信号与系统 抽样定理实验

合集下载

信号与系统实验报告1抽样定理

信号与系统实验报告1抽样定理

本科实验报告课程名称:信号与系统实验项目:抽样定理实验地点:北区博学楼机房专业班级:电信1201 学号: ******** 学生姓名:指导教师:***一、实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理,加深对抽样定理的认识和理解。

二、原理说明:离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号fs(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:fs(t)=f(t)×s(t)对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限个经过平移的原信号频谱。

平移后的频率等于抽样频率fs及其各次谐波频率2fs、3fs、4fs、5fs......。

正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复为原信号。

只要用一个截止频率等于原信号频谱中最高频率fmax的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

但原信号得以恢复的条件是fs>2B,其中fs为抽样频率,B为原信号占有的频带宽度。

而fmin=2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当fs<2B 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使fs=2B,恢复后的信号失真还是难免的。

为了实现对连续信号的抽样和抽样信号的复原,可用以下实验原理方案:图1-3 抽样定理实验方框图三、实验内容及步骤:1、方波信号的抽样与恢复。

1)观察方波信号的抽样。

调节函数信号发生器,使其输出频率分别为1KHZ、3KHZ,s(t)的频率分别置3.9KHz、15.6KHz、62.5KHz,观察抽样后的波形,并记录之。

方波原始图62.5KHz的抽样图2)观察恢复后的波形。

信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复

信号与系统实验四-信号的采样及恢复实验四信号的采样及恢复⼀、实验⽬的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进⾏抽样和恢复的基本⽅法;3、通过实验验证抽样定理。

⼆、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进⾏抽样,试画出抽样后序列的波形,并分析产⽣不同波形的原因,提出改进措施。

(1))102cos()(1t t x ?=π(2))502cos()(2t t x ?=π(3))1002cos()(3t t x ?=π2、产⽣幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。

3、对连续信号)4cos()(t t x π=进⾏抽样以得到离散序列,并进⾏重建。

(1)⽣成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。

(2)以10=sam f Hz 对信号进⾏抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利⽤抽样内插函数)/1()(sam r f T T t Sa t h =??=π恢复连续信号,画出重建信号)(t x r 的波形。

)(t x 与)(t x r 是否相同,为什么?(3)将抽样频率改为3=sam f Hz ,重做(2)。

4、利⽤MATLAB 编程实现采样函数Sa 的采样与重构。

三、实验仪器及环境计算机1台,MATLAB7.0软件。

四、实验原理对连续时间信号进⾏抽样可获得离散时间信号,其原理如图8-1。

采样信号)()()(t s t f t f s ?=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。

其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f π⼤于等于2倍的原信号频率m f 时,即m s f f 2≥(抽样时间间隔满⾜ms f T 21≤),抽样信号的频谱才不会发⽣混叠,可⽤理想低通滤波器将原信号从采样信号中⽆失真地恢复。

东北大学秦皇岛分校 信号与系统实验报告三 抽样定理实验 2020.04.30

东北大学秦皇岛分校 信号与系统实验报告三   抽样定理实验 2020.04.30

2K
2K 正弦波
4K
2K
2K 正弦波
8K
2K
2K 正弦波
16K
2K
1K 三角波
16K
2K
1K 三角波
16K
6K
自己尝试设计某种组合进行扩展
说明 1.5 倍抽样脉冲 2 倍抽样脉冲 4 倍抽样脉冲 8 倍抽样脉冲 复杂信号恢复 复杂信号恢复
3. 频谱混叠现象验证
(1) 设置各信号参数 设置原始信号为:“正弦”,频率:1KHz,幅度设置指示为 50;设置抽样脉冲频率: 8KHz,占空比:4/8(50%);恢复滤波器截止频率:2K;
m(t) T (t) 的傅立叶变换是M() 和T () 的卷积:
M () = 1 M () () = 1
M (− n) s
T
s
2
T n =−
该式表明,已抽样信号 ms(t) 的频谱 需要注意,若抽样间隔 T 变得大于
Ms1
() 是无穷多个间隔为 ωs 的 M () 相迭加而成。 , 则 M () 和 () 的卷积在相邻的周期内存在
(5) 抽样信号时域观测 用四通道示波器,在 2P1 可观测原始信号,在 2P2 可观测抽样脉冲信号,在 2P7 可观测PAM 取
样信号;
(6) 抽样信号频域观测 使用示波器的 FFT 功能或频谱仪,分别观测 2P1,2P2,2P7 测量点的频谱;
(7) 恢复信号观察 鼠标点击框图上的“恢复滤波器”按钮,设置恢复滤波器的截止频率为 3K(点击截止频率数
3. 当模拟信号为 2KHz 正弦波、抽样频率为 8KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形
4. 当模拟信号为 2KHz 正弦波、抽样频率为 16KHz、恢复滤波器为 2KHz 时: 原始信号波形、抽样脉冲波形、抽样输出波形、恢复信号波形

抽样定理_实验报告

抽样定理_实验报告

1. 了解电信号的采样方法与过程。

2. 理解信号恢复的方法。

3. 验证抽样定理的正确性。

二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。

三、实验设备与器材1. 信号与系统实验箱TKSS-C型。

2. 双踪示波器。

四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。

2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。

3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。

4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。

5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。

五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。

2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。

1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。

2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。

3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。

七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。

2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。

3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。

实验四抽样定理

实验四抽样定理
3、 信号重建
如果满足抽样定理,那么,我们就可以唯一地由已抽样信号 x[n] 恢复出原连续时间信 号 x(t)。在理想情况下,可以将离散时间序列通过一个理想低通滤波器,图 4.6 给出了理想 情况下信号重建的原理示意图。
⊗ x(t)
x p (t) Ideal Lowpass
Filter
p(t)
xr (t)
X = X + x*exp(-j*t'*(w-k*ws))*dt; end subplot(222)
plot(w,abs(Xa)) title('Magnitude spectrum of x(t)'), grid on axis([-60,60,0,1.8*max(abs(Xa))]) subplot(224) plot(w,abs(X)) title('Magnitude spectrum of x[n]'), xlabel('Frequency in radians/s'),grid on axis([-60,60,0,1.8*max(abs(Xa))]) 本程序可以用来观察在不同的抽样频率条件下,已抽样信号的频谱的混叠程度,从而更 加牢固地理解抽样定理。但是,提请注意的是,在 for 循环程序段中,计算已抽样信号的频 谱 X 时,没有乘以系数 1/Ts,是为了便于比较 X 与 Xa 之间的区别,从而方便观察频谱的 混叠程度。另外,程序中的时间步长 dt 的选择应该与抽样周期 Ts 保持一定的比例关系,建 议 Ts 不应小于 10dt,否则,计算得到的已抽样信号的频谱将出现错误。
−∞
显然,已抽样信号 xs(t) 也是一个冲激串,只是这个冲激串的冲激强度被 x(nTs) 加权了。 从频域上来看,p(t) 的频谱也是冲激序列,且为:

抽样定理实验报告(信号与系统)

抽样定理实验报告(信号与系统)

实验五抽样定理实验内容及步骤1、阅读范例程序Program5_2,在这个程序中,选择的信号的最高频率是多少?这个频率选择得是否恰当?为什么?答:选择信号的最高频率为100Hz。

这个频率选择恰当,因为f>2f max。

2、在1—8 之间选择抽样频率与信号最高频率之比,即程序Program5_2 中的a 值,反复执行范例程序Program5_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?解:a=1时图1a=3时图2a=8时图3第四幅图error代表着原信号与重建信号之间的误差。

由此得到结论,凡是带限信号,抽样频率越高,误差越小。

3、画出连续时间信号的时域波形及其幅频特性曲线,信号为:x=cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(25*pi*t)(1)、对信号进行采样,得到采样序列,画出采样频率分别为15Hz,30 Hz,60 Hz 时的采样序列波形;解:代码如下:tmax= 4;dt = 0.01;t = 0:dt:tmax;Ts = 1/15;ws= 2*pi/Ts;w0 = 25*pi;dw= 0.1;w = -w0:dw:w0;n = 0:1:tmax/Ts;x = cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(w0*t);xn =cos(5*pi*n*Ts)+1.5*sin(8*pi*n*Ts)+0.5*cos(w0*n*Ts);subplot(221)plot(t,x);title('A continuous-time signal x(t)');xlabel('Time t');grid onsubplot(223)stem(n,xn,'.');title('The sampled version x[n] of x(t)'),xlabel('Time index n');axis([0,tmax/Ts,0,1]),grid onxa= x*exp(-j*t'*w)*dt;X = 0;for k = -8:8;X = X + x*exp(-j*t'*(w-k*ws))*dt;endsubplot(222)plot(w,abs(xa))title('Magnitude spectrum of x(t)'),grid onaxis([-60,60,0,1.8*max(abs(xa))])subplot(224)plot(w,abs(X))title('Magnitude spectrum of x[n]');xlabel('Frequency in radians/s'),grid onaxis([-60,60,0,1.8*max(abs(xa))])图像如下:Ts=1/15时:图4 Ts=1/30时:图5Ts=1/60时:图6(2)、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。

通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。

1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。

抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。

本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。

2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。

该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。

3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。

3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。

然后,将该模拟信号通过电缆连接到示波器上进行观测。

在示波器上观测到的信号即为模拟信号的采样结果。

3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。

这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。

4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。

实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。

4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。

例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。

5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。

信号与系统 抽样定理实验

信号与系统 抽样定理实验

信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m 三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]);title('Ô­Á¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2* pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F) )]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统
实验报告
实验六抽样定理
实验六抽样定理
一、实验内容:(60分)
1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;
程序如下:
dt=0.1;
f0=0.2;
T0=1/f0;
fm=5*f0;
Tm=1/fm;
t=-10:dt:10;
f=sinc(t);
subplot(4,1,1);
plot(t,f);
axis([min(t),max(t),1.1*min(f),1.1*max(f)]);
title('Ô­Á¬ÐøÐźźͳéÑùÐźÅ');
for i=1:3;
fs=i*fm;Ts=1/fs;
n=-10:Ts:10;
f=sinc(n);
subplot(4,1,i+1);stem(n,f,'filled');
axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end
运行结果如下:
(2)求解原连续信号和抽样信号的幅度谱;
程序: dt=0.1;fm=1;
t=-8:dt:8;N=length(t);
f=sinc(t);
wm=2*pi*fm;k=0:N-1;w1=k*wm/N;
F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);
for i=1:3;
if i<=2 c=0;else c=1;end
fs=(i+c)*fm;Ts=1/fs;
n=-6:Ts:6;
N=length(n);
f=sinc(n);
wm=2*pi*fs;
k=0:N-1;
w=k*wm/N;
F=f*exp(-1i*n'*w)*Ts;
subplot(4,1,i+1);plot(w/(2*pi),abs(F));
axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F))]); end
波形如下:
(3)用时域卷积的方法(内插公式)重建信号。

程序、波形如下:
dt=0.01;f0=0.2;T0=1/f0;
fm=5*f0;Tm=1/fm;
t=-3*T0:dt:3*T0;
x=sinc(t);
subplot(4,1,1);plot(t,x);
axis([min(t),max(t),1.1*min(x),1.1*max(x)]);
title('原连续信号与抽样信号');
for i=1:3;
fs=i*fm;Ts=1/fs; n=0:(3*T0)/Ts; t1=-3*T0:Ts:3*T0; x1=sinc(n/fs);
T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N);
subplot(4,1,i+1);plot(t1,xa);
axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end
j ω
-j ωn -j ω-j2ω-j3ω-j4ωn=-X(e )=x(n)e =2+4e +6e +4e +2e ∞


分别取频域抽样点数N 为3、5和10,用IFFT 计算并求出其时间序列x(n),绘图显示个时间序列。

由此讨论由频域抽样不失真地恢复原时域信号的条件。

程序:
Ts=1;N0=[3,5,10];
for r=1:3;
N=N0(r);
D=2*pi/(Ts*N);
kn=floor(-(N-1)/2:-1/2);
kp=floor(0:(N-1)/2);
w=[kp,kn]*D;
X=2+4*exp(-j*w)+6*exp(-j*2*w)+4*exp(-j*3*w)+2*exp(-j*4*w);
n=0:N-1;
x=ifft(X,N)
subplot(1,3,r);stem(n*Ts,abs(x),'filled');
box
end
显示数据:
x =6.0000 6.0000 6.0000
x =2.0000 4.0000 6.0000 4.0000 2.0000
x =
Columns 1 through 6
2.0000 - 0.0000i 4.0000 + 0.0000i 6.0000 - 0.0000i 4.0000 + 0.0000i 2.0000 - 0.0000i 0 + 0.0000i
Columns 7 through 10
-0.0000 - 0.0000i 0 + 0.0000i 0 - 0.0000i 0 + 0.0000i
波形如下:
由此讨论由频域抽样不失真地恢复原时域信号的条件:
X(e)的频谱表达式可知,有限长时间序列x(n)的长度M=5,现分由jω
别取频域抽样点数为N=3,5,10,并由图形的结果可知:
①当N=5和N=10时,N≥M,能够不失真地恢复出原信号x(n);
②当N=3时,N<M,时间序列有泄漏,形成了混叠,不能无失真地恢复出原信号x(n)。

混叠的原因是上一周期的后2点与本周期的前两点发生重叠结论:从频域抽样序列不失真地恢复离散时域信号的条件是:频域抽样点数N大于或等于序列长度M(即N≥M),才能无失真地恢复原时域信号。

二、思考题:(20分)
1、预习思考题
(1)什么是内插公式?在MATLAB中内插公式可用什么函数来编写?
答:抽样信号a ˆx
(t)通过滤波器输出,其结果应为a ˆx (t)与h(t)的卷积积分:
sin[()/]
ˆˆ()()()()()()()
()/a a a a a n t nT T y t x t x
t h t x h t d x nT t nT T
πτττπ∞

-∞
=-∞
-==*=-=-∑
⎰该式称为内插公式。

MATLAB 中提供了
t t c ππ)
sin(sin =
函数,可以很方便地使
用内插公式。

(2)从频域抽样序列不失真地恢复离散时域信号的条件是什么?
答:假定有限长序列x(n)的长度为M ,频域抽样点数为N ,原时域信号不失真地由频域抽样恢复的条件如下:
① 如果x(n)不是有限长序列,则必然造成混叠现象,产生误差; ② 如果x(n)是有限长序列,且频域抽样点数N 小于序列长度M (即
N<M ),则x(n)以N 为周期进行延拓也将造成混叠,从x(n)
%中不能无失真地恢复出原信号x(n)。

③ 如果x(n)是有限长序列,且频域抽样点数N 大于或等于序列长度M
(即N ≥M ),则从x(n)
%中能无失真地恢复出原信号x(n),即 N N N N r=-x (n)=x (n)R (n)=x(n+rN)R (n)=x(n)∞

∑%
2、①试归纳用IFFT 数值计算方法从频谱恢复离散时间序列的方法和
步骤。

答:用IFFT 数值计算方法从频谱恢复离散时间序列的方法:依据频域抽样定理确定采样点数N 必须大于或等于有限长序列x(n)的长度M,才能由频域抽样得到的频谱序列无失真地恢复原时间序列。

步骤: (1).根据奈奎斯特定理确定采样频率Fs (2).进而确定模拟域的分辨率 (3).采样点数N 取不同的值时,观察从频谱恢复离散时间序列的图形,取没有混叠现象的图形,就是从频谱恢复的离散时间序列。

②从频谱恢复连续时间信号与恢复离散时间序列有何不同?
答:用频谱恢复连续时间信号只不过是将采样周期取得比用频谱恢复
X(Ω)后作IDFT,然后再用plot自离散时间序列的采样周期更小得
k
动进行插值,就获得连续时间信号。

三、实验总结:(10分)
通过本实验,要想无失真的恢复原信号,必须满足抽样定理,抽样频率Fs>Fh。

认识Matlab这个功能强大的仿真软件,初步了解了Matlab的操作界面以及简单的程序语言和程序运行方式,通过具体的取样和恢复信号的过程,更加深刻了解了采样定理的定义的具体含义:将模拟信号转换成数字信号,即对连续信号进行等间隔采样形式采样,采样信号的频率是原连续信号的频谱以采样频率为周期的延拓形成的,通过MATLAB编程实现对抽样定理的验证,加深了抽样定理的理解。

同时自己训练应用计算机分析问题的能力。

欢迎您的下载,资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,
学习资料等等
打造全网一站式需求。

相关文档
最新文档