辽阳市一中2018-2019学年高三上学期11月月考数学试卷含答案
岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°3. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)4. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣2 5. 双曲线=1(m ∈Z )的离心率为()A .B .2C .D .36. 已知x >1,则函数的最小值为()A .4B .3C .2D .17. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8. 分别是的中线,若,且与的夹角为,则=( ),AD BE ABC ∆1AD BE ==AD u u u r BE u u u r 120oAB AC ⋅u u u r u u u r (A ) ( B ) (C ) (D )134923899. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .①B .②C .③D .④11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为()A .6B .9C .12D .1812.以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.计算:×5﹣1= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .16.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是.17.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.(本小题满分12分)设曲线:在点处的切线与轴交与点,函数.C ln (0)y a x a =≠00(,ln )T x a x x 0((),0)A f x 2()1xg x x=+(1)求,并求函数在上的极值;0()f x ()f x (0,)+∞(2)设在区间上,方程的实数解为,的实数解为,比较与的大小.(0,1)()f x k =1x ()g x k =2x 1x 2x 20.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程. 21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.已知函数.()21ln ,2f x x ax x a R =-+∈(1)令,讨论的单调区间;()()()1g x f x ax =--()g x(2)若,正实数满足,证明.2a =-12,x x ()()12120f x f x x x ++=12x x +≥23.已知等差数列满足:=2,且,成等比数列。
山城区一中2018-2019学年高三上学期11月月考数学试卷含答案

山城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 把函数y=sin (2x﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x2. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.3. 已知α是三角形的一个内角,且,则这个三角形是( )A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形4. 对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心D .相交且直线过圆心5. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,56.(﹣6≤a ≤3)的最大值为( ) A .9B.C .3D.7. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣38. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( )A .38B .20C .10D .99. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .0个B .1个C .2个D .4个10.直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=011.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化12.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A .B .C .D .二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .15.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .16.在矩形ABCD 中,=(1,﹣3),,则实数k= .17.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.18.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .三、解答题19.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.20.已知f (x )=x 2﹣(a+b )x+3a .(1)若不等式f (x )≤0的解集为[1,3],求实数a ,b 的值; (2)若b=3,求不等式f (x )>0的解集.21.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围.22.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.23.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.124.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.山城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.①② 14. 6 . 15..16. 4 .17.2016-18. x+4y ﹣5=0 .三、解答题19.(1)10x y --=;(2)见解析;(3)见解析. 20. 21. 22. 23. 24.。
岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A .0B .0或C.或D .0或2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°3. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)4. 抛物线y=﹣8x 2的准线方程是( ) A .y=B .y=2C .x=D .y=﹣25.双曲线=1(m ∈Z )的离心率为( ) A.B .2C.D .36. 已知x >1,则函数的最小值为( )A .4B .3C .2D .17. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件8. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 899. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( ) A.B.C.D.10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .①B .②C .③D .④11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .1812.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.计算:×5﹣1= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .17.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.(本小题满分12分)设曲线C :ln (0)y a x a =≠在点00(,ln )T x a x 处的切线与x 轴交与点0((),0)A f x ,函数2()1xg x x=+. (1)求0()f x ,并求函数()f x 在(0,)+∞上的极值;(2)设在区间(0,1)上,方程()f x k =的实数解为1x ,()g x k =的实数解为2x ,比较1x 与2x 的大小.20.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.23.已知等差数列满足:=2,且,成等比数列。
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .102. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是()A .B .C .D .3. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .4. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3 B . C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.6. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为()A .B .C .D .9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .11.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为()A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i二、填空题13.【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为()2f x ax bx c =++,,a b c ,对任意,不等式恒成立,则的最大值为__________.()f x 'x R ∈()()f x f x ≥'222b a c+14.已知数列的前项和为,且满足,(其中,则.}{n a n n S 11a =-12n n a S +=*)n ∈N n S =15.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =16.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤-20.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}.(Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n﹣5r ,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 2.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据几何概型的概率公式进行求解. 4. 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA P OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积O 12PC ==可得,解得,故选B .34243316ππ=72PA =5. 【答案】C【解析】根据分层抽样的要求可知在社区抽取户数为.C 2492108180270360180108=⨯=++⨯6. 【答案】C7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与0a >0a =0a <2(2)y x =--函数图象相切时,,切点横坐标为,函数图象经过点时,,2y ax x =+916a =-832y ax x =+(2,0)12a =-观察图象可得,选C .12a ≤-8. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ; 当x ∈[0,2]时,f (x )=y=2x 2﹣e x ,∴f ′(x )=4x ﹣e x =0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D 9. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C . 10.【答案】D 【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D11.【答案】C【解析】解:f (x )=e x +x ﹣4,f (﹣1)=e ﹣1﹣1﹣4<0,f (0)=e 0+0﹣4<0,f (1)=e 1+1﹣4<0,f (2)=e 2+2﹣4>0,f (3)=e 3+3﹣4>0,∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C . 12.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题. 二、填空题13.【答案】2-【解析】试题分析:根据题意易得:,由得:在R()'2f x ax b =+()()'f x f x ≥()220ax b a x c b +-+-≥上恒成立,等价于:,可解得:,则:{ 0a >≤V ()22444b ac a a c a ≤-=-,令,,222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭1,(0)c t t a =->24422222t y t t t t ==≤=-++++故的最大值为.222b ac +2-考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用14.【答案】13n --【解析】∵,∴,12n n a S +=12n n n S S S +-=∴∴,.13n n S S +=11133n n n S S --=⋅=15.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.16.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查. 17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.18.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x ex x e x +='=++()0f x ∴'≥在上为增函数.()()21xf x x ea ∴=+-(),-∞+∞,,1a >Q ()010f a ∴=-<又,()1fa a =-=-,即,0,1>∴>Q 0f>由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f⋅<在上仅有一个零点。
文圣区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

文圣区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=﹣lnx 的零点个数为( ) A .0B .1C .2D .32. 若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .213. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 4. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( ) A .0B.C.D.5.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:16. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]7. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③9. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.10.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+11.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,2612.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.二、填空题13.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= . 14.1785与840的最大约数为 . 15.已知数列的前项和是, 则数列的通项__________16.已知函数,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是 .17.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .18.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题19.已知命题p :∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,命题q :f (x )=x 2﹣ax+1在区间上是增函数.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.20.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).21.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.22.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.23.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.24.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.文圣区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:函数f (x )=﹣lnx 的零点个数等价于 函数y=与函数y=lnx 图象交点的个数, 在同一坐标系中,作出它们的图象:由图象可知,函数图象有1个交点,即函数的零点个数为1 故选B2. 【答案】B 【解析】试题分析:()()311328f f -===,故选B 。
辽阳县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案

辽阳县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到2. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )A. B. C. D.3. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .134. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.2 B.C.D.35.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100米到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50米B.60米C.80米D.100米6.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.7.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.8.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()A.B.C.D.9.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.410.抛物线y=﹣8x2的准线方程是()A.y=B.y=2 C.x=D.y=﹣211.设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均为非零的常数,f(1988)=3,则f(2008)的值为()A.1 B.3 C.5 D.不确定12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.484二、填空题13.若点p(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为14.已知||=1,||=2,与的夹角为,那么|+||﹣|=.15.多面体的三视图如图所示,则该多面体体积为(单位cm).16.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是.17.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为.18.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.三、解答题19.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m的值;(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.20.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.21.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣,0),点P 为平面内一动点,以PA 为直径的圆与圆C 相切.(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.22.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一 次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指 数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强 幸福感弱 总计 留守儿童 非留守儿童 总计1111](2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥ 0.050 0.010 0k3.8416.63523.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C 的标准方程.(Ⅱ)已知P 、Q 是椭圆C 上的两点,若OP ⊥OQ ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP ⊥OQ 是否成立?并说明理由.24.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD 的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.辽阳县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.2.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.3.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.4.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.5.【答案】A【解析】解:如图所示,设水柱CD的高度为h.在Rt△ACD中,∵∠DAC=45°,∴AC=h.∵∠BAE=30°,∴∠CAB=60°.在Rt△BCD中,∠CBD=30°,∴BC=.在△ABC中,由余弦定理可得:BC2=AC2+AB2﹣2ACABcos60°.∴()2=h2+1002﹣,化为h2+50h﹣5000=0,解得h=50.故选:A.【点评】本题考查了直角三角形的边角关系、余弦定理,考查了推理能力和计算能力,属于中档题.6.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.7.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.8.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.9.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.10.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.11.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.12.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.二、填空题13.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=014.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====. 故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.15.【答案】cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P ﹣ABC .该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2,由几何体的正视图可得:AD+BD=AB=4cm ,故几何体的体积V=×8×4=cm 3,故答案为:cm 3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.16.【答案】3.【解析】解:对于①,向量是既有大小又有方向的量,=||•的模相同,但方向不一定相同,∴①是假命题;对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•,∴②是假命题;对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣,∴③是假命题;综上,上述命题中,假命题的个数是3.故答案为:3.【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.17.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.18.【答案】.【解析】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵f (x )=sin ωxcos ωx+sin 2ωx ﹣=ωx+(1﹣cos2ωx )﹣=2ωx ﹣2ωx=sin (2ωx ﹣),依题意得函数f (x )的周期为π且ω>0,∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f (x )=sin (2ωx ﹣),∴,∴.又∵x ∈[0,2π],∴.∴y=f (x )在x ∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.20.【答案】(1)详见解析;(2【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分 ∵AB 为圆O 的直径,∴AC BC ⊥,…………4分又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VCBC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得2d =12分 设BE 与平面BCD 所成角为θ,∵8BC ==,BE =,则sin d BE θ==.…………15分 21.【答案】【解析】(Ⅰ)证明:设点P (x ,y ),记线段PA 的中点为M ,则两圆的圆心距d=|OM|=|PA 1|=R ﹣|PA|, 所以,|PA1|+|PA|=4>2,故点P 的轨迹是以A ,A 1为焦点,以4为长轴的椭圆,所以,点P 的轨迹方程C 1为:=1. …(Ⅱ)解:设P (x1,y 1),Q (x 2,y 2),直线PQ 的方程为:x=my+,…代入=1消去x ,整理得:(m 2+4)y 2+2my ﹣1=0,则y 1+y 2=﹣,y 1y 2=﹣,…△POQ 面积S=|OA||y1﹣y 2|=2…令t=(0,则S=2≤1(当且仅当t=时取等号)所以,△POQ 面积的最大值1. …22.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)35. 【解析】∴240(67918)4 3.84115252416K ⨯⨯-⨯==>⨯⨯⨯. ∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,3b .“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,13(,)b b ,23(,)b b 共10个.事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b 共6个. 故63()105P A ==. 考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式. 23.【答案】【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.∴,2a=4,解得a=2,c=1.∴b2=a2﹣c2=3.∴椭圆C的标准方程为.(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x (k≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=为定值.当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.因此=为定值.(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.OP⊥OQ不一定成立.下面给出证明.证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=.化为(kk′)2=1,∴kk′=±1.∴OP⊥OQ或kk′=1.因此OP⊥OQ不一定成立.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.24.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.。
泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案

泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=()A .2或0B .0C .﹣2或0D .﹣2或22. 已知定义在上的奇函数)(x f ,满足,且在区间上是增函数,则 R (4)()f x f x +=-[0,2]A 、 B 、(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-C 、 D 、(11)(80)(25)f f f <<-(25)(80)(11)f f f -<<3. 已知变量x 与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是()A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.64. 执行如图所示的程序框图,则输出的S 等于()A .19B .42C .47D .895. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A .i ≤21B .i ≤11C .i ≥21D .i ≥116. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A7. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣28. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________可以为( )A .B .C. D .9. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)10.已知△ABC 中,a=1,b=,B=45°,则角A 等于()A .150°B .90°C .60°D .30°11.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .1312.已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q二、填空题13.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 14.不等式恒成立,则实数的值是__________.()2110ax a x +++≥15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.已知函数f (x )=cosxsinx ,给出下列四个结论:①若f (x 1)=﹣f (x 2),则x 1=﹣x 2;②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 . 17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .18.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题19.如图所示,两个全等的矩形和所在平面相交于,,,且ABCD ABEF AB M AC ∈N FB ∈,求证:平面.AM FN =//MN BCE20.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin ∠BAD 的值;(Ⅱ)求AC 边的长.21.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,(1)求证:直线BC 1∥平面D 1AC ;(2)求直线BC 1到平面D 1AC 的距离.22.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.23.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.24.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点.(1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.泰安市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D D A B D D B A A D 题号1112答案D D二、填空题13. (,+∞) .a14.115. 或a=1 .16. ③④ .17.18. .三、解答题19.证明见解析.20.21.22.23.(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,AB 2:±=x AB 2C )1,2(2--±t A ,故,…………9分1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得AB ,,,…………11分148221+-=+k km x x 144422221+-=k t m x x 141141222212+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2221141kk k m d ++=+=∴,综上,的面积为定值.…………15分12212-=⋅=∆t d AB S OAB OAB ∆122-t 24.。
辽阳县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

辽阳县实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图所示,函数y=|2x ﹣2|的图象是()A .B .C .D .2. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)3. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .4. △的内角,,所对的边分别为,,,已知,则ABC A B C a =b =6A π∠=( )111]B ∠=A .B .或C .或D .4π4π34π3π23π3π5. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且P 22221(0,0)x y a b a b-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率12PF PF ⊥2PF M NN 2PF 是( )A.B.2D.52【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.6. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定7. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点8. 记集合和集合表示的平面区域分别为Ω1,Ω2,{}22(,)1A x y x y =+£{}(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )A .B .C .D .12p1p2p13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.9. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0.其中正确结论的序号是( )A .①③B .①④C .②③D .②④10.方程表示的曲线是( )1x -=A .一个圆B . 两个半圆C .两个圆D .半圆11.已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是()A .B .C .D .012.如果对定义在上的函数,对任意,均有成立,则称R )(x f n m ≠0)()()()(>--+m nf n mf n nf m mf 函数为“函数”.给出下列函数:)(x f H ①;②;③;④()ln 25x f x =-34)(3++-=x x x f )cos (sin 222)(x x x x f --=.其中函数是“函数”的个数为( )⎩⎨⎧=≠=0,00|,|ln )(x x x x f H A .1B .2C .3D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×u u u r u u u r【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1 B. C. D.
3. 函数 f(x)=ax2+bx 与 f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是(
)
A.
B.
C.
D.
4. 已知点 P 是抛物线 y2=2x 上的一个动点,则点 P 到点 M(0,2)的距离与点 P 到该抛物线准线的距离之 和的最小值为( )
A.3
B.
C.
D.
第 1 页,共 7 页
5. 若 a 是 f(x)=sinx﹣xcosx 在 x∈(0,2π)的一个零点,则∀x∈(0,2π),下列不等式恒成立的是( )
A.
B.cosa≥
C. ≤a≤2πD.a﹣cosa≥x﹣cosx 6. 点 P 是棱长为 1 的正方体 ABCD﹣A1B1C1D1 的底面 A1B1C1D1 上一点,则 )
23.解:(I)由已知可得 AM⊥CD,又 M 为 CD 的中点,
∴
; 3分
(II)在平面 ABED 内,过 AD 的中点 O 作 AD 的垂线 OF,交 BE 于 F 点,
以 OA 为 x 轴,OF 为 y 轴,OC 为 z 轴建立坐标系,
可得
,
∴
,
,5 分
设
为面 BCE 的法向量,由
可得 =(1,2,﹣ ),
A.[﹣1,﹣ ]
B.[﹣ ,﹣ ]
C.[﹣1,0]
7. 三个数 60.5,0.56,log0.56 的大小顺序为(
)
A.log0.56<0.56<60.5 B.log0.56<60.5<0.56
C.0.56<60.5<log0.56 D.0.56<log0.56<60.5
D.[﹣ ,0]
的取值范围是(
D.0 或
二、填空题
13.若函数 f (x) 的定义域为1, 2 ,则函数 f (3 2x) 的定义域是
.
第 2 页,共 7 页
14.已知数列{an}中,a1=1,an+1=an+2n,则数列的通项 an= .
15.已知函数 f(x)=xm 过点(2, ),则 m= .
16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
第 4 页,共 7 页
24.设函数 f(x)=mx2﹣mx﹣1. (1)若对一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<﹣m+5 恒成立,求 m 的取值范围.
第 5 页,共 7 页
辽阳市一中 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
床;②当盈利额达到最大值时,以 12 万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
20.在直角坐标系中,已知圆 C 的圆心坐标为(2,0),半径为 ,以坐标原点为极点,x 轴的正半轴为极
轴建立极坐标系.,直线 l 的参数方程为:
(t 为参数).
(1)求圆 C 和直线 l 的极坐标方程; (2)点 P 的极坐标为(1, ),直线 l 与圆 C 相交于 A,B,求|PA|+|PB|的值.
第二年开始,每年的维修、保养修费用比上一年增加 4 万元,该机床使用后,每年的总收入为 50 万元,设使
用 x 年后数控机床的盈利总额 y 元.
(1)写出 y 与 x 之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以 30 万元价格处理该机
题号
1
2
3
4
5
6
7
8
9
10
答案
B
C
D
B
A
D
A
C
D
A
题号
11
12
答案
D
D
二、填空题
13.
1 2
,
2
14. 2n﹣1 .
15. ﹣1 .
16. . 17. ( ,5) .
18. x 12 y2 2 或 x 12 y2 2
三、解答题
19. 20.
21.
22.
A.①② B.②③ C.③ D.③④
12.已知函数 f(x)是定义在 R 上的偶函数,且对任意的 x∈R,都有 f(x+2)=f(x).当 0≤x≤1 时,f(x
)=x2.若直线 y=x+a 与函数 y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数 a 的值是(
)
A.0 B.0 或
C. 或
班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
17.已知 x、y 之间的一组数据如下:
x
0
1
2
3
y
8
2
6
4
则线性回归方程
所表示的直线必经过点 .
18.抛物线 x2 4 y 的焦点为 F ,经过其准线与 y 轴的交点 Q 的直线与抛物线切于点 P ,则 FPQ
外接圆的标准方程为________.
三、解答题
19.某机床厂今年初用 98 万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用 12 万元,从
8. 在区域
内任意取一点 P(x,y),则 x2+y2<1 的概率是(
)
A.0
B.
C.
D.
9. 已知全集 I={1,2,3,4,5,6,7,8},集合 M={3,4,5},集合 N={1,3,6},则集合{2,7,8}是
()
A.M∪N B.M∩NC.∁IM∪∁IN D.∁IM∩∁IN
10.过点(0,﹣2)的直线 l 与圆 x2+y2=1 有公共点,则直线 l 的倾斜角的取值范围是(
21.已知 y=f(x)是 R 上的偶函数,x≥0 时,f(x)=x2﹣2x
第 3 页,共 7 页
(1)当 x<0 时,求 f(x)的解析式. (2)作出函数 f(x)的图象,并指出其单调区间.
22.(本小题满分 10 分)选修 4-1:几何证明选讲
如图,点 A, B, D, E 在 e O 上, ED 、 AB 的延长线交于点 C , AD 、 BE 交于点 F , AE EB BC .
辽阳市一中 2018-2019 学年高三上学期 11 月月考数学试卷含答案
一、选择题
1. 设集合 M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合 M∩N 中元素的
个数为( )
A.1
B.2
C.3
D.4
2. 某程序框图如图所示,则该程序运行后输出的 S 的值为( )
第 6 页,共 7 页
∴cos< , >=
= ,∴面 DCE 与面 BCE 夹角的余弦值为
4分
24.
第 7 页,共 7 页
)
A.
B.
C.
D.
11.如图,四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,D 为四面体 OABC 外一点.给
出下列命题. ①不存在点 D,使四面体 ABCD 有三个面是直角三角形 ②不存在点 D,使四面体 ABCD 是正三棱锥 ③存在点 D,使 CD 与 AB 垂直并且相等 ④存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上 其中真命题的序号是( )
(1)证明: D»E B»D ; (2)若 DE 2 , AD 4 ,求 DF 的长.
E D
FO
C
B
A
23.(本题满分 12 分)如图 1 在直角三角形 ABC 中,∠A=90°,AB=2,AC=4,D,E 分别是 AC,BC 边上 的中点,M 为 CD 的中点,现将△CDE 沿 DE 折起,使点 A 在平面 CDE 内的射影恰好为 M. (I)求 AM 的长; (Ⅱ)求面 DCE 与面 BCE 夹角的余弦值.