逻辑代数的基本公式和常用公式
逻辑代数基本公式及定律.

证明: 左式 AB AC BC
AB AC (A A)BC
AB AC ABC ABC 添加
添冗余因子
口诀: 正负相对, 余全完。 (消冗余项)
(8)
( AB ABC) ( AC ABC)
AB AC =右式
4. A · A· B=A · B
(12)
例1: F1 A B C D 0 注意 括号
F1 (A B) (C D) 1
注意括号
F1 AC BC AD BD
与或式
(13)
例 2: F2 A B C D E
反号不动
F2 A B C D E
A 0 0 , A 1 A, A A A, A A 0
AA
(1)
二、交换律
A+B=B+A A• B=B • A
三、结合律
A+(B+C)=(A+B)+C=(A+C)+B A• (B • C)=(A • B) • C
四、分配律
A(B+C)=A • B+A • C A+B • C=(A+B)(A+C)
证明:
A· A· B=A
A· A· B = A·(A+B) =A · B
(A+B)=A A· A· B= A· A· A· B= ?
A × A √ A· B A· B × ×
(9)
§ 2.4 逻辑代数的基本定理
2.4.1 代入定理
内容:在任何一个包含变量A的逻辑等式中, 若以另外一个逻辑式代替式中所有的变量A, 则等式仍然成立。
2逻辑代数公式定理+3逻辑代数的基本定理+4逻辑函数及其描述方法

2.5.2 逻辑函数的表示方法
• 真值表 • 逻辑式 • 逻辑图 • 波形图 • 卡诺图 • 计算机软件中的描述方式
• 各种表示方法之间可以相互转换
2.5.2 逻辑函数的表示方法
• 真值表
“或”真值表 A BL 0 00 0 11 1 01 1 11
5本继页续完
逻辑代数的基本公式和常用公式
一、基本公式 1.常量与变量间的运算规则: 或运算一定、律逻辑代数的基本定律 A+0=A;A+1=和1恒;等式 与运算定1律.常数间的运算定律 A•0=0;A •1=A;
令 A=0 和 1 , 代入逻辑加法各 式,然后参考 “或”真值表和 “与”真值表可 以证明各式成立。
“与”2真.基值本表可 以证明定各律式和成立。
恒等式 表律详是2.3见根.摩1课,据例 根本基逻: 定P本辑2定加4 、 乘、非三律种基本
运算法则,推导 出的逻辑运算的 一些基本定律。
9本继页续完
逻辑代数公式定理及公式化简法
基本定律和恒等式的证明
摩根定律的证明
基本定律和恒等式的证明最 有效的方法是检验等式左边的 函数与右边函数的真值表是否 吻合。
逻辑代数的基本公式和常用公式
一、基本公式 4.摩根定律 例:摩根定律(反演律)
(A·B·C···)’=A’+B’+C’+···
(A+B+C+···)’=A’·B’·C’····
利用摩根定律可以把“与”运算变 换为“或”运算,也可以把“或”运 算变换为“与”运算,其逻辑结果不 变。
令 A=0 和 1 , 代入逻辑加法各 式,然后参考 “或”真值表和
逻辑代数基础

所得到的图形叫n变量的卡诺图。
逻辑相邻的最小项:如果两个最小项只有一个变量互为反变 量,那么,就称这两个最小项在逻辑上相邻。 如最小项 m6=ABC、与
m7 =ABC 在逻辑上相邻 m7
m6
两变量卡诺图 AB 0 1 m0 m1 0 AB AB 1 mB AB A 2 m3 三变量卡诺图 B
四变量卡诺图 CD AB 00 01 11 10 00 m0 m1 m3 m2 01 m4 m5 m7 m6 A 11 m12 m13 m15 m14
b.去括号
ABC ABC AB
ABC ABC AB(C C )
ABC ABC ABC ABC
m3 m5 m7 m6 m(3,5,6,7)
三、 用卡诺图表示逻辑函数
1、卡诺图的引出 卡诺图:将n变量的全部最小项都填入小方格内,并使具有 逻辑相邻的最小项在几何位置上也相邻地排列起来,这样,
L CD 00 01 AB 00 1 1 01 11 10 1 0 1 0 0 0 11 10 1 0 1 1 1 0 1 1
例2 画出下式的卡诺图
L ( A, B, C , D) ( A B C D)( A B C D)( A B C D)
解
( A B C D)( A B C D) 1. 将逻辑函数化为最小项表达式
结合律:A + B + C = (A + B) + C
A · · = (A · · B C B) C
A 分配律: ( B + C ) = AB + AC
A + BC = ( A + B )( A + C )
2.3-2.5 逻辑代数的公式、定理、表示方法

0 1 2 3 4 5 6 7
m0 m1 m2 m3 m4 m5 m6 m7
④ 具有相邻性的两个最小项之和可以合 ① 在输入变量的任何取值下有一个最小 ③ 任意两个最小项的乘积为0。 ② 全体最小项和为1。 并成一项并消去一对因子。 项,而且仅有一个最小项的值为1。
二、最大项
在n变量逻辑函数中,若M为n个变量之 和,而且这n个变量均以原变量或反变 量的形式在M中出现一次,则称M为该 组变量的最大项。
?
思考: 2 个。 n个变量的最小项有多少个?
n
三变量(A、B、C)最小项的编号表:
相 邻
A' B ' C ' A' B ' C A' BC ' A' BC AB' C ' AB' C ABC' ABC
相 邻
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
证明: A A' B ( A A' )( A B)
A B
两个乘积项相加时,如果一项取反后是另一 项的因子,则此因子是多余的,可以消去。
(23) AB AB' A
当两个乘积项相加时,若它们分别包含B和B’ 两个因子而其他因子相同,则两项定能合并,且 可将B和B’消去。
(24) A( A B) A
小结: 掌握逻辑代数的基本公式和常用公式。
§ 2.4 逻辑代数的基本定理
2.4.1 代入定理
在任何一个包含A的逻辑等式中,若以另外
一个逻辑式代入式中A的位置,则等式依然成 立。
例如,已知 ( A B) A B (反演律),若用B+C代替 等式中的B,则可以得到适用于多变量的反演律, 即
数字电路知识点汇总(精华版)

数字电路知识点汇总(东南大学)第1章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与16进制数的转换二、基本逻辑门电路第2章逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。
一、逻辑代数的基本公式和常用公式1)常量与变量的关系A+0=A与A=⋅1AA+1=1与0⋅A0=A⋅=0AA+=1与A2)与普通代数相运算规律a.交换律:A+B=B+AA⋅⋅=ABBb.结合律:(A+B)+C=A+(B+C)⋅A⋅B⋅⋅=(C)C()ABc.分配律:)⋅=+A⋅B(CA⋅⋅BA C+A+=+)B⋅)(C)()CABA3)逻辑函数的特殊规律a.同一律:A+A+Ab.摩根定律:BBA+=A⋅A+,BBA⋅=b.关于否定的性质A=A二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:C⋅+A⊕⊕⋅BACB可令L=CB⊕则上式变成L⋅=C+AA⋅L⊕⊕=LA⊕BA三、逻辑函数的:——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式1)合并项法:利用A+1A=⋅B⋅,将二项合并为一项,合并时可消去=+A=A或ABA一个变量例如:L=B+BA=(C+)=ACACBBCA2)吸收法利用公式AA⋅可以是⋅+,消去多余的积项,根据代入规则BABA=任何一个复杂的逻辑式例如化简函数L=EAB++DAB解:先用摩根定理展开:AB=BA+再用吸收法L=E+AB+ADB=E B D A B A +++ =)()(E B B D A A +++ =)1()1(E B B D A A +++ =B A +3)消去法利用B A B A A +=+ 消去多余的因子 例如,化简函数L=ABC E B A B A B A +++ 解: L=ABC E B A B A B A +++ =)()(ABC B A E B A B A +++=)()(BC B A E B B A +++=))(())((C B B B A B B C B A +++++ =)()(C B A C B A +++ =AC B A C A B A +++ =C B A B A ++4)配项法利用公式C A B A BC C A B A ⋅+⋅=+⋅+⋅将某一项乘以(A A +),即乘以1,然后将其折成几项,再与其它项合并。
数电期末总结基础知识要点

数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。
逻辑代数基础

2、不属于单个变量上的反号应保留不变。
Y A( B C ) CD
Y ( A BC)(C D) Y (( AB C ) D) C
Y (((A B)C)D) C
三、 对偶定理
对任何一个逻辑表达式Y 作对偶变换,可得Y的 对偶式YD, YD称为Y的对偶式。 对偶变换: “﹒”→“﹢” 对偶定理:如果两个逻辑式相等, 则它们的对偶式也相等。
1 1
C
0
1
1 0
1 0
1 1 t 1 0 1 1
0
1 0 1
Y
1
0
1
三、逻辑函数的两种标准形式 最小项: 在n变量逻辑函数中,若m为包含n个因子的乘 积项,而且这n个变量都以原变量或反变量的形式在 m 中出现,且仅出现一次,则这个乘积项m称为该 组变量的最小项。 3个变量A、B、C可组成 8(23)个最小项:
“﹢”→“﹒”
“0” → “1”
“1” →“0”
利用对偶规则,可以使要证明及要记忆的公 式数目减少一半。
Y A( B C )
Y A B C
D
Y ( AB CD)
Y (( A B) (C D))
D
(2)式 (12)式
1 A A
0 A A
A( B C ) AB AC
§2.2
逻辑代数中的三种基本运算
一、与逻辑(与运算) 与逻辑:仅当决定事件(Y)发生的所有条件(A,
B,C,…)均满足时,事件(Y)才能发生。表达
式为: Y=ABC…
例:开关A,B串联控制灯泡Y
A A A A E E E E
电路图
BB B B YY Y Y
数字电路第二讲

& 例2.7 写出如右图所示逻辑 图的函数表达式。 ≥1 L 解:该逻辑图是由基本的 1 A “与”、“或”逻辑符号组成 & 的,可由输入至输出逐步写出 1 B 逻辑表达式:
A B C
& & & ≥1 L
L AB BC AC
(1-22)
5 从波形图写出逻辑式
由波形图列出真值表,再依据真值表写出逻辑式
(1-24)
1.最小项及逻辑函数的最小项之和的标准形式
1) 逻辑函数的最小项
在一个具有 n 变量的逻辑函数中,如果一个与
项包含了所有 n 个的变量,而且每个变量都是以原变 量或是反变量的形式作为一个因子仅出现一次,那么 这样的与项就称为该逻辑函数的一个最小项。对于 n 个变量的全部最小项共有 2n 个。
(1-23)
三、逻辑函数的两种标准形式
• 对于一个任意的逻辑函数通常有“积之和”与
“和之 积”两种基本表达形式,且其表达形式并不是唯 F AB ABC C 一的,如 是“积之和”的形 式,又称“与—或”表达式; • 而 F ( A B)(B C ) 则是“和之积”的形式, 又称“或—与”表达式。但一个逻辑函数的标准形 式却是唯一的,逻辑函数标准形式的唯一性给用图 表方法化简函数提供了方便,并且建立了逻辑函数 与真值表的对应关系。
为0。
(4)对于变量的任一组取值,全体最小项的和为1。
(1-30)
例1 将
L( A, B, C ) AB AC
化成最小项表达式
L( A, B, C ) AB(C C ) A( B B)C
ABC ABC ABC ABC
= m7+m6+m3+m5
m (7, 6, 3, 5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑代数的基本公式和常用公式
一.基本定义与运算
代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。
——这些都是大家耳熟能详的概念。
如
或;
当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。
逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。
在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。
在其诞生100多年后才发现其应用和价值。
其规定:
1.所有可能出现的数只有0和1两个。
2.基本运算只有“与”、“或”、“非”三种。
与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替)
00=0 01=0 10=0 11=1 或
00=0 01=0 10=0 11=1
或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替)
00=0 01=1 10=1 11=1 或
0+0=0 0+1=1 1+0=1 1+1=1
非运算(取反)定义为:
至此布尔代数宣告诞生。
二、基本公式
如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式:
A A=A A+A=A
A0=0 A+0=A
A1=A A+1=1
=+=
上述公式的证明可用穷举法。
如果对字母变量所有可能的取值,等式两边始终相等,该公
式即告成立。
现以=+为例进行证明。
对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:
由此可知:
=+
成立。
用上述方法读者很容易证明:
三、常用公式
1.
左边==右边
2.
左边==右边例题:将下列函数化为最简与或表达式。
(公式1:) = (公式2:)
()
练习题:
3.异或运算和同或运算(放到最小项卡诺图中讲)四、逻辑函数
1.定义:如果有若干个逻辑变量(如A、B、C、D)按与、或、非三种基本运算组合在一起,得到一个表达式L。
对逻辑变量的任意一组取值(如0000、0001、0010)L有唯一的值与之对应,则称L为逻辑函数。
逻辑变量A、B、C、D的逻辑函数记为:
L=f(A、B、C、D)
2.真值表:
在举重比赛中,通常设三名裁判:一名为主裁,另两名为副裁。
竞赛规则规定运动员每次试举必须获得主裁及至少一名副裁的认可,方算成功。
裁判员的态度只能同意和不同意两种;运动员的试举也只有成功与失败两种情况。
举重问题可用逻辑代数加以描述:
用A、B、C三个逻辑变量表示主副三裁判:取值1表示同意(成功),取值0表示不同意(失败—)。
举重运动员用L表示,取值1表示成功,0表示失败。
显然,L由A、B、C决定。
L为A、B、C 的逻辑函数。
列表如下:
该表称为逻辑函数L的真值表。
注意:真值表必须列出逻辑变量所有可能的取值所对应的函数值,不能有遗漏。
(二个变量有22=4,三个逻辑变量有23=8,四个变量有24=16种可能的取值……)
3.由真值表写出逻辑表达式:
从真值表可看出L取值为1只有三项,A、B、C的取值分别为101、110、和111三种情况L
才等于1。
、、三项与上述三种取值对应。
练习:1.已知函数Y=C(D+E)列出其真值表。
2.写出与下列真值表相对应的逻辑表达式并化简:
A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
例:三个开关控制一个灯的电路如下图所示。
试用逻辑代数(数学)对该电路进行描述。
解:如果规定开关合上用1表示,断开用0表示;灯亮用1表示,灯灭用0表示。
显然该问题是一个逻辑问题。
L是K1、K2、K3三变量的逻辑函数,所以可以直接写出
L= K1(K2+K3)
我们也可以列出真值表:
显然这就是举重裁判的控制电路。
并联的开关可用或运算,串联的开关可用与运算来描述。