第2课时 二次根式的性质(2)
7.2二次根式的性质_(2)

例题讲解
3 (1) 例3 化简: 25
3 解: (5 25
45 (2) 169
45 169
95 13
2
3 5 13
小结
利用
a b
a b
(a≥0,b>0)
它可以对二次根式进行化简.
3
(5) 12a
(6) 24
2、化简:
3 (1) 2
5 (2) 8
16 25 (4) 9 64
4 (3) 7
45 (5) 169
(6) 12b
2
议一议
如何化去 进行交流. 交流后说一说你的做法.
1 根号内的分母?与同桌 2
例题讲解
例4 化去下列各式根号内的分母:
1 (2) 7 例3、例4的结果中,被开方数都不含分母,也 不含开的尽方的因数或因式。一般地,被开方 数不含分母,也不含能开的尽方的因数或因式, 这样的二次根式叫做最简二次根式.
一个二次根式如果不是最简二次根式,那么可 以利用二次根式的性质,把它化成最简二次根式.
2 (1) 5
探究
下列根式中,哪些是最简二次根式?
12a , 18, x 9 , 5 x y , 27abc,
2 3
×
×
√
×
×
ab 3 xy 2 2 2 x y, , , 5(a b ) 2 5
2
√
× √
√
巩固练习
化简:
(1) 24 ( 2) 9 125 ( 3) 3 4
2
2
( 4) 29 21 ( 5 ) 4a b c
2 2 2 3
4 a b (6) 4 ( 7) 2 9 8c
二次根式的概念、性质(第1、2课时 导学案)

第十六章二次根式16.1二次根式第1课时二次根式的概念一、新课导入1.导入课题同学们,你能写出下列问题的结果吗?(1)面积为5的正方形的边长是多少?(2)面积为S的正方形的边长是多少?(3)圆柱的体积为V,高为5,则它的底面半径r是多少?(学生回答结果,老师在黑板上写出)的这些结果有什么共同特点呢?2.学习目标(1)掌握二次根式的基本特征.(2)理解二次根式有意义的条件.3.学习重、难点重点:准确判断一个式子是不是二次根式.难点:求被开方数中所含的字母的取值范围的依据.二、分层学习1.自学指导(1)自学内容:教材P2例1上面的部分.(2)自学时间:3分钟.(3)自学方法:完成思考中的问题,从形式和被开方数分别满足的条件两个方面理解二次根式的意义.(4)自学参考提纲:①教材思考中三个问题的答案依次为②上述四个式子有什么共同特征呢?共同特征:它们表示一些正数的算术平方根.③什么样的式子叫做二次根式?形如a(a≥0)的式子叫做二次根式.④想一想:如果a<0,则a是否是二次根式?不是2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握上述问题结果的式子的特点.②差异指导:引导学生从“形式”和“被开方数取值”两个方面进行分析.(2)生助生:学生相互研讨疑难之处..4.强化(1)下列各式中,哪些是二次根式?哪些不是?为什么?3,16,34,5-,12+x .答案:3,16,12+x 是二次根式;34,5-不是二次根式,34因为不是开平方,5-的被开方数为负数.(2)解答教材P3第1题.令长方形的长、宽分别为3xcm ,2xcm ,则3x·2x=18,得x 2=3,∴x=,3x=3,2x=2.∴长方形的长、宽分别为3cm 和2cm.(3)形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.注意:被开方数a ≥0.1.自学指导(1)自学内容:教材2P 例1及后面的思考部分.(2)自学时间:3分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①确定式子2-x 中字母x 的取值范围的依据是什么?解题步骤是什么?答案:依据是二次根式的概念,x ≥2.②a 取何值时,下列各二次根式有意义?1-a ;32+a ;a -;a -5.答案:a ≥1;a ≥23-;a ≤0;a ≤5.③若a a -+-11有意义,则a 的值为1.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:明了学生对例题不等式的得出的理由是否清楚.②差异指导:指导学生分析使2x 与3x 在实数范围内有意义的条件.(2)生助生:同桌之间相互研讨.4.强化(1)确定二次根式中被开方数所含字母的取值范围的一般步骤是:①根据a 中a ≥0的条件列不等式;②解不等式;③确定字母的取值范围.(2)归纳总结本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时开始时创设情境,给出实例,使学生独立思考并作答,并适当提出疑问,引出这节课的内容,充分发掘了学生的主体性.二次根式是本书学习的第一个知识点,也是本章的第一个知识点,为之后学习二次根式的加减乘除、勾股定理等知识打下基础.教学时,不仅强化了学生独立思考、探究的能力,还提高了学生的合作交流能力.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)已知一个正方形的面积是3,那么它的边长是3.2.(10分)使3+x 有意义的x 的取值范围是x ≥-3.3.(10分)下列各式中一定是二次根式的是(B )A.1+x B.2)1(+x C.12-a D.x14.(10分)二次根式a1中,字母a 的取值范围是(D )A.a <0B.a ≤0C.a ≥0D.a >05.(20分)当a 是怎样的实数时,下列各式在实数范围内有意义?(1)2+a ;(2)a -3;(3)25a ;(4)12-a .解:(1)a ≥-2;(2)a ≤3;(3)a 为任意实数;(4)a ≥21.二、综合运用(20分)6.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)12+x ;(2)2)1(-x ;(3)21--x ;(4)11-+x x .解:(1)x 为任意实数;(2)x 为任意实数;(3)x<2;(4)x ≥-1且x ≠1.三、拓展延伸(共20分)7.求使xx --21在实数范围内有意义的x 的取值范围.解:由题意得⎩⎨⎧≥-,0-2,01>x x ∴1≤x<2.16.1二次根式第2课时二次根式的性质一、新课导入1.导入课题我们知道二次根式a 中a ≥0,那么二次根式a 还有哪些性质呢?今天我们学习“二次根式的性质”(板书课题).2.学习目标(1)知道a ≥0(a ≥0),会用非负数的性质解题.(2)会用公式()2a =a (a ≥0)进行计算.(3)知道形如2a 的化简方法及结果.3.学习重、难点重点:a ≥0(a ≥0),()2a =a (a ≥0).难点:运用公式()2a =a (a ≥0)和2a =a (a ≥0)进行计算化简.二、分层学习1.自学指导(1)自学内容:探究:a (a ≥0)及a (a ≥0)中a 的值的特点.(2)自学时间:5分钟.(3)自学方法:围绕探究提纲进行演算归纳.(4)探究提纲:①当a >0时,a 是什么数?当a =0时,a 是什么数?当a 有意义时,a 是什么数?②从①中我们可以探究得出:当a ≥0时,a 是非负数,即a≥0.③从a (a ≥0)所表示的数值特点,你知道还有哪些式子的值具有这种特性?④已知()0112=++-y x ,求x ,y 的值.(x=1,y=-1)2.自学:学生参照探究提纲进行自学.3.助学(1)师助生:①明了学情:了解学生在探究中存在的认识偏差和困惑.②差异指导:引导学生分析a 表示的数值特点,归纳已学过的非负数及其和为0时所满足的条件.(2)生助生:学生相互交流、帮助.4.强化(1)当a ≥0时,a ≥0,即a 的值为非负数.(2)回顾所学过的三类非负数:①一个数的偶次幂;②一个数的绝对值;③a (a ≥0).(3)非负数的性质:若x +2y +|z|=0,则x=y=z=0.(4)练习:已知01=+++y x x ,求x ,y 的值.答案:x=-1,y=1.1.自学指导(1)自学内容:探究()2a (a ≥0)的结果.(2)自学时间:8分钟.(3)自学方法:通过回顾算术平方根的意义,归纳()2a (a ≥0)的结果.(4)探究提纲:①∵3的算术平方根是3,∴()23=3.②∵32的算术平方根是32,∴232⎪⎪⎭⎫ ⎝⎛=32.③∵非负数a 的算术平方根是a ,∴()2a (a ≥0)=a .④∵()222ba ab =,∴(()2223=⨯=18.⑤计算:答案:3;18;25;21.⑥由①—⑤的探讨,归纳得出:一般地,()2a =a (a ≥0).2.自学:学生可结合探究提纲进行自学.3.助学(1)师助生:①明了学情:关注学生对()2a (a ≥0)的值的理解.②差异指导:指导学生应用()2a (a ≥0)的结果进行计算.(2)生助生:相互交流帮助,矫正错误,归纳正确结论.4.强化(1)强调()2a =a (a ≥0)及其应用.(2)强调公式()2ab =22b a 和2⎪⎭⎫ ⎝⎛b a =22ba在二次根式计算中的运用.(3)展示本节所学知识点和数学思想方法.1.自学指导(1)自学内容:探究:当a ≥0时,2a 等于什么?若a 的值无限定,2a 又等于什么?(2)自学时间:5分钟.(3)自学方法:结合探究提纲动手尝试2a (a ≥0)和2a 的化简,结果有何不同?(4)探究提纲:①==4222;==⎪⎭⎫ ⎝⎛4121221;==36.06.020.6;由此可以看出:当a ≥0时,2a =a 。
人教版数学八年级下册二次根式(第2课时)教学课件

第二十一页,共三十九页。
探究新知
【议一议】如何区别 ( a )2与 a2 ?
( a)2
a2
从运算
(yùn
suàn)顺 从序取看值
范围
(fànwéi)
看从运算结 果看
意义
先开方,后平方
a≥0
a
表示一个非负 数a的算术平方
根的平方
第二十二页,共三十九页。
先平方,后开方
a取任何实数
|a|
表示一个实数a 的平方的算术平 方根
探究新知
【猜一猜】当a<0时, a=2
-a ?
a(a<0) 平方
(píngf
-2
āng)
-0.1 运算
...23
a2 4
0.01
4 .9..
算术
a2
(suànshù)
平方根
2
0.1 2 ..3.
观察两者有什么关系?
第十五页,共三十九页。
探究新知 归纳:
a2 的性质:
a (a≥0) a2 a
②理清语句层次明确运算顺序;
③牢记一些概念和公式.
第三十页,共三十九页。
巩固练习
如图,是一个(yī ɡè)圆形挂钟,正面面积为S,用代
S
数式表示出钟的半径为_________π_.
第三十一页,共三十九页。
连接中考
1.计算( 3)2 1的结果是___4_.
2.下列等式正确的是( A )
A.( 3)2 3
km/h,逆水行驶的速度是(v 2.5)km/h.
(2)设贺卡的长为5x,则宽为3x.依题意得15x2=S,所以 x 1S所5 ,
以它的长为 5 S . 15
第二十九页,共三十九页。
二次根式的概念和性质

基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。
算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。
第2课时 二次根式的概念及性质(2)

第2课时二次根式的概念及性质(2)教学目标【知识与技能】理解(a)2=a(a≥0),a2=a(a≥0)并利用它们进行化简和计算.【过程与方法】通过具体数据的解答,探究a2=a(a≥0),并利用这个结论解决具体问题.【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.【教学重点】a(a≥0)是一个非负数(a)2=a(a≥0)和a2=a(a≥0),及其运用.【教学难点】用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出a2=a(a≥0).教学过程一、复习提问,导入新课(学生活动)口答:1.什么叫二次根式?2.当a≥0时,a叫什么?当a<0时,a有意义吗?【教学说明】通过复习,让学生回顾二次根式的定义和有意义的条件,为本节课的学习奠定基础.二、合作探究,获取新知1.问题1 做一做:根据算术平方根的意义填空:(4)2=________;(2)2=________;(9)2=________;(3)2=________;(13)2=________;(0)2=________.老师点评4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.【教学说明】这些计算,可以让学生去尝试完成,然后教师引导学生进行总结,发现规律.2.同理可得:(2)2=2,(9)2=9,(3)2=3, (72)2=72,(0)2=0,所以(a )2=a (a ≥0)【教学说明】教师及时进行总结,并用含字母的式子表示,便于学生理解和记忆.3.问题2 (学生活动)填空: 22=________; 0.012=________;(110)2=________; (23)2=________;02=________; (37)2=________.老师点评:根据算术平方根的意义,我们可以得到:22=2; 0.012=0.01;(110)2=110; (23)2=23;02=0; (37)2=37.4.小结: 因此,一般地:a 2=a (a ≥0)【教学说明】让学生先进行相应的计算探究,然后让学生仿照前一个探究进行总结,教师及时予以补充和强调,最后用含有字母的式子进行总结.这里要特别强调a ≥0这一条件.三、典例精析,掌握新知 【例1】计算(1)(32)2; (2)(35)2; (3)(56)2; (4)(72)2.【分析】我们可以直接利用(a )2=a (a ≥0)的结论解题.解:(1)(32)2=32; (2)(35)2=32·(5)2=32·5=45; (3)(56)2=56; (4)(72)2=74. 【教学说明】这是对第一个探究的应用,可以让学生自主完成,以加深学生的印象.【例2】化简:(1)9; (2)(-4)2; (3)25; (4)(-3)2.【分析】因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用a 2=a (a ≥0)去化简.解:(1)9=32=3. (2)(-4)2=42=4.(3)25=52=5. (4)(-3)2=32=3.【教学说明】这是对第二个探究的应用,相对要难一些,可以让学生先自主完成,对于出现的问题教师有针对性的进行讲解,尤其是第(2)、(4)题学生理解起来有一定的困难,教师可以在讲解后,再出1~2题相应的训练及时巩固.四、练习反馈,巩固提高2.有意义,那么这个式子是一个 非负数 数.3.计算 (1)(9)2; (2)-(3)2; (3)(126)2;(4)(-323)2; (5)(23+32)(23-32).解:(1)(9)2=9.(2)-(3)2=-3.(3)(126)2=14×6=32.(4)(-323)2=9×23=6. (5)(23+32)(23-32)=-6.4.把下列非负数写成一个数的平方的形式:(1)5; (2)3.4; (3)16(4)x (x ≥0).解:(1)5=(5)2,(2)3.4=( 3.4)2,(3)16=(16)2,(4)x =(x )2(x ≥0). 5.已知x -y +1+x -2=0,求x y 的值.解:⎩⎪⎨⎪⎧x -y +1=0x -3=0,⎩⎪⎨⎪⎧x =3y =4,x y =34=81 五、师生互动,课堂小结(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.课后作业完成同步练习册中本课时的练习.。
二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。
精品【冀教版】初二八年级数学上册《15.1.2 二次根式的性质》课件

1
化简:
(1) 125;
(2)
7 14 ;
(3) m 3 n5 (m 0);
(5)
(4) 0.49 x 5 y 6 ( y>0);
2
a
2
b
2
a
2
4
b
3
2
2
(ab>0);
1 (6) 4 y 4 xy x y y> x . 2
知3-导
归
纳
一般地,如果一个二次根式满足下面两个条件,那
么,我们把这样的二次根式叫做最简二次根式.
(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.
5 6 9 2 如 3 6, 4 5, , , 都是最简二次根式. 4 2 二次根式的化简过程就是将它化为最简二次根式的
(4) 0.49 x y 0.7
5 6 2
x y
2 2 3 2
2
x
0.7
2
x y
2 2 3
x 0.7 x 2 y 3 x .
(来自《点拨》)
冀教版八年级数学上册
知1-练
(5)
a b a b a b a b a
式,化简时要先分解因式.
(来自《点拨》)
冀教版八年级数学上册
知1-练
解: (1) 125 25 5 25 5 5 5.
(2)
7 14
7 14 2 7 2 2 7 2 7 2.
(3) m 3 n5 m 2 n4 mn m 2 n4 mn mn2 mn .
第十五章
二次根式
人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。
本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。
通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。
二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。
但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。
四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。
2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。
五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。
同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。
六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。
2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。
3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。