及单元 的信息反馈三大部分组成。
• 了解和掌握系统基本模块的性能、特性和 作用,有助于分析和构造系统模型,尤其 是分析和构造大规模复杂系统的模型。
系统动力学模型

系统动力学模型什么是系统动力学系统动力学是一种研究系统行为的方法和工具,它主要关注系统结构形成的动力学过程。
它可用于预测系统变化的趋势和影响,以及设计改变系统行为的政策。
系统动力学是一种模拟性思维工具,用于解决涉及许多互相联系的因素的复杂问题,例如企业管理、城市规划、环境保护、流行病传播等。
系统动力学建立在一系列原理之上,包括动态、非线性、复杂性和反馈。
它将系统看作一个有机整体,受到内部和外部因素的相互作用和影响。
系统动力学的核心是建立一个结构模型,该模型基于特定系统的组成部分,系统变量和它们之间的动态关系。
系统动力学模型的基本组成部分一个典型的系统动力学模型包括以下四个主要部分:构建系统结构图系统结构图是系统动力学模型的核心。
它包括不同变量之间的关系,变量可以是数量、资料、质料、阈值或事件。
结构图可以通过新陈代谢循环、储备、增值、流动和调控来定义系统变量和它们的依赖关系。
确定变量因素每个系统变量都受多种因素的影响,并与其他变量相互影响。
变量因素可能是外部因素,如市场需求、公司预算、环境限制等,也可能是内部因素,如员工行为、财务报告、产品质量等。
定义动态性系统动力学模型是建立在动态性基础上的。
变量不断变化,相互作用和影响会产生系统行为和性能的变化。
动态模型可以从时间维度中展现出来,当然还要考虑到周期性和规律性。
分析政策通过模型的分析,会得出许多新见解,从而制定出需要采取的具体政策和措施。
可以评估不同政策的影响,从而制定最佳的决策方案。
系统动力学模型的使用系统动力学模型非常适合用于下列场景:多变量和相互影响如果一个问题涉及许多因素和相互的影响,系统动力学模型是一种非常有效的解决方案。
它允许解决复杂的问题,包括环境、制造、管理、公共政策等。
长期影响系统动力学模型还可以用于评估政策和措施的长期效果,以及它们及其组合可能产生的复杂后果。
它可以帮助预测趋势和影响,为政策制定提供依据。
数据不足当您对一个系统缺少足够的信息时,使用系统动力学模型可以预测未来的变化趋势,并识别最重要的变量和因素。
系统动力学第3讲-系统流图n

明确系统的范围和要素,将系 统与其他外部环境区分开来。
确定因果关系
分析系统中各要素之间的相互 影响和作用,明确因果关系的 方向和强度。
绘制反馈回路
根据因果关系,绘制出系统中 的反馈回路,包括正反馈和负 反馈。
完善系统流图
在初步绘制出系统流图后,需 要经过多次修改和完善,确保 系统流图的准确性和完整性。
感谢您的观看
VS
详细描述
供应链系统是一个复杂的系统动力学问题 ,涉及到供应商的选择、采购过程的控制 、物流配送的优化等环节。通过系统流图 可以清晰地表示出这些环节之间的相互影 响和反馈关系,例如供应商的供货能力会 影响采购计划的实施,物流配送的效率又 会影响产品的交付时间和成本等。
THANKS FOR WATCHING
特性
流位变化率是时间的函数, 其值取决于流入速率和流 出速率的变化。
流率变量
01
定义
流率变量表示某一时间内流位变 量的变化量,通常用小写字母表 示。
02
03
例子
特性
库存变化量、人口增长率、货币 增量等。
流率变量是时间的函数,其值取 决于流入速率和流出速率的变化。
辅助变量
定义
辅助变量是用来描述系统其他特性的变量,通常用小写字母表示。
详细描述
销售系统是一个典型的系统动力学问题,涉及到市场需求的分析、销售计划的制定、销 售渠道的管理等环节。通过系统流图可以清晰地表示出这些环节之间的相互影响和反馈 关系,例如市场需求的变化会影响销售计划的调整,销售渠道的管理又会影响产品的销
售量和市场份额等。
实例四:供应链系统
总结词
描述了供应链系统的动态变化过程,包 括供应商的选择、采购过程的控制、物 流配送的优化等环节。
系统动力学模型SD1

系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学理论基本观念
(八)开放复杂系统的其他重要性质
(1)在非平衡状态下运动、发展、进化是开放复杂系统的一个重 要动态行为特征。系统动力学所研究的系统,诸如社会、经济、生 态系统,都具有这一特性。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学研究问题的过程
建立数学的规范的模型是第三个步骤。
主要任务:用系统动力学语言表述系统及其结构
1)建立L,R,A,C诸方程; 2)确定与估计参数; 3)给所有N方程,C方程与表函数赋值。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.1 系统动力学—学科基础
系统动力学的学科基础可划分为三个层次:
(1)方法论——系统方法论。即其基本原则是将所研究 对象置于系统的形式中加以考察。
(2)技术科学和基础理论——主要有反馈理论、控制论、 信息论、非线性系统理论,大系统理论和正在发展中的 系统学。 (3)应用技术——计算机模拟技术。为了使系统动力学 的理论与方法能真正用于分析研究实际系统,使系统动 力学模型成为实际系统的“实验室”,必须借助计算机 模拟技术。如:社会经济动力学:经济理论、决策理论 和组织理论等。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.2 系统动力学基ห้องสมุดไป่ตู้概念
模型:是客观存在的事物与系统的模仿、代表或替代物。 它描述客观事物与系统的内部结构、关系与法则。 如:脑力模型、物理模型、数学模型、计算机模型或者 前述模型的组合。
(完整版)第五章系统动力学模型

5.2 系统反馈结构
5.2.2 系统动力学流图
1. 变量与符号
(1)原件结构要素
原件结构要素
变量要素,它是由状态变量、速率变量、辅助变量 等组成。
关联要素,是信息链和物质链。
29
5.2 系统反馈结构
5.2.2 系统动力学流图
30
5.2 系统反馈结构
5.2.2 系统动力学流图
描述状态变量变 化快慢的变量
5.1.2 系统动力学发展历史
J.W.Forrester等在系统动力学方面的主要成果 1958年 发表著名论文《工业动力学——决策的一个重要突破口》 1961年 出版《工业动力学》(Industrial Dynamics) 1968年 出版《系统原理》(Principles of Systems) 1969年 出版《城市动力学》(Urban Dynamics) 1971年 出版《世界动力学》(World Dynamics) 1972年 学生梅多斯教授等出版《增长的极限》(The Limits to Grow2.2 系统动力学流图
出生系数是常数
32
5.2 系统反馈结构
5.2.2 系统动力学流图
辅助 变量
33
5.2 系统反馈结构
5.2.2 系统动力学流图
34
5.2 系统反馈结构
5.2.2 系统动力学流图
35
5.2 系统反馈结构
5.2.2 系统动力学流图
当模型用于经济政策分析时,通常 采用对模型施加外部干扰的办法, 以研究和揭示内部结构与其动态行 为之间的关系。
第五章 系统动力学模型
System Dynamics Model
1
目录
5.1 系统动力学学科简述 5.2 系统反馈结构 5.3 系统动力学方程基础 5.4 DYNAMO语言 5.5 典型反馈结构 5.6 系统动力学模型 5.7 仿真软件Vensim
系统动力学九种模型

系统动力学九种模型标题:系统动力学九种模型:一种掌握复杂系统行为的有力工具引言:系统动力学是一门研究动态系统行为的学科,旨在通过模型和模拟来分析和预测系统的行为。
在系统动力学中,有九种常用的模型,它们分别从不同角度和层次探索和描述系统的行为。
本文将深入探讨系统动力学中的九种模型,并分享对这些模型的观点和理解。
第一部分:系统动力学简介与基本概念1.1 系统动力学的定义和应用领域1.2 动态系统和反馈环路的基本概念第二部分:系统动力学九种模型的介绍与分析2.1 流量模型:描述物质或信息在系统中的流动2.2 资源积累模型:描述资源的积累和消耗2.3 优先水平与延迟模型:描述不同的优先级和延迟对系统行为的影响2.4 饱和非线性模型:描述系统在达到饱和点后的行为变化2.5 非线性积分模型:描述系统内部非线性交互对整体行为的影响2.6 动态变化和叠加模型:描述系统多个变量之间的相互作用与叠加效应2.7 时滞模型:描述系统行为中存在的时间滞后和延迟2.8 分层模型:描述系统中的层次结构以及不同层次之间的相互作用2.9 非线性交互模型:描述系统中多个元素之间的非线性相互作用第三部分:系统动力学九种模型的应用案例分析3.1 商业经济领域中的应用案例3.2 环境与能源管理中的应用案例3.3 社会系统中的应用案例3.4 健康医疗领域中的应用案例第四部分:总结与回顾性内容4.1 对系统动力学九种模型的综合回顾4.2 对应用案例的总结与反思结论:系统动力学九种模型是一种有力的工具,能够揭示系统行为的本质和规律。
通过对这些模型的研究和应用,我们能够更深入地理解和预测复杂系统的行为。
在不同领域的实践中,系统动力学九种模型已经取得了许多成功的应用案例。
然而,我们也要意识到这些模型只是对现实世界的近似和抽象,对复杂系统行为的完整描述还需要我们的不断深入研究和探索。
(2000字)4.1 对系统动力学九种模型的综合回顾在前面的章节中,我们对系统动力学九种模型进行了详细的介绍。
系统动力学建模

方框图
• 系统框图是一种极其简单的系统描述方法 方框图中只有方框和带箭头的实线两种符 号方框表示系统的元素、子系统或功能块 方框中填上相应的名称、功能或说明带箭 头的实线表示各元素、各子块之间的相互 作用关系、因果关系或逻辑关系也可以表 示流量的运动方向流量写在实线旁
公司模型方框图
国民经济流转模型方框图
因果关系图法
• 在因果关系图中各变量彼此之间的因果关系是用 因果链来连接的因果链是一个带箭头的实线直线 或弧线箭头方向表示因果关系的作用方向箭头旁 标有+或-号分别表示两种极性的因果链
• a.正向因果链 A→+B:表示原因A 的变化增或减 引起结果B 在同一方向上发生变化增或减
• b.负向因果链A→-B:表示原因A 的变化增或减 引起结果B 在相反方向上发生变化减或增
微分方程表达
根据动态守恒原理状态变量的变化速率等 于其输入率与输出率之差即设状态变量的 输入率与输出率分别是IR 和OR有
差分方程表达
• 系统的状态变化遵循着过去决定现在过去 和现在决定将来的时间因果律
• 系统目前的状态是在其一时刻状态的基础 上加上一个从旧状态向新状态过渡的转化 值即设时间间隔为△t有
• 在系统动力学构模过程中是相当关键的一环需要 经过理论分析、逻辑判断、历史经验参考再结合 各种技术方法上的技巧综合求得
辅助变量、外生变量
• 辅助变量的流图符号是一个圆圈内部填辅助变量 的名字由于速率方程函数关系的确定是一个比较 困难的过程因此有必要引入辅助变量对速率方程 进行分解以使得构模的思路更加清晰辅助变量是 为了构模方便而人为引入的信息反馈变量它是状 态信息变量的函数
重要性
• 流图法的特点是将系统中各变量按其不同的特征以及在系 统中所起的不同作用划分成不同的种类并用物质流线和信 息流线按照其特有的作用方式将它们联结起来组成系统的 结构所以流图法比因果关系图法更加详细地反映出系统内 部的反馈作用机制使人们对系统的构成有一个更加直观、 更加透彻的理解
系统动力学模型

系统动力学模型系统动力学模型是指它是一种分析和模拟物理系统及其动力学过程的数学技术。
它可以用来研究运动学,控制系统,流体动力学,形式力学,电学,冲击学和弹性动力学等领域的数学模型,并可用于实际的工程问题的解决。
系统动力学模型基于物理系统的动力学处理和控制问题,用来研究物体的运动行为。
例如,系统动力学模型可以用来探讨汽车的运动性,即汽车在不同条件下的行驶特性,以确定汽车行驶性能的最佳状态。
此外,系统动力学模型还可以模拟任意静力学,力学,流体力学或热力学系统的运动模式。
系统动力学模型的建立要求具备完备的物理基础知识,形成一个系统模型的首要任务是了解物理系统的特性和行为,因此必须确定物理系统的运动方程和力学特征,物理量的表达式在构建模型时必须明确。
模式构建完成后,需要求解模型,并将模型运用到实际问题中,用以求解物理过程及其动力学运行状态。
为此,我们可以使用计算机模拟技术来求解模型,用以检验结果的正确性和准确性。
系统动力学模型在很多领域中都发挥着重要的作用,例如机械系统的设计,控制系统的调整,电子电气系统的设计,机器人的控制,航空航天技术,建筑工程设计等。
例如,在机器人技术中,系统动力学模型可以模拟机器人的运动特性,帮助机器人决定如何完成任务。
此外,系统动力学模型在工程设计中也有广泛应用,可用于分析和解决工程设计问题,以便改善工程性能。
例如,系统动力学模型可以帮助分析和解决结构物振动问题,提高结构物的稳定性和耐久性,以及改善系统的可靠性。
此外,系统动力学模型也可以帮助优化控制系统的性能,以提高系统的功率和可靠性。
综上所述,系统动力学模型是一个强大的工具,可以帮助我们研究和分析物理系统及其动力学过程,从而有效地改善工程性能。
它在机械,控制,电子,航空航天等各个领域都有广泛的应用,并被广泛用来分析和解决工程设计问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章系统动力学模型系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。
1 系统动力学概述2 系统动力学的基础知识3 系统动力学模型第1节系统动力学概述1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。
系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下:1 系统动力学模型的理论基础是系统动力学的理论和方法;2 系统动力学模型的研究对象是复杂反馈大系统;3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”;4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;5 系统动力学模型的关键任务是建立系统动力学模型体系;6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表;系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。
地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。
1.2 发展概况系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。
目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。
福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。
在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下:1)人才培养自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。
请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。
2)编译编写专著组织专家编译了《工业动力学》,《城市动力学》等。
编写专著有:王其藩著《系统动力学》,《高级系统动力学》;胡玉奎著《系统动力学》,王洪斌著《系统动力学教程》,贾仁安著《系统动力学教程》等。
3)引进专业软件引进的软件有:MICRO-DYNAMO,DYNAMAP2,DYNAMO I∏∏,STELLA,⋅PD PLUS等,近几年又引进的最先进实用的VENSIM专业软件。
并自行研制了一些专用软件。
4)新设课程新开设了系统动力学专业课程。
在几十所大学的管理系或管理学院以及科研单位的研究生开设了系统动力学课程。
5)组织机构与学术会议于19 年成立了全国系统动力学委员会。
组建了一些专门研究机构和教学机构。
开展了许多专项研究工作。
建立了国家总体系统动力学模型,省和地区的发展战略研究系统动力学模型,省级能源,环境预测系统动力学模型及科技,工业,农业林业等行业发展战略研究系统动力学模型等。
1986年8月,在上海召开的“全国系统动力学学术研讨会“上,140多名代表提交了95篇有关系统动力学理论和应用研究方面的论文。
1987年6月,在上海召开的国际学术会议上我国代表交流了29篇论文,占会议论文数的45%。
1988年7月,美国圣迭戈召开了国际学术年会,我国有十名代表参加,交流论文十多篇。
1989年7月,在西德斯图加特召开的国际学术年会上,我国学者交流论文14篇,有4人参加会议。
目前,在我国系统动力学已经发展成熟,并正向深入和全面应用延伸,形成了一支强大的研究力量,发展趋势看好,有理由相信,系统动力学必将在我国社会,经济,科技,管理和生态等领域的研究中发挥更大作用。
第2节系统动力学的基础知识系统动力学模型建立的基本知识,基本原理主要有:因果关系图,模型流图及模型的组成等。
现分别介绍。
2.1 因果关系1 因果关系因果关系是指由原因产生某结果的相互关系。
从哲学角度讲,原因和结果是揭示客观事物的因果联系的重要哲学概念,它们是客观事物普遍联系和相互作用的表现形式之一。
原因是某种事物或现象,是造成某种结果的条件;结果是原因所造成的事物或现象,是在一定阶段上事物发展所达到的目标状态。
通常用箭头线来表示,它有正因果关系和负因果关系两种,如图9—1。
P169原因结果+ 就业机会E 迁入人口数I- 死亡率R 总人口数P 正因果关系:两个变量呈同方向变化趋势,如:E增加,I增加;E减少,I减少。
负因果关系:两个变量呈异方向变化趋势,如:R增加,P减少;R减少,P增加。
2)因果关系环图因果关系环图是指由两个或两个以上的因果关系连接而成的闭合回路图示。
它定性描述了系统中变量之间的因果关系。
它有正负因果关系环图两种,如图9—3,图9--4所示:P169正因果关系环图:它会引起系统内部活动加强。
准则:若各因果关系均为正,则该环为正因果关系环;若各因果关系为负的个数是偶数时,则该环也为正因果关系环。
负因果关系环图:它会引起系统内部活动减弱。
准则:若各因果关系均为负,则该环为负因果关系环;若因果关系为负的个数是奇数,则该环为负因果关系环。
再如:生态学人口增长因果关系环图,如图9—5,图9--6 所示:P1702.2 系统动力学模型流图系统动力学模型流图简称SD流图,是指由专用符号组成用以表示因果关系环中各个变量之间相互关系的图示。
它能表示出更多系统结构和系统行为的信息,是建立SD模型必不可少的环节,对建立SD 模型起着重要作用。
其专用符号主要有八个:1)水平变量水平变量符号是表示水平变量的积累状态的符号,它是SD模型中最主要的变量。
它由五部分组成,即:输入速率,输出速率,流线,变量名称及方程代码(L),如图所示。
2)速率变量速率变量符号是表示水平变量变化速率的变量。
它能控制水平变量的变化速度,是可控变量。
它由三部分组成,即:输入信息变量,变量名称及方程代码(R)。
如图所示。
3)辅助变量辅助变量符号是辅助水平变量等的变量。
如图所示。
4)外生变量外生变量符号如图所示。
5)表函数表函数符号如图所示。
6)常数常数符号如图所示。
7)流线流线符号又有物质流线,信息流线,资金流线,及订货流线四种:物质流线符号是表示系统中流动着的实体,如图所示。
信息流线符号是表示联接积累与流速的信息通道,如图所示。
资金流线符号是表示资金,存款及货币的流向,如图所示。
订货流线符号是表示订货量与需求量的流向,如图所示。
8)源与沟源符号与沟符号如图所示。
2.3 系统动力学模型系统动力学模型是由六种基本方程和专门的输出语句组成。
其六种方程的标志符号分别为:L:水平变量方程; R:速率变量方程;A :辅助变量方程; N :计算初始值方程;C :赋值予常数方程; T :赋值予表函数中Y坐标值。
L 方程是积累方程;R ,A 方程是代数运算方程;C ,T ,N 方程是提供参数值方程,并在同一次模拟中其值保持不变。
1)L 方程L 方程是计算水平变量积累值的方程,其一般表示形式为:L K J JKJK POP POP DT (BR DR )鬃鬃=+? 其中,L :水平变量方程代码,表示方程性质。
DT :时间间隔,即时间增量。
.J :表示前一刻。
.K :现在时刻。
.L :未来一时刻。
J POP ⋅:过去一时刻人口数。
K POP ⋅:现在时刻人口数。
L POP ⋅:未来一时刻人口数。
JK BR ⋅:过去至现在该段时刻的人口出生率。
JK DR ⋅:过去至现在该时刻段的人口死亡率。
积累是系统内部流的堆积量,它等于过去一时刻的积累加上积累变动量,即变动增量。
积累变动量是时间间隔与输入流速和输出流速之差的乘积。
2)R 方程R 方程是计算单位时间流量的方程,即流速或速率。
其一般表示形式为:R J JK POP BRF BR ⋅⋅⨯= R J JK POP DRF DR ⋅⋅⨯=R K KL POP BRF BR ⋅⋅⨯= R K KL POP DRF DR ⋅⋅⨯=其中,JK BR ⋅:过去至现在时刻的出生率,单位(人/年);JK DR ⋅:过去至现在时刻的死亡率,单位(人/年); KL BR ⋅:现在至未来时刻的出生率;单位(人/年);KL DR ⋅:现在至未来时刻的死亡率,单位(人/年);BRF : 出生系数,单位(人/年.人);DRF : 死亡系数,单位(人/年.人);J POP ⋅:过去时刻人口总数;K POP ⋅:现在时刻人口总数。
3)A 方程A 方程是辅助变量方程,用于对辅助变量赋值,其一般表示形式为:A ),22(k K pop sum TPOP ⋅⋅= 其中,K TPOP ⋅:表示现在人口总数。
),22(k pop SUM ⋅:求和函数,表示求算现在22个年龄组的总和。
4)N方程N方程是变量初始值方程,表示对变量赋初始值,起一般表示形式为:N )1AGEIPOPPOP)1((AGE其中,(AGEPOP:表示各年龄组人口初始值。
)1(AGEIPOP:是表函数,表示存储22个年龄组的初始值。
)15)T方程T方程是表函数方程,表示对相应的纵坐标Y赋值。
6)C方程C方程是常数方程,表示对常数变量赋值。
第3节系统动力学模型系统动力学模型应用分析的一般步骤为:1 明确问题明确的问题是:系统的范围:空间范围,如安徽省区域;时间范围,如1961年 --- 2050年;时间间隔,DT=1年,等等。
解决途径:计算机仿真实验。
数据资料:人口总数,出生率,死亡率,自然增长率等。
2 明确目标人口总数变化趋势;自然增长率控制目标;出生率控制目标;死亡率控制目标等。
3 绘制系统流图1)因果关系环图主要变量清单,即列出主要变量的清单,以利于因果关系环流图的绘制。
如:总人口数,出生率,死亡率,出生系数,死亡系数。
很容易绘制出下图:2)SD模型流图在因果关系环图的基础上可得SD模型流图如图所示。
4 SD模型的建立根据上述介绍知识和分析步骤,可得简单的安徽省人口SD模型如下:* POPULAYION SD MODEL OF ANHUIL )(K J K J J K DR BR DT POP POP ⋅⋅⋅⋅-*+= R K L K POP BRF BR ⋅⋅*= R )K L K POP DRF DR ⋅⋅*= N 60000000=POP C 005.0=BRF C 003.0=DRF SPEC DT=1/PRINT 1)POP ,2)BR ,3)DR , PLOT POP ,BR ,DR PLOT POP说明:1)人口数分22个年龄组,即:1岁,2 — 4,5 — 9,10 — 14,。