线性规划建模求解
第一章 线性规划

例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
线性规划问题的建模与求解思路

线性规划问题的建模与求解思路线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在工程、经济、运筹学等领域具有广泛的应用。
本文将探讨线性规划问题的建模与求解思路,介绍一些常用的方法和技巧。
一、问题建模在进行线性规划问题的建模时,首先需要明确问题的目标和约束条件。
目标通常是最大化或最小化一个线性函数,而约束条件则是一系列线性等式或不等式。
以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10万元,每单位产品B的利润为8万元。
公司希望最大化总利润,同时满足以下约束条件:1. 产品A和B的生产总量不超过1000单位;2. 产品A的生产量不低于200单位;3. 产品B的生产量不低于300单位。
根据以上信息,我们可以进行如下的建模:设产品A的生产量为x,产品B的生产量为y,则目标函数为最大化利润:Maximize Z = 10x + 8y同时,需要满足以下约束条件:x + y ≤ 1000x ≥ 200y ≥ 300二、求解思路一般来说,线性规划问题的求解可以采用图形法、单纯形法、内点法等不同的方法。
下面将介绍其中两种常用的方法:图形法和单纯形法。
1. 图形法图形法适用于二维线性规划问题,通过绘制目标函数和约束条件的图形来求解最优解。
在上述例子中,我们可以将目标函数和约束条件绘制在坐标系中,找到目标函数与约束条件的交点,进而确定最优解。
2. 单纯形法单纯形法适用于高维线性规划问题,通过迭代计算来逐步接近最优解。
该方法的核心思想是从一个可行解开始,通过不断调整变量的取值来提高目标函数的值,直到找到最优解。
单纯形法的具体步骤如下:(1)将线性规划问题转化为标准形式,即将不等式约束转化为等式约束;(2)构建初始单纯形表,并选择一个初始基本可行解;(3)计算单位利润向量,并判断是否达到最优解;(4)选择一个入基变量和出基变量,并进行迭代计算,直到找到最优解。
三、技巧和注意事项在解决线性规划问题时,有一些常用的技巧和注意事项可以帮助我们更高效地求解问题。
线性规划建模

线性规划建模线性规划是一种数学规划方法,用于求解线性约束条件下的最优解。
线性规划的建模包括确定决策变量、目标函数及约束条件。
首先,需要确定决策变量。
决策变量是问题中需要进行决策的变量。
对于线性规划问题,决策变量是连续变量。
例如,假设我们需要确定生产两种产品的数量,可以将产品1的数量设为x1,产品2的数量设为x2。
其次,需要确定目标函数。
目标函数是问题的最终目标,需要进行最大化或最小化的量。
在线性规划中,目标函数是线性函数。
例如,假设我们希望最大化利润,可以将目标函数设为最大化:目标函数: Maximize 5x1 + 4x2。
最后,需要确定约束条件。
约束条件是问题中需要满足的限制条件。
在线性规划中,约束条件可以是线性函数形式。
例如,假设我们有以下约束条件:x1 ≥ 0, x2 ≥ 0,x1 + x2 ≤ 100,2x1 + 3x2 ≤ 200。
将上述决策变量、目标函数和约束条件整合在一起,即可建立线性规划模型。
根据上述例子,线性规划模型可以表示为:决策变量:x1, x2目标函数:Maximize 5x1 + 4x2约束条件:x1 ≥ 0,x2 ≥ 0,x1 + x2 ≤ 100,2x1 + 3x2 ≤ 200。
最后,利用线性规划求解方法,如单纯形法或内点法,对建立的模型进行求解,得到问题的最优解。
总之,线性规划建模是一种将实际问题转化为数学模型的过程。
通过确定决策变量、目标函数和约束条件,可以建立线性规划模型,进而利用数学求解方法得到最优解。
线性规划建模的关键在于正确地把握问题的特点和要求,将实际问题转化为适合线性规划求解的数学模型。
线性规划法

线性规划法线性规划法(Linear Programming)是一种数学模型和优化方法,用于解决线性约束条件下的最优决策问题。
线性规划法被广泛应用于经济、管理、工程等领域中的决策问题,可以帮助决策者在有限的资源条件下,实现最优的目标。
线性规划法的核心思想是将问题转化为数学模型,即线性规划模型。
该模型包括目标函数、决策变量和约束条件三个要素。
目标函数是决策问题的数学表达,用于衡量达到最优目标的程度。
通常,目标函数是一个线性函数,可用代数式表示。
决策变量是决策问题中可以被决策者调整的变量,根据实际情况选取。
决策变量的取值会直接影响目标函数的结果。
约束条件是决策问题中各种限制条件,例如资源约束、技术约束等。
约束条件可以是等式约束或不等式约束,也可以是单个约束或多个约束。
线性规划法的基本思路是通过优化算法,对线性规划模型进行求解,找到使目标函数取得最大(或最小)值的决策变量取值。
常见的线性规划求解算法有单纯形法、对偶单纯形法、内点法等。
在应用线性规划法解决实际问题时,需要经过以下步骤:1. 建立数学模型:根据实际问题的特点和需求,确定目标函数和约束条件,制定出线性规划模型。
2. 求解线性规划模型:根据所选的求解算法,对线性规划模型进行求解。
通常,求解算法会根据目标函数和约束条件的特点,进行适当的优化,减少计算量。
3. 分析和解释结果:对求解结果进行分析和解释,评估结果的合理性和可行性。
如果结果满足实际需求,则可以进行下一步决策;如果不满足,则需要根据实际情况,对模型进行优化或修改。
线性规划法的优点在于能够在有限的资源条件下,寻找到最优的决策解。
它可以帮助决策者进行定量分析和优化决策,提高决策的效果和效率。
同时,线性规划法的应用范围广泛,可以应用于各种实际问题中。
然而,线性规划法也存在一些局限性。
首先,线性规划法只适用于具有线性目标函数和线性约束条件的问题,对于非线性问题不适用;其次,线性规划法只能得到局部最优解,无法保证找到全局最优解;此外,线性规划法会受到数据误差、模型假设等因素的影响,需要进行敏感性分析和可行性分析。
线性规划的数学模型

线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。
本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。
线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。
线性规划的主要特点是目标函数和约束条件均为线性关系。
线性规划在工程、经济、物流、运输等领域都有广泛的应用。
它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。
线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。
这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。
通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。
希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。
本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。
决策变量在构建线性规划模型时,首先需要确定决策变量。
决策变量是用来表示决策问题中需要决定的未知量。
它们的取值将影响函数的输出结果。
在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。
目标函数确定决策变量后,下一步是确定目标函数。
目标函数是线性规划模型中需要最大化或最小化的函数。
它通常与问题的目标密切相关,并且能够量化问题的目标。
在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。
约束条件除了目标函数,线性规划模型还包括一系列约束条件。
约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。
约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。
在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。
实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。
这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。
优化模型一:线性规划模型数学建模课件

混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、对偶规划问题
问题提出 某玻璃制品公司生产高质量的玻璃制 品,包括具有手艺和最精细工艺特性 的床和玻璃门。公司有三个工厂共同 生产窗和玻璃门,其中 工厂1:生产铝框和硬制件 工厂2:生产木框 工厂3:生产玻璃和组装窗和门
已知相关数据如下:
生产每个单位 所需时间(小时) 门 1 2 3 单位利润 (元) 1 0 3 300 窗 0 2 2 500 4 12 18
投入 DMU
产出
职员 营业 储蓄 中间 贷款 数 面积 存款 业务 140 1800 200 1600 130 1000 350 1000 120 135 800 900 450 1300 420 1500
分理处1 15 分理处2 20 分理处3 21 分理处4 20
试对四个分理处进行DEA有效性分析,包 括规模有效分析即C2R,和技术有效分析即 C2GS2。
现在他需要确定将哪一项任务指派给哪一个 人。相关数据如下: 任务 人员 张三 李四 王五 宋六 1 35 47 39 32 2 41 45 56 51 3 27 32 36 25 4 40 51 43 46 工资 /小时 14 12 13 15
五、线性规划应用之一 ——DEA分析
数据包络分析是一种基于线性规划,用 于评价同类型组织绩效相对有效性的工 具手段。这类组织例如学校、医院、银 行分支机构、超市的各营业部等。注意: 各组织具有相同的投入、产出项目,对 应单位也应相同。 有某个银行的4个分理处数据如下:
工厂
每周可用时 间(小时)
任务: 任务: (1)列出问题数学模型,求取总利润最 大时的两种产品产量,并练习制作命令 按钮; (2)当门和窗的单位利润分别在什么范 围内变动时,公司的最优生产计划不变? (3)如果改变一个工厂可用于生产新产 品的生产时间,结果将如何? (4)学会看灵敏度分析报告。
数学模型为: Max z=300D+500W 2W ≤12 s.t. 3D+2W ≤18 其中,D、W分别表示生产的门和窗 的个数。
运算结果报告解释
列出目标单元格和可变单元格以及它们 的初始值、最终结果、约束条件和有关 约束条件的信息。 其中,目标单元格和可变单元格是用其 行和列命名的,约束单元格是用其列命 名的。初值和终值分别指单元格在本次 求解前的数值和求解后的数值。
敏感性报告解释
提供关于求解结果对“目标单元格”编 辑框中所指定的公式的微小变化,以及 约束条件的微小变化的敏感性信息。含 有整数约束条件的模型不能生成本报告。 对于非线性模型,此报告提供缩减梯度 和拉格朗日乘数;对于线性模型,此报 告中将包含递减成本、影子价格(机会 成本)、目标系数(允许有小量增减额) 以及右侧约束区域。
问题分析与建模 本问题是一个典型的线性规划问题。 食品公司的最终目标是利润最大化,在 本题中用单位贡献表示单位利润。 有目标函数为: Max z=130TV+60M+50SS 其中,TV、M、SS分别表示电视上的 广告时段数、杂志上的广告数目和星期 天增刊上的广告数目。
约束条件有三个: (1)广告总费用≤400万; (2)计划总成本≤100万; (3)总的电视广告时段数目≤5。 表示为: 300TV +150M +100SS ≤4000 90 TV +30 M +40 SS≤1000 TV ≤5
现在要解决的问题是如何确定各种广告活动的 水平(levels)以取得最有效的广告组合 (advertising mix)。相关数据如下:
每种活动的单位资源使用量 资源 电视 广告 广告 预算 计划 预算 电视 时段 单位 贡献 300,000 90,000 1 130 杂志 广告 150,000 30,000 0 60 星期天 增刊广告 100,000 40,000 0 50 可获得 的资源数 400万 100万 5
D1 160 140 190 2
D2 130 130 200 5
D3 220 190 230 4
D4 170 150 1.5
供量 5 6 5
数学模型为: Min z= 160x11+130x12+220x13+170x14 + 140x21+130x22+190x23+150x24 无穷大 + 190x31+200x32+230x33+Mx34 x11+x12+x13+x14 ≤5 x21+x22+x23+x24 ≤6 x31+x32+x33+x34 ≤1.5 x11 +x21 +x31 =2 x12 xij≥0 +x32 =5 x13 +x23 +x33 =4 +x24 +x34=1.5 x14 i=1,2,3;j=1,2,3,4 +x22
1)可变单元格一栏:当门和窗的单位利 润分别在(300-300,300+450)和(500300,+∞)之间变动时,最优解保持不 变。 注意: 注意:①最优解不变,但最优目标函数 值可能发生变化;②分别变动而不是同 时变动,即固定其中一个,另一个可在 适当范围内变动。
2)约束单元格一栏:阴影价格即运筹学中的 影子价格,它是指资源每增加一个单位时目 标函数的增量,即: 工厂1每周可用时间在[4-2,+∞]之间发生变 化时,影子价格恒为0,对目标函数值无影响; 工厂2每周可用时间在[12-6,12+6]之间发生 变化时,影子价格恒为150,即每增加一个单 位可用时间,目标函数值就增加150, 工厂3每周可用时间在[18-6,18+6]之间发生 变化时,影子价格恒为100,即每增加一个单 位可用时间,目标函数值就增加100。 注意: 注意:此处也是分别变动,而不是同时变动。
三、运输问题
(一)供需平衡
某食品公司有三个罐头加工厂A1、A2、 A3,四个仓库B1、B2、B3、B4。已知 相关数据如下:
仓库 加工厂 A1 A2 A3 分配量
B1 464 352 995 80
B2 513 416 682 65
B3 654 690 388 70
B4 867 791 685 85
产量 75 125 100
任务: 任务: 求总的运输费用最小的运输策略。建模 求解。
数学模型为:
Min z= 464x11+513x12+654x13+867x14 + 352x21+416x22+690x23+791x24 + 995x31+416x32+690x33+791x34 x11+x12+x13+x14 =75 x21+x22+x23+x24 =125 x31+x32+x33+x34 =100 x11 +x21 +x31 =80 +x22 +x32 =65 x12 x13 +x23 +x33 =70 x14 +x24 +x34 =85 xij≥0 i=1,2,3;j=1,2,3,4
θ=1,说明为弱DEA有效(C2R); θ=1,且松弛变量或人工变量均为0,说 明为DEA有效(C2R); DEA有效性分析(C2R)反映的是规模 有效。 练习: 分理处2、3、4的规模有效性分析。借助 运算结果报告。
(二)技术有效性分析
数学模型(D),以对DMU2为例。 Min θ 15 λ1 +20 λ2 +21 λ3 +20 λ4<=20 θ 140 λ1 +130 λ2 +120 λ3 +135 λ4<=130 θ 1800 λ1+1000 λ2 +800 λ3 +900 λ4 >=1000 200 λ1 +350 λ2 +450 λ3 +420 λ4>=350 1600 λ1+1000 λ2+1300 λ3+1500 λ4>=1000 λ1 + λ2 +λ3 + λ4=1 λi>=0, i=1,2,3,4;θ >=0
(三)转运或转载问题
零售商 仓库 工厂 2 1
600
2 3 6 4 4 4 3 6 6 3
5
200
3 3
6
150
2
400 1
7
350
8
300
数学模型格式
Min
ij 运出弧线
∑
所有弧线
ij 运入弧线
c ij x ij
≤ si 起始点i
ij 运出弧线 ij 运入弧线
பைடு நூலகம்
∑x − ∑x ∑x − ∑x ∑x
线性规划
——建模与求解 建模与求解
目录
线性规划问题 对偶规划问题 运输问题 指派问题 线性规划应用之一:DEA分析 线性规划应用值二:零和对策混合策略 附录
一、线性规划问题
问题提出 某食品公司雇佣了一家广告公司来帮助设计 全国性的促销活动,计划最多支付广告公司 服务酬金100万元,广告费用400万元。根 100 400 据该食品公司产品状况,广告公司确定了最 有效的三种广告媒体。 媒体1:星期六上午儿童节目的电视广告 媒体2:食品与家庭导向的杂志广告 媒体3:主要报纸星期天增刊上的广告
极限值报告解释
列出目标单元格和可变单元格以及它们的数值、 上下限和目标值。含有整数约束条件的模型不 能生成本报告。其中,下限是在满足约束条件 和保持其它可变单元格数值不变的情况下,某 个可变单元格可以取到的最小值。上限是在这 种情况下可以取到的最大值。
延伸
下面对目标式系数同时变动以及约束限制值同 时变动的情况分别作以延伸。 (1)目标式系数同时变动的百分之百法则 ( The 100 percent rule of simultaneous changes in objective function coefficients): 如果目标函数系数同时变动,计算出每一系 数变动量占该系数同方向可容许变动范围的 百分比,而后将各个系数的变动百分比相加 ,如果所得的和不超过百分之一百,最优解 不会改变;如果超过百分之一百,则不能确 定最优解是否改变。