山东省济南市历下区2017-2018学年度八年级下学期期末考试数学试题
2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。
青岛版2017-2018学年度八年级数学第二学期期末测试卷及答案

2017-2018学年度八年级数学第二学期期末检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1. 在实数范围内,若有意义,则的取值范围是()A. B. C. D.2. 如果=k成立,那么k的值为()A.1 B.-2 C.-2或1 D.以上都不对3.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=30°,则∠BOC=()A.150°B.140°C.130°D.120°第3题图第4题图4. 如图,下列条件中不能..判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180°D.∠3=∠55.下列命题不正确...是 ( )A.两直线平行,同位角相等B.两点之间直线最短C.对顶角相等D.垂线段最短6. 下列生活现象中,属于相似的是()A.抽屉的拉开 B.汽车刮雨器的运动C.荡秋千 D.投影片的文字经投影变换到屏幕上7.把不等式组的解集表示在数轴上正确的是()A B C DCBAED8. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的( )9. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.都有可能10. 如图,已知BD ,CD 分别是∠ABC 和∠ACE 的角平分线,若∠A =45°, 则∠D 的度数是( )A.20B.22.5C.25D.30 第10题图 二、填空题(每小题3分,共24分)11.如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是_________. 12.如图,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50° ,∠ABC =100°,则∠CBE = . 13. 如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E =______ .第12题图 第13题图14.若一个多边形的内角和是外角和的3倍,则它是_______边形. 15.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (填“甲”或“乙”). 16.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,作△BED 的边BD 上的高EF ,若△ABC 的面积为40,BC =10,第8题图G321FE DCBA 则EF 的长是________. 第16题图 17.如图是甲、乙的方差,不通过计算,比较图中甲、乙两组数据的标准差 .18. 在△ABC 中,,,,另一个与它相似的△的最短边长为45 cm ,则△的周长为________.三、解答题(共46分)19. (7分)解不等式组3(2)4,121,3x x x x --≥⎧⎪+⎨>-⎪⎩并将解集表示在数轴上.20. (7分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3)计算:11111122334989999100+++⋅⋅⋅+++++++.21. (7分)如图,D 是△ABC 的边AB 上一点,连接C D ,若AD =2,BD =4,∠ACD =∠B ,求AC 的长.第21题图 第22题图22. (7分)如图,已知EF //AD ,1∠=2∠.证明:∠DGA +∠BAC =180°.23. (9分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):编号类型一二三四五六七八九十甲种电子钟 1 -3 -4 4 2 -2 2 -1 -1 2乙种电子钟 4 -3 -1 2 -2 1 -2 2 -2 1(1)计算甲、乙两种电子钟走时误差的平均数.(2)计算甲、乙两种电子钟走时误差的方差.(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你会买哪种电子钟?为什么?24.(9分)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?期末检测题参考答案1. C 解析:若要代数式有意义,则10,1x x +>>-,故选C.2. C 解析:当≠0时,根据比例的性质,得k ==1;当时,即,则k ==-2,故选C .3.D 解析:由已知可得60BOD ∠=︒,又180,BOC BOD ∠=︒-∠故BOC ∠=180︒60120-︒=︒,选D.4.D 解析:由平行线的判定定理逐一判断,只有D 不能判定AB CD .故选D.5.B 解析:B 应为两点之间线段最短.6. D 解析:A 、抽屉的拉开,属于平移变换,不是相似变换,故错误; B 、汽车刮雨器的运动,属于旋转变换,不是相似变换,故错误; C 、荡秋千,不是相似变换,故错误;D 、投影片的文字经投影变换到屏幕上,是图形形状相同,但大小不一定相同的变换,符合相似变换定义,故正确.故选D .7.D 解析:由101x x +≥≥-得,由101x x -<<得,故11x -≤<.结合图形可知D 正确.8. A 解析:∵ 小正方形的边长均为1, ∴ △ABC 三边分别为2,,. 同理: A 中各边长分别为:,1,;B 中各边长分别为:1,2,;C 中各边长分别为:,3,; D 中各边长分别为:2,,.∴只有A 项中的三边与已知三角形的三边对应成比例,故选A .9. B 点拨:由题意得∠C=4∠A,∠B=3∠A,所以∠A+3∠A+4∠A=180°,•所以∠A=22.5°,∠C=90°.10.B 解析:11.16cm 或17cm 解析:若另一边长为5 cm ,则周长为16 cm; 若另一边长为6 cm ,则周长为17 cm.12. ︒30 解析:由于△BDE 是由△ABC 平移得到,故50EBD CAB ∠=∠=︒.又已知ABC ∠=100︒,故180--30CBE ABC EBD ∠=︒∠∠=︒. 13. ︒35 解析:由于ABCD ,故60DFE ∠=︒.又+DFE C E ∠=∠∠,故=-60-25=35E DFE C ∠∠∠=︒︒︒14.八 解析:设该多边形为n 边形,则(n -2)180⨯︒=3360⨯︒,故n =8,是八边形. 15.乙 解析:由于s 2甲>s 2乙,则成绩较稳定的是乙. 16.4 解析:111==4010244BDEABDABCSS S =⨯=,又BC =10,故BD =5,即10= 125EF ⨯⨯,故EF =4. 17.s 甲<s 乙 解析:由图可知甲的方差小于乙的方差,所以甲的标准差也一定小于乙的标准差.18.195 cm 解析:因为△ABC ∽△,所以.又因为在△ABC中,边最短,所以,所以,所以△的周长为19. 解:(1)364x x -+≥,22x -≥-,1x ≤. (2)1233x x +>-, 4x ->-,4x <, 所以不等式组的解集是1x ≤.在数轴上表示略.20.解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++21.解:在△ACD 和△ABC 中,∠A =∠A , ∠ACD =∠ABC , ∴△ACD △ABC .∴AC ADAB AC=,即AC 2=AB AD •=(2+4)⨯2=12,∴AC =23. 22.22.证明 ∵ EF //AD ,∴ ∠2=∠3 .∵ 1∠=2∠,∴ ∠1=∠3. ∴ DG //AB .∴ ∠DGA +∠BA C=180°.23. 分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解:(1)甲种电子钟走时误差的平均数是:(1-3-4+4+2-2+2-1-1+2)=0;乙种电子钟走时误差的平均数是:(4-3-1+2-2+1-2+2-2+1)=0. ∴ 两种电子钟走时误差的平均数都是0秒. (2)s 2甲= [(1-0)2+(-3-0)2+…+(2-0)2]=×60=6;s 2乙= [(4-0)2+(-3-0)2+…+(1-0)2]= ×48=4.8.∴ 甲、乙两种电子钟走时误差的方差分别是6和4.8.(3)我会买乙种电子钟,因为平均水平相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.24.解:(1)设租用甲车x 辆,则租用乙车(10-x )辆,由题意可得4030(10)340,1620(10)170,x x x x +-≥⎧⎨+-≥⎩解得 4≤x ≤7.5. 因为x 取整数,所以,x =4,5,6,7. 因此,有四种可行的租车方案,分别是: 方案一:租用甲车4辆,乙车6辆; 方案二:租用甲车5辆,乙车5辆; 方案三:租用甲车6辆,乙车4辆; 方案四:租用甲车7辆,乙车3辆.(2)由题意可知,方案一的租车费为:4×2 000+6×1 800=18 800(元); 方案二的租车费为:5×2 000+5×1 800=19 000(元); 方案三的租车费为:6×2 000+4×1 800=19 200(元); 方案四的租车费为:7×2 000+3×1 800=19 400(元); 18 800<19 000<19 200<19 400. 所以,租甲车4辆,乙车6辆费用最省.。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
山东省济南市八年级下学期数学期末考试试卷

山东省济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八下·孝义期中) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分)下列等式不一定成立的是()A . =(b≠0)B . a3•a﹣5=(a≠0)C . a2﹣4b2=(a+2b)(a﹣2b)D . (﹣2a3)2=4a63. (2分)下列一次函数中,y的值随着x值的增大而减小的是().A . y=xB . y=-xC . y=x+1D . y=x-14. (2分)如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P,能表示这个一次函数图象的方程的是()A .B .C .D .5. (2分) (2020八下·福州期中) 如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中错误的是()A . OA=OC,OB=ODB . 当AC⊥BD时,它是菱形C . 当AC=BD时,它是矩形D . 当AC垂直平分BD时,它是正方形6. (2分)在平行四边形、矩形、菱形、正方形中,对角线相等的图形有()A . 4个B . 3个C . 2个D . 1个7. (2分)下列语句正确的是()A . 线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B . 正三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形C . 正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形D . 正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形8. (2分)在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是()A . 50°B . 40°C . 130°D . 120°9. (2分)(2020·龙华模拟) 某小组在一次“在线测试”中做对的题数分别为是10、8、6、9、8、7、8,对于这组数据,下列判断中错误的是()A . 众数是8B . 中位数是8C . 平均数是8D . 方差是810. (2分) (2019八下·武安期末) 某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A . 平均数变小,方差变小B . 平均数变大,方差变大C . 平均数变大,方差不变D . 平均数变大,方差变小11. (2分) (2019八下·丰城期末) 如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A . x>﹣2B . x<﹣2C . x>4D . x<412. (2分) (2019八上·东平月考) 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A . 梯形B . 矩形C . 菱形D . 正方形二、填空题 (共6题;共6分)13. (1分) (2019八下·南浔期末) 若二次根式有意义,则x的取值范围是________.14. (1分) (2020八下·淮滨期末) 一组数据2,6,5,2,4,则这组数据的平均数是________.15. (1分)(2019·下城模拟) 已知C是优弧AB的中点,若,则AB=________.16. (1分)(2020·朝阳模拟) 如图:平行四边形ABCD中,E为AB中点,AF= FD,连E、F交AC于G,则AG:GC=________.17. (1分) (2018八下·深圳月考) 如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A ,则不等式mx+2<kx+b<0的解集为________.18. (1分) (2019八下·鄞州期末) 如图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连结,则的最小值为________.三、解答题 (共7题;共56分)19. (20分)计算(1)÷ ﹣× +(2)(﹣3)0﹣ +|1﹣ |+(3)(3 ﹣2 + )÷2(4)(﹣3 )(4 + )20. (5分)在学校组织的实践活动中,小明同学用纸板制作了一个如图所示的圆锥模型,它的底面积半径为1,高为,则这个圆锥的侧面积为.(结果保留π)21. (5分)如图,△ABC的三个顶点的坐标分别为A(0,2),B(4,0),C(6,4),求△ABC的周长与面积.22. (5分)已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=EC.23. (6分)(2019·沈阳) 如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4 ,则▱ABCD的面积是________.24. (7分) (2018八上·焦作期末) 为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了________分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m=________分钟.25. (8分) (2020八下·洛宁期末) 某校初一开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班备选出的5名选手的复赛成绩如图所示:班级平均数(分)中位数(分)众数(分)爱国班a85c求知班85b100(1)根据图示直接写出a________,b________,c________的值:(2)己知爱国班复赛成绩方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共56分)19-1、答案:略19-2、答案:略19-3、答案:略19-4、答案:略20-1、答案:略21-1、答案:略22-1、23-1、23-2、24-1、24-2、答案:略24-3、25-1、25-2、答案:略。
2017-2018学年山东省济南市历下区八年级(下)期末数学试卷

2017-2018学年山东省济南市历下区八年级(下)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.)1.(4分)下列图形中,中心对称图形有( )A .B .C .D .2.(4分)若m n >,则下列不等式不一定成立的是( )A .22m n +>+B .22m n >C .22m n ->-D .22m n >3.(4分)下列分式中,最简分式是( )A .234x xy B .224x x -- C .22x y x y ++ D .2244x x x --+ 4.(4分)如图,Rt ABC ∆沿直线边BC 所在的直线向右平移得到DEF ∆,下列结论中不一定正确的是( )A .90DEF ∠=︒B .BE CF =C .CE CF =D .ABEH DHCF S S =四边形四边形5.(4分)如图,在ABC ∆中,AB AC =,40A ∠=︒,AB 的垂直平分线交AB 于点D ,交AC于点E ,连接BE ,则CBE ∠的度数为( )A .70︒B .80︒C .40︒D .30︒6.(4分)如图,四边形ABCD 中,对角线相交于点O ,E 、F 、G 、H 分别是AD 、BD 、BC 、AC 的中点,要使四边形EFGH 是矩形,则四边形ABCD 需要满足的条件是( )A .AB CD = B .AB CD ⊥C .AB AD ⊥ D .AC BD =7.(4分)如图,ABC ∆中,16AB AC ==,AD 平分BAC ∠,点E 为AC 的中点,连接DE ,若CDE ∆的周长为26,则BC 的长为( )A .20B .16C .10D .88.(4分)如图,已知四边形ABCD 是平行四边形,若AF 、BE 分别是DAB ∠、CBA ∠的平分线,4AB =,3BC =,则EF 的长是( )A .1B .2C .3D .49.(4分)若关于x 的分式方程3144x m x x ++=--有增根,则m 的值是( ) A .0m =或3m = B .3m = C .0m = D .1m =-10.(4分)如图,直线32y x =+与1y kx =-相交于点P ,点P 的纵坐标为12,则关于x 的不等式312x kx +>-的解集在数轴上表示正确的是( )A .B .C .D .11.(4分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,8BD =,5BC =,AE BC ⊥ 于点E ,则AE 的长等于( )A .5B .125C .245D .18512.(4分)如图,ABCD 中,2AD AB =,F 是BC 的中点,作AE CD ⊥,垂足E 在线段CD 上,连接EF 、AF ,下列结论:①2BAF C ∠=∠;②EF AF =;③ABF AEF S S ∆∆=;④3BFE CEF ∠=∠中,一定成立的是( )A .只有①②B .只有②③C .只有①②④D .①②③④二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中横线上.)13.(4分)分解因式:24x y y -= .14.(4分)如果分式23x x +有意义,那么x 的取值范围是 . 15.(4分)若正多边形的一个内角等于150︒,则这个正多边形的边数是 .16.(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.17.(4分)如图,已知点P是AOB∠角平分线上的一点,60AOB∠=︒,PD OA⊥,M是OP 的中点,4DM cm=,如果点C是OB上一个动点,则PC的最小值为cm.18.(4分)如图,已知ABC∆中,90C∠=︒,AC BC==ABC∆绕点A逆时针反向旋转60︒到△AB C''的位置,连接C B',则C B'的长为.三、简答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(6分)先化简,再求值:224(2)24xxx x-+÷+-,其中5x=.20.(6分)解不等式组2112523xx x-⎧<⎪⎨⎪+⎩…,并将它的解集在数轴上表示出来.21.(6分)如图,已知E、F分别是ABCD的边BC、AD上的点,且BE DF=.求证:四边形AECF是平行四边形.22.(8分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的2.5倍.求高铁和特快列车的速度各是多少?(列方程解答)23.(8分)如图,平面直角坐标系中,已知点A,60ABO∠=︒.若对于平面内一点C,当ABC∆是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.。
2017-2018学年山东省济南市市中区八年级(下)期末数学试卷(解析版)

A.
B.
C.
D.
4.(4 分)使分式 有意义的 x 的取值范围是( )
A.x=2
B.x≠2
C.x=﹣2
D.x≠﹣2
5.(4 分)如图,在▱ ABCD 中,AC、BD 相交于点 O,点 E 是 AB 的中点.若 OE=1cm,
则 AD 的长是( )cm.
A.3
B.
C.
D.4
11.(4 分)如图,边长 2 的菱形 ABCD 中,∠A=60°,点 M 是 AD 边的中点,将菱形 ABCD
翻折,使点 A 落在线段 CM 上的点 E 处,折痕交 AB 于点 N,则线段 EC 的长为( )
A.
B. ﹣1
C.
D. ﹣1
12. (4 分)如图,在 Rt△ABC 中,∠ACB=90°,将△ABC 绕顶点 C 逆时针旋转得到△A'B'C,
A.2
B.3
C.4
D.5
6.(4 分)如图,在 6×6 方格中有两个涂有阴影的图形 M、N,①中的图形 M 平移后位置
如②所示,以下对图形 M 的平移方法叙述正确的是( )
A.向右平移 2 个单位,向下平移 3 个单位
第 1 页(共 19 页)
B.向右平移 1 个单位,向下平移 3 个单位 C.向右平移 1 个单位,向下平移 4 个单位 D.向右平移 2 个单位,向下平移 4 个单位 7.(4 分)在数轴上表示不等式 x≥﹣2 的解集,正确的是( )
第 4 页(共 19 页)
购进甲种玩具多少?
24.(10 分)探索发现:
=1﹣ ;
根据你发现的规律,回答下列问题:
2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
2017-2018学八年级(下)期末数学试卷(解析版)

2017-2018学年八年级(下)期末数学试卷一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣22.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,43.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣15.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.58.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+259.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>615.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是.18.已知a=﹣,b=+,求a2+b2的值为.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣2【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子有意义的实数x的取值范围是:x≥﹣2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,4【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【解答】解:A、∵72+82≠92,∴此选项不符合题意;B、∵82+152=172,∴此选项符合题意;C、∵1.52+22=2.52,但1.5,2.5不是整数,∴此选项不符合题意;D、∵42+32≠42,∴此选项不符合题意.故选:B.【点评】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…3.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选:B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.5.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个【分析】根据菱形正方形、矩形、菱形、平行四边形、一般四边形的性质分析即可.【解答】解:由正方形、矩形、菱形、平行四边形、一般四边形的性质可知:正方形、矩形的两条对角线一定相等,而菱形的对角线只是垂直,平行四边形的对角线只是互相平分,一般四边形的对角线性质不确定,所以两条对角线一定相等的四边形个数为2个,故选:B.【点评】此题考查了正方形、矩形、菱形、平行四边形、一般四边的性质,需熟练掌握各特殊平行四边形的特点是解题关键.6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【分析】根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.【点评】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.9.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.10.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.5【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【解答】解:连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC===13,∴AE=6.5,∵点A表示的数是﹣1,∴OA=1,∴OE=AE﹣OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选:A.【点评】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.【分析】利用方差公式进而得出答案.【解答】解:这组数据的平均数为:这组数据的方差为:=,故选:D.【点评】此题主要考查了方差,正确记忆方差公式是解题关键.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.【点评】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6【分析】先把A、B点坐标代入y=kx+b计算出k、b,然后解不等式0<kx+b<x即可.【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.【点评】本题考查了一次函数与不等式(组)的关系.解决此类问题关键是利用代入法解得k,b,求得一次函数解析式,然后转化为解不等式.15.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【解答】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选:D.【点评】本题考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=﹣1.【分析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是∠B=∠D =60°.【分析】由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【解答】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:∠B=∠D=60°,【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.18.已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【解答】解:直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷【分析】(1)首先化简二次根式进而利用二次根式加减运算法则计算得出答案;(2)首先化简二次根式进而利用二次根式乘除运算法则计算得出答案.【解答】解:(1)﹣+=3﹣2+=;(2)×÷=2××=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?【分析】根据勾股定理解答即可.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC=6,∴BC2=AB2﹣AC2=36﹣9=27.【点评】此题考查勾股定理.关键是根据勾股定理解答,23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.【分析】根据平行四边形的判定和性质得出AE=DC,进而得出∠AEB=∠C,根据等腰三角形的性质得到∠B=∠AEB,进而得出∠B=∠C.【解答】证明:∵BC∥AD,AE∥DC,∴四边形AECD是平行四边形,∴AE=DC,AE∥DC,∴∠AEB=∠C,∵AB=CD,∴AB=AE,∴∠B=∠AEB,∴∠B=∠C.【点评】此题主要通过考查平行四边形判定和性质,关键是根据平行四边形的判定和性质得出AE=DC.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【解答】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点评】本题主要考查了加权平均数,本题易出现的错误是求三个数的平均数,对平均数的理解不正确.25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)把x=1代入y=2x中,得y=2,所以点B的坐标为(1,2),设一次函数的解析式为y=kx+b,把A(0,3)和B(1,2)代入,得,解得,所以一次函数的解析式是y=﹣x+3;(2)点C(4,﹣2)不在该函数的图象上.理由:当x=4 时,y=﹣1≠﹣2,所以点C(4,﹣2)不在函数的图象上.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),=×3×2=3.所以S△BOD【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),3﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.。