subgrad_method
机器学习中常见的几种优化方法

机器学习中常见的几种优化方法阅读目录1. 梯度下降法(Gradient Descent)2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)3. 共轭梯度法(Conjugate Gradient)4. 启发式优化方法5. 解决约束优化问题——拉格朗日乘数法我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。
最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。
随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。
常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。
回到顶部1. 梯度下降法(Gradient Descent)梯度下降法是最早最简单,也是最为常用的最优化方法。
梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。
一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。
梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。
最速下降法越接近目标值,步长越小,前进越慢。
梯度下降法的搜索迭代示意图如下图所示:牛顿法的缺点:(1)靠近极小值时收敛速度减慢,如下图所示;(2)直线搜索时可能会产生一些问题;(3)可能会“之字形”地下降。
从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。
在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
sub test的用法

sub test的用法"sub test的用法"是指在编程领域中对于某个程序或模块进行逐步测试的方法。
在编写本文时,我们将一步一步回答以下问题并深入讨论sub test 的用法:1. sub test是什么?2. sub test的目的是什么?3. sub test的步骤是什么?4. sub test的优势和劣势是什么?5. 如何有效地编写sub test?6. sub test的最佳实践是什么?7. sub test在不同编程语言中的差异。
8. sub test与其他测试方法的比较。
9. 结论。
接下来,我们将逐步回答这些问题,以便更好地理解sub test的用法。
1. sub test是什么?在编程领域,sub test指的是对于程序中的某个子程序或模块进行测试的方法。
它通常是测试单个功能或小块代码的方式,以确保其正确性和可靠性。
2. sub test的目的是什么?sub test的主要目的是验证程序或模块的正确性。
它专注于测试小而独立的代码块,以便可以更容易地识别和修复错误。
通过使用sub test,可以逐步测试整个程序,并确保每个子程序运行正确且不会影响其他部分。
3. sub test的步骤是什么?在进行sub test时,一般会按照以下步骤进行:- 确定要进行测试的子程序或模块。
- 编写测试代码,包括输入参数和预期输出。
- 运行测试并记录实际输出。
- 比较预期输出和实际输出,确认是否一致。
- 如果测试通过,则将其标记为成功,否则标记为失败。
- 重复以上步骤,测试其他子程序或模块。
4. sub test的优势和劣势是什么?sub test具有以下优势:- 高度模块化:sub test专注于测试小而独立的代码块,使得代码更易于维护和调试。
- 容易定位错误:通过逐步测试每个子程序,可以更容易地定位和修复错误。
- 提高代码可读性:sub test将测试代码与实际功能代码分开,使得代码更加清晰易懂。
机器学习题库

机器学习题库一、 极大似然1、 ML estimation of exponential model (10)A Gaussian distribution is often used to model data on the real line, but is sometimesinappropriate when the data are often close to zero but constrained to be nonnegative. In such cases one can fit an exponential distribution, whose probability density function is given by()1xb p x e b-=Given N observations x i drawn from such a distribution:(a) Write down the likelihood as a function of the scale parameter b.(b) Write down the derivative of the log likelihood.(c) Give a simple expression for the ML estimate for b.2、换成Poisson 分布:()|,0,1,2,...!x e p x y x θθθ-==()()()()()1111log |log log !log log !N Ni i i i N N i i i i l p x x x x N x θθθθθθ======--⎡⎤=--⎢⎥⎣⎦∑∑∑∑3、二、 贝叶斯假设在考试的多项选择中,考生知道正确答案的概率为p ,猜测答案的概率为1-p ,并且假设考生知道正确答案答对题的概率为1,猜中正确答案的概率为1,其中m 为多选项的数目。
软件工程课程设计---学生信息管理系统

软件工程课程设计---学生信息管理系统n1.1 BackgroundWith the XXX。
XXX in size and the number of students and their n is increasing rapidly。
us n management systems for students have emerged to manage student n and improve the efficiency of system management work。
The student n management system combines Eclipse (front-end development) with SQL database (back-end management) and XXX standardized management。
scientific statistics。
and fast queries of student n。
which greatly ces the workload of management.The database plays a very important role in an n management system。
The quality of database structure design XXX of the n system。
Reasonable database structure design can improve the efficiency of database storage。
XXX。
At the same time。
reasonable data structure will also be XXX.1.2 XXX DevelopmentThis system uses Eclipse development tool as the development system program and SQLsever database access XXX query of database n。
公路工程名词术语中英文对照11

踏勘 reconna
intersection entran g
adside facilities izzling screen
辅助标志 au issance
ce
交错路段 we
交通安全设
反光标志 ref xiliary sign
可行性研究
交叉口出口 aving section
施 traffic safety lective sign
e crossing
minimum radius
加宽缓和段
平均纵坡 av stance,
环形交叉 rot
互通式立体
of horizontal cur transition zone of erage gradient
stopping sigh ary intersection 交叉 Interchange
道路服务水 gin-destination stu
分离式行车
路侧人行道
路拱横坡 cr
交通量 maximum 平 level of servic dy
道 Divided carria sidewalk
own slope
annual hourly v e
出行 trip
geway
分隔带 lane
公路建筑限
自行车道 cy
路拱 cambe ntal curve
capacity
cle path
r; crown
极限最小平
弯道加宽 cu
变坡点 grad
停车视距 no
斜交叉 skew
separate grad
曲线半径 limited rve widening
e change point n-passing sight di intersection
06_HFSS的求解器(1)

Iterative Solver(迭代法求解)
Direct Solver:未知量N的1.2~1.3 次方 Iterative Solver:未知量N的1.0~1.1 次方: 接近线性
4-22
Iterative Solver
4-36
Faster Solutions
4-37
Memory Savings
4-38
Example #2: Asymmetric Dish Antenna
4-39
Example #2: Summary
4-40
Remote Simulation Manager
4-41
Platform Support
• S11 @ 12 GHz
1st S11 = 0.86584 Mixed S11 = 0.86511
4-18
Mixed Element Order Example #2
4-19
Mixed Element Order Example #3
4-20
Solver Technology Overview
收敛判断:
4-4
HFSS的求解设置
边界设置
Assign Reassign Delete All Visualization Reprioritize Edit Global Material Environment Assign Edit Impedance Multi… Reassign Delete All Visualization Reorder Matrix
第四章-01 gradientmethod

t1d(i) TQd(1)+t2d(i) TQd(2)+…+tkd(i) TQd(k)=0
由共轭方向定义知有 从而 tj=0 (j=1:k) tjd(i) TQd(j)=0(i≠j)
n维空间中共轭方向的个数不会超过n个
16
性质2
n阶对称正定阵Q至少有n个共轭方向 Proof 由线性代数知识我们知道 Q有n个正交的特征向量d(1),…d(n),
则 当初始点x(0)与x*充分接近时对一切k有定义, 且当k∞时,x(k)二阶收敛于x*
13
牛顿算法的评价 (i)牛顿法虽有较快的收敛速度,但它只是局部收敛的 (即当初始点离x*较近时才能保证收敛) (ii)即使确定了x(0),在每次迭带时还要计算二阶导数矩 阵(有时虽然存在但很难甚至不可能求出),求出后为了进 行矩阵分解还需存储n阶方阵,这些均对大型问题不利。 (ⅲ)牛顿法的主要工作量在d(k)的确定上,但机算时通过求解 求解线性方程组
(iv)判断是否终止,终止则输出,否则k:=k+1,返(i)
3
1. 最速下降法 基本思想
(最简单的梯度算法)
以负梯度方向(即最速下降方向)作为搜索方向 又称梯度法(Gradient Method) 算法
给定控制误差 S TEP1 取 初 始 点 x (0) , k 0 S TEP2 计 算g k f(x(k) ) S TEP3 如 果 g k , x* x (k) , 停 止 运 算 ; 否则,令下降方向 d ( k ) -gk , 作 一 维搜 索 , 求 步 长 k f(x(k) k d (k) ) m i nf(x(k) d (k) )
▽f(x(2))=Qx(2)+b=Q(x(1)+t1d(1))+b
代数英语

(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(k)
(k)
1.1
Step size rules
Several different types of step size rules are used. • Constant step size. αk = h is a constant, independent of k . • Constant step length. αk = h/ g (k) 2 . This means that x(k+1) − x(k) • Square summable but not summable. The step sizes satisfy
2
Convergence proof
Here we give a proof of some typical convergence results for the subgradient method. We assume that there is a minimizer of f , say x . We also make one other assumption on f : We will assume that the norm of the subgradients is bounded, i.e., there is a G such that g (k) 2 ≤ G for all k . This will be the case if, for example, f satisfies the Lipschitz condition | f (u ) − f (v )| ≤ G u − v 2 , for all u, v , because then g 2 ≤ G for any g ∈ ∂f (x), and any x. In fact, some variants of the subgradient method work when this assumption doesn’t hold; see [Sho85]. Recall that for the standard gradient descent method, the convergence proof is based on the function value decreasing at each step. In the subgradient method, the key quantity is not the function value (which often increases); it is the Euclidean distance to the optimal set. Recall that x is a point that minimizes f , i.e., it is an arbitrary optimal point. We have x(k+1) − x
k→∞
lim fbest − f < ,
(k)
where f denotes the optimal value of the problem, i.e., f = inf x f (x). (This implies that the subgradient method finds an -suboptimal point within a finite number of steps.) The number is a function of the step size parameter h, and decreases with it. For the diminishing step size rule (and therefore also the square summable but not summable step size rule), the algorithm is guaranteed to converge to the optimal value, i.e., we have limk→∞ f (x(k) ) = f . When the function f is differentiable, we can say a bit more about the convergence. In this case, the subgradient method with constant step size yields convergence to the optimal value, provided the parameter h is small enough. 2
∞ ∞ k=1 2 αk < ∞, k=1 2
=Hale Waihona Puke h.α k = ∞.One typical example is αk = a/(b + k ), where a > 0 and b ≥ 0. • Nonsummable diminishing. The step sizes satisfy
k→∞ ∞
Subgradient Methods
Stephen Boyd, Lin Xiao, and Almir Mutapcic Notes for EE392o, Stanford University, Autumn, 2003 October 1, 2003
The subgradient method is a simple algorithm for minimizing a nondifferentiable convex function. The method looks very much like the ordinary gradient method for differentiable functions, but with several notable exceptions. For example, the subgradient method uses step lengths that are fixed ahead of time, instead of an exact or approximate line search as in the gradient method. Unlike the ordinary gradient method, the subgradient method is not a descent method; the function value can (and often does) increase. The subgradient method is far slower than Newton’s method, but is much simpler and can be applied to a far wider variety of problems. By combining the subgradient method with primal or dual decomposition techniques, it is sometimes possible to develop a simple distributed algorithm for a problem. The subgradient method was originally developed by Shor in the Soviet Union in the 1970s. The basic reference on subgradient methods is his book [Sho85]. Another book on the topic is Akgul [Akg84]. Bertsekas [Ber99] is a good reference on the subgradient method, combined with primal or dual decomposition.
Convergence results
There are many results on convergence of the subgradient method. For constant step size and constant step length, the subgradient algorithm is guaranteed to converge to within some range of the optimal value, i.e., we have
1
The subgradient method
x(k+1) = x(k) − αk g (k) .
Suppose f : Rn → R is convex. To minimize f , the subgradient method uses the iteration
Here x(k) is the k th iterate, g (k) is any subgradient of f at x(k) , and αk > 0 is the k th step size. Thus, at each iteration of the subgradient method, we take a step in the direction of a negative subgradient. Recall that a subgradient of f at x is any vector g that satisfies the inequality f (y ) ≥ f (x) + g T (y − x) for all y . When f is differentiable, the only possible choice for g (k) is ∇f (x(k) ), and the subgradient method then reduces to the gradient method (except, as we’ll see below, for the choice of step size). Since the subgradient method is not a descent method, it is common to keep track of the best point found so far, i.e., the one with smallest function value. At each step, we set fbest = min{fbest , f (x(k) )}, 1