相似三角形知识点总结及习题

合集下载

相似三角形的性质及判定知识点总结+经典题型总结

相似三角形的性质及判定知识点总结+经典题型总结

板块 考试要求A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.知识点睛 中考要求 相似三角形的性质及判定A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AM k A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF =,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

初中相似三角形基本知识点和经典例题

初中相似三角形基本知识点和经典例题

初中相似三角形基本知识点和经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初三相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c a b c db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零. ③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,B可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳1.相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形是相似的。

记作△ABC∽△DEF。

2.相似三角形的判定条件:(1)AA相似判定法:如果两个三角形的两个角相等,则这两个三角形是相似的。

(2)SAS相似判定法:如果两个三角形的对应两边成比例并且夹角相等,则这两个三角形是相似的。

(3)SSS相似判定法:如果两个三角形的对应三条边成比例,则这两个三角形是相似的。

3.相似三角形的性质:(1)对应边成比例:在相似三角形中,对应边的长度之比相等。

即AB/DE=BC/EF=AC/DF。

(2)对应角相等:在相似三角形中,对应角的度数相等。

即∠A=∠D,∠B=∠E,∠C=∠F。

(3) 对应角的正弦值成比例:在相似三角形中,如果一个角和其对边的正弦值成比例,则另一个角和其对边的正弦值也成比例。

即sin∠A/sin∠D = sin∠B/sin∠E = sin∠C/sin∠F。

(4)图形相似:除了三角形外,相似三角形所在的图形也是相似的。

4.角平分线的性质:(1)在相似三角形中,角平分线之间的关系相等。

即角平分线所分的两个角对应的另外两个角也是相等的。

(2)在相似三角形中,角平分线和对应边长成比例。

即角平分线与对应边所分出的线段之比相等。

5.高度的性质:(1)在相似三角形中,高度之间的关系成比例。

即两个相似三角形的高度之比等于对应边长之比。

(2)在相似三角形中,高度与底边成比例。

即两个相似三角形的高度和底边之比等于对应边长之比。

6.面积的性质:(1)在相似三角形中,面积之间的关系成比例。

即两个相似三角形的面积之比等于对应边长之比的平方。

(2)在相似三角形中,面积与任意一边平方成比例。

即两个相似三角形的面积和任意一边的平方之比等于对应边长之比。

7.相似三角形的应用:(1)根据相似三角形的性质,可以通过测量一个三角形和两条边的比例,计算出另一个三角形的边长和面积。

(2)在地图上,可以利用相似三角形的性质,测量无法直接测量的远距离。

初中相似三角形知识点总结

初中相似三角形知识点总结

初中相似三角形知识点总结
相似三角形是指两个或多个三角形的对应角相等,对应边成比例的关系。

以下是初中相似三角形的知识点总结:
1. 相似三角形的定义:两个或多个三角形的对应角相等,对应边成比例。

2. 相似三角形的性质:
- 对应角相等:两个相似三角形的对应角相等,即角A = 角D,角B = 角E,角C = 角F。

- 对应边成比例:两个相似三角形的对应边成比例,即 AB/DE = BC/EF = AC/DF。

3. 相似三角形的判定:
- AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

- SAS相似定理:如果两个三角形的两个边成比例,并且夹角相等,则这两个三角形相似。

4. 相似三角形的应用:
- 求比例关系:根据相似三角形的性质,可以利用已知的比例关系来求解未知的边长或角度。

- 利用相似三角形求高度:在一个相似三角形中,可以利用已知的比例关系来求解未知的高度。

5. 相似三角形的注意事项:
- 只有对应角相等和对应边成比例的三角形才是相似三角形。

- 相似三角形的比例关系可以用来计算边长,但不能用来计算面积。

相似三角形是初中数学中的重要概念,它在几何形状的比较和计算中有着广泛的应用。

理解相似三角形的性质和应用方法,对于解决与三角形相关的问题具有重要意义。

(完整版)初中相似三角形基本知识点和经典例题

(完整版)初中相似三角形基本知识点和经典例题

初三相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

(完整版)相似三角形知识点归纳(全)

(完整版)相似三角形知识点归纳(全)
《相似三角形》知识点归纳
知识点 1 有关相似形的概念
(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形
.
(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多
边形.相似多边形对应边长度的比叫做相似比 ( 相似系数 ) .
知识点 2 比例线段的相关概念、比例的性质
.相似三角形对应边的比叫做相似比 ( 或相
(2)三角形相似的判定方法
1、平行法: (图上)平行于三角形一边的直线和其它两边
( 或两边的延长线 ) 相交,所构成的三角形与原三角形相似 .
2、判定定理 1:简述为: 两角对应相等,两三角形相似. AA
3、判定定理 2:简述为: 两边对应成比例且夹角相等,两三角形相似
( 1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点
.
( 2) 位似图形一定是相似图形,但相似图形不一定是位似图形
.
( 3) 位似图形的对应边互相平行或共线 .
( 4)位似图形具有相似图形的所有性质 .
位似图形的性质:
Байду номын сангаас
位似图形上任意一对对应点到位似中心的距离之比等于相似比
.SAS
4 、判定定理 3:简述为: 三边对应成比例,两三角形相似 .SSS
5、判定定理 4:直角三角形中, “ HL”
全等与相似的比较:
三角形全等
三角形相似
两角夹一边对应相等 (ASA) 两角一对边对应相等 (AAS) 两边及夹角对应相等 (SAS) 三边对应相等 (SSS) 、 (HL )
两角对应相等 两边对应成比例,且夹角相等
B
C
( 1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” 似系数 ) .相似三角形对应角相等,对应边成比例.

相似三角形知识点总结及习题.doc

相似三角形知识点总结及习题.doc

相似三角形知识点总结及习题相似三角形基本知识(一)比例的性质1.比例的基本性质:比例式化积、积化比例式.2.合、分比性质:分子加(减)分母,分母不变.(k=1、2、3…)应用:已知证明:∵∴∴∴3.等比性质:分子分母分别相加,比值不变.若则.4.比例中项:若的比例中项.(二)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例.已知l1∥l2∥l3,ADl1BEl2CFl3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.ADEBC 由DE∥BC可得:.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.(即利用比例式证平行线)4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(三)相似三角形1、相似三角形的判定①两角对应相等的两个三角形相似(此定理用的最多);②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似;④直角边和斜边对应成比例的两个直角三角形相似.2、直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).3、相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).③相似三角形对应面积的比等于相似比的平方.4、位似图形:如果两个图形不仅是相似图形,而且每对对应点所在直线都经过一点,这样的图形叫做位似图形,这个点叫位似中心.这时的相似比又称为位似比.特别提醒:①是特殊的相似图形,具有位似中心;②位似图形上任意一对对应点到位似中心的距离之比都等于相似比.相似三角形(基础训练)一、选择题(每题2分,共30分)1.已知,则下列式子中正确的是() A.a:b=c²:d²B.a:d=c:dC.a:b=(a+c):(b+d)D.a:b=(a-d):(b-d)2.一个运动场的实际面积是6400m²,那么它在比例尺1:1000的地图上的面积是()A.6.4cm²B.640cm²C.64cm²D.8cm²3.测得线段AB=2.8m,CD=310cm,则线段AB与CD的比为()4.已知线段d是线段b、c、a的第四比例项,其中a=5cm,b=2cm,c=4cm,则d等于()A.1cmB.10cmC.2.5cmD.1.6cm5.①如果线段d是线段a、b、c的第四比例项,则有;②如果点C是线段AB的中点,那么AC是AB、BC 的比例中项;③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项;④如果点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC=.其中正确的判断有()A.1个B.2个C.3个D.4个6.如图,DE∥BC,在下列比式中,不能成立的是()7.下列图形中相似的多边形是()A.所有的矩形B.所有的菱形C.所有的正方形D.所有的等腰梯形8.下列判断中,正确的是()A.各有一个角时67°的两个等腰三角形相似;B.邻边之比都为2:1的两个等腰三角形相似;C.各有一个角时45°的两个等腰三角形相似;D.邻边之比都为2:3的两个等腰三角形相似.9.在Rt△ABC中,CD是斜边AB上的高,则△ABC中相似三角形共有()A.1对B.2对C.3对D.4对10.点D、E分别是△ABC的边AB、AC的中点,则S△ADE:S△ABC=()A.1:2B.1:3C.1:4D.1:√211.,则k=()A.2B.-1C.2或-1D.无法确定12.下列说法正确的是()A.两位似图形的面积比等于位似比;B.位似图形的周长之比等于位似比的平方;C.分别在△ABC的边AB、AC 的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;A.B.C.D.D.位似多边形中对应对角线之比等于位似比13.如果一个直角三角形的两条直角边分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个14.如图,在△ABC中,D 为AC边上一点,∠DBC=∠A,BC=√6,AC=3,则CD的长为()A.1B.C.2D.15.如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD⊥BD=9:4,则AC:BC的值为()A.9:4B.9:2C.3:4D.3:2二、填空题(每题2分,共20分)16._____,_____.17.如果x:y:z=1:3:5,那么_____.18.E、F为线段AB的黄金分割点,已知AB=10cm,则EF的长度为_____cm.19.在阳光下,身高1.68m的小强在地面上的影长为2m,在同一时刻,测得学校的旗在地面上的影长为18m.则旗杆的高度为_____(精确到0.1m).20.两个相似三角形对应高的比为1:√2,则它们的周长之比为_____;面积之比为_____.21.△ABC的三边长分别为√5、√10、√15,△的两边长分别为1和√2,如果△ABC∽△,那么△的第三边长为_____.22.如图,在平行四边形ABCD中,延长AB 到E,使AB=2BE,延长CD到F,使DF=DC,EF交BC于G,交AD于H.则S△BEG:S△CFG=______.23.如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯墙一点D距强1.2m,BD长0.5m,则梯长为_____.(23题)(24题)24.如图,在△ABC中,∠BAC=90°,D 是BC中点,AE⊥AD交CB延长线于点E,则△BAE相似于______.25.如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MOC∽△AOC面积的比为_____.三、作图题(5分)26.三角形的顶点坐标分别是A(2,2),B(4,2),C(6,4),试将△ABC缩小,使缩小后的△DEF与△ABC的对应边比为1:2,并且直接写出点D、E、F的坐标.四、解答题(27题、28题5分,29题10分,共20分)27.如图,DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,求线段BF的长.28.如图,已知△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于F.求的值.29.如图,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值(2)若AB=a,FB=EC,求AC的长.五、证明题(30题5分,31题、32题10分,共25分)30.如图,平行四边形ABCD中,过A作直线交BD于P,交BC于Q,交DC的延长线于R.求证:AP²=PQ·PR.31.如图,△ACB中,∠ACB=90°,D在BC边上,连AD,过B作BE⊥AB,∠BAE=∠CAD,过E作EF⊥CB于F.求证:BF=CD.32.如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CEB ≌△ADC;(2)若AD=9㎝,DE=6㎝,求BE及EF的长.。

九年级相似三角形知识点总结及例题讲解

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识知识点一:放缩与相似1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:X两个相似的女边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、b的长度分别是m、n,那么就说这两条线段的比是8 :b=m:na _ m(或厂T)2、比的前项,比的后项:两条线段的比a: b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如厂7Λ _ C4、比例外项:在比例厂7 (或a:b=c: d)中a、d叫做比例外项。

« _ C5、比例内项:在比例厂7(或8:b=C: d)中b、C叫做比例内项。

α _ c6、第四比例项:在比例丁万(或a: b二c:d)中,d叫a、b、C的第四比例项。

d _b7、比例中项:如果比例中两个比例内项相等,即比例为厂万(或a:b=b:C时,我们把b叫做a和d的比例中项。

8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即-=-(或a: b=c: d),那么,这四条线段叫做成比例线段,简称比例线段。

(注总:在求线段比时,线段单位b d 要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质:— = — <=> Cld = beb d(两外项的积等于两内项积)a Cb dFd GC (把比的前项、后项交换)2.反比性质:3•更比性质(交换比例的内项或外项):-=^(交换内项)C a(交换外项)b d b a侗时交换内外项)C a4.合比性质:?=匚=P =仝L(分子加(减)分母,分母不变)b d b d■注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项.后项之间b _ a _ d _ C发生同样和差变化比例仍成立.⅛∣:- = -^ " C .b d a_b _c_d.a + b c + d5•等比性质:(分子分母分别相加,比值不变•)a Ce m Zt f G …a+ c + e + ・・• + 〃】a如果—=—=—= ・・・ =—(b + d + / +・-• + n ≠ 0),那么---------------------- =—.b Clf n/? + 〃 + /+ ・• + 〃/?注意:⑴此性质的证明运用r “设£法”,这种方法是有关比例汁算,变形中一种常用方法.(2)应用等比性质时.要考虑到分母是否为零・(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 知识点三:黄金分割Λ C RCD定义:在线段AB上,点C把线段/1B分成两条线段AC和BC (AC> BC),如果—=—•即AC⅛A AB AC BxBC,那么称线段AB彼点C黄金分割,点C叫做线段SB的黄金分割点,SC与AB的比叫做黄金√5-1比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a c a kbc kd b d b d++=⇒=.AB DE AB DE BC EF AC DF ==或等相似三角形基本知识(一)比例的性质1.比例的基本性质: 比例式化积、积化比例式.bc ad dc b a =⇔=2.合、分比性质: 分子加(减)分母,分母不变.(k=1、2、3…)应用:已知dc c b a ad c b a +=+=:,求证 证明:∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴dc c b a a +=+ 3.等比性质:分子分母分别相加,比值不变.若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 4.比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项.(二)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的....三边..与原三角形三边......对应成比例.(三)相似三角形1、相似三角形的判定①两角对应相等的两个三角形相似(此定理用的最多);②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似;④直角边和斜边对应成比例的两个直角三角形相似.2、直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).3、相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).③相似三角形对应面积的比等于相似比的平方.4、位似图形:如果两个图形不仅是相似图形,而且每对对应点所在直线都经过一点,这样的图形叫做位似图形,这个点叫位似中心.这时的相似比又称为位似比.特别提醒:①是特殊的相似图形,具有位似中心;②位似图形上任意一对对应点到位似中心的距离之比都等于相似比.a cb d=1a c b d =()a b b c c a k a b c c a b +++===、、都是实数相似三角形(基础训练)一、 选择题(每题2分,共30分)1. 已知 ,则下列式子中正确的是( )A.a:b=c ²:d ²B.a:d=c:dC.a:b=(a+c):(b+d)D.a:b=(a-d):(b-d)2. 一个运动场的实际面积是6400m ²,那么它在比例尺1:1000的地图上的面积是( )A.6.4cm ²B.640cm ²C.64cm ²D.8cm ²3. 测得线段AB=2.8m ,CD=310cm ,则线段AB 与CD 的比为( ) 2.8.310A 310.2.8B 28.31C 31.28D4. 已知线段d 是线段b 、c 、a 的第四比例项,其中a=5cm,b=2cm,c=4cm,则d 等于( )A.1cmB.10cmC.2.5cmD.1.6cm 5. ①如果线段d 是线段a 、b 、c 的第四比例项,则有 ;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC>BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,且AC>BC ,AB=2,则其中正确的判断有( )A.1个B.2个C.3个D.4个6. 如图,DE ∥BC,在下列比式中,不能成立的是( ).AD AE A DB EC = .DE AE B BC EC = .AB AC C AD AE = .DB AB D EC AC =7. 下列图形中相似的多边形是( )A.所有的矩形B.所有的菱形C.所有的正方形D.所有的等腰梯形8. 下列判断中,正确的是( )A.各有一个角时67°的两个等腰三角形相似;B.邻边之比都为2:1的两个等腰三角形相似;C.各有一个角时45°的两个等腰三角形相似;D.邻边之比都为2:3的两个等腰三角形相似.9. 在Rt △ABC 中,CD 是斜边AB 上的高,则△ABC 中相似三角形共有( )A.1对B.2对C.3对D.4对10. 点D 、E 分别是△ABC 的边AB 、AC 的中点,则S △ADE :S △ABC =( )A.1:2B.1:3C.1:4D.1:√211. ,则k=( )A.2B.-1C.2或-1D.无法确定325283b a b =-若,a b b +=则=a a b +33x y z x y z +-=-+'''A B C '''A B C '''A BC 12. 下列说法正确的是( )A.两位似图形的面积比等于位似比;B.位似图形的周长之比等于位似比的平方;C.分别在△ABC 的边AB 、AC 的反向延长线上取点D 、E ,使DE ∥BC ,则△ADE 是△ABC 放大后的图形; A. B. C.D.D.位似多边形中对应对角线之比等于位似比13. 如果一个直角三角形的两条直角边分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个14. 如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=√6,AC=3,则CD 的长为( )A.1B.C.2D.15. 如图,在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,且AD ⊥BD=9:4,则AC:BC 的值为( )A.9:4B. 9:2C.3:4D.3:2二、 填空题(每题2分,共20分)16. _____, _____. 17. 如果x:y:z=1:3:5,那么 _____.18. E 、F 为线段AB 的黄金分割点,已知AB=10cm ,则EF 的长度为_____cm.19. 在阳光下,身高1.68m 的小强在地面上的影长为2m ,在同一时刻,测得学校的旗在地面上的影长为18m.则旗杆的高度为_____(精确到0.1m ).20. 两个相似三角形对应高的比为1:√2,则它们的周长之比为_____;面积之比为_____.21. △ABC 的三边长分别为√5、√10、√15,△的两边长分别为1和√2,如果△ABC ∽△,那么△ 的第三边长为_____.22. 如图,在平行四边形ABCD 中,延长AB 到E,使AB=2BE ,延长CD 到F ,使DF=DC ,EF 交BC 于G ,交AD 于H.则S △BEG :S △CFG =______.23. 如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4m ,梯墙一点D 距强1.2m ,BD 长0.5m ,则梯长为_____.(23题) (24题)24. 如图,在△ABC 中,∠BAC=90°,D 是BC 中点,AE ⊥AD 交CB 延长线于点E ,则△BAE 相似于______.EF AF FC FDAEAC25. 如图,在△ABC 中,M 、N 是AB 、BC 的中点,AN 、CM 交于点O ,那么△MOC ∽△AOC 面积的比为_____.三、作图题(5分)26. 三角形的顶点坐标分别是A (2,2),B(4,2),C(6,4),试将△ABC 缩小,使缩小后的△DEF 与△ABC 的对应边比为1:2,并且直接写出点D 、E 、F 的坐标.四、解答题(27题、28题5分,29题10分,共20分)27. 如图,DE ∥BC ,DF ∥AC ,AD=4cm ,BD=8cm ,DE=5cm ,求线段BF 的长.28. 如图,已知△ABC 中,AE:EB=1:3,BD:DC=2:1,AD 与CE 相交于F. 求 的值.29.如图,已知△ABC ,延长BC 到D ,使CD=BC.取AB 的中点F ,连接FD 交AC 于点E. (1)求 的值(2)若AB=a,FB=EC ,求AC 的长.五、证明题(30题5分,31题、32题10分,共25分)30.如图,平行四边形ABCD中,过A作直线交BD于P,交BC于Q,交DC的延长线于R.求证:AP²=PQ·PR.31. 如图,△ACB中,∠ACB=90°,D在BC边上,连AD,过B作BE⊥AB,∠BAE=∠CAD,过E作EF⊥CB于F.求证:BF=CD.32. 如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CEB≌△ADC;(2)若AD=9㎝,DE=6㎝,求BE及EF的长.。

相关文档
最新文档