一类时滞Logistic方程周期正解的存在性
一致分数阶时滞微分方程边值问题解的存在性与唯一性

第61卷 第5期吉林大学学报(理学版)V o l .61 N o .52023年9月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )S e p2023d o i :10.13413/j .c n k i .jd x b l x b .2023011一致分数阶时滞微分方程边值问题解的存在性与唯一性张 敏,周文学,黎文博(兰州交通大学数理学院,兰州730070)摘要:用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理研究一致分数阶时滞微分方程边值问题D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0解的存在性与唯一性.在非线性项满足增长性条件和L i p s c h i t z 条件下,分别得到了该边值问题解的存在性与唯一性结果,并举例说明所得结果的适用性.关键词:一致分数阶导数;时滞;边值问题;L e r a y -S c h a u d e r 度理论;B a n a c h 压缩映射原理中图分类号:O 175.8 文献标志码:A 文章编号:1671-5489(2023)05-1007-07E x i s t e n c e a n dU n i q u e n e s s o f S o l u t i o n s f o rB o u n d a r y Va l u eP r ob l e m s o fC o n f o r m a b l eF r ac t i o n a lD e l a y D i f f e r e n t i a l E qu a t i o n s Z H A N G M i n ,Z HO U W e n x u e ,L IW e n b o(S c h o o l o f M a t h e m a t i c s a n dP h y s i c s ,L a n z h o u J i a o t o n g U n i v e r s i t y ,L a n z h o u 730070,C h i n a )A b s t r a c t :B y u s i n g L e r a y -S c h a u d e rd e g r e et h e o r y a n d B a n a c h c o n t r a c t i o n m a p p i n g p r i n c i p l e ,w e s t u d i e dt h e e x i s t e n c e a n d u n i q u e n e s s o fs o l u t i o n sf o r b o u n d a r y va l u e p r ob l e m s o fc o n f o r m a b l e f r a c t i o n a lde l a y d if f e r e n t i a l e qu a t i o n s D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=0ìîíïïïï,w h e n t h en o n l i n e a r t e r ms a t i s f i e d t h e g r o w t hc o n d i t i o na n d t h eL i ps c h i t z c o n d i t i o n ,w eo b t a i n e d t h e r e s u l t s o f e x i s t e n c e a n du n i q u e n e s s o f s o l u t i o n f o r t h eb o u n d a r y v a l u e p r o b l e mr e s p e c t i v e l y ,a n d g a v e a ne x a m p l e t o i l l u s t r a t e t h e a p p l i c a b i l i t y of t h e o b t a i n e d r e s u l t s .K e y w o r d s :c o n f o r m a b l e f r a c t i o n a l d e r i v a t i v e ;d e l a y ;b o u n d a r y v a l u e p r o b l e m ;L e r a y -S c h a u d e r d e g r e e t h e o r y ;B a n a c hc o n t r a c t i o nm a p p i n gp r i n c i pl e 收稿日期:2023-01-04. 网络首发日期:2023-07-13.第一作者简介:张 敏(1998 ),女,汉族,硕士研究生,从事分数阶微分方程的研究,E -m a i l :m z h a n g 20222022@126.c o m.通信作者简介:周文学(1976 ),男,汉族,博士,教授,从事非线性分析问题的研究,E -m a i l :w x z h o u 2006@126.c o m.基金项目:国家自然科学基金(批准号:11961039;11801243)和兰州交通大学校青年科学基金(批准号:2017012).网络首发地址:h t t ps ://k n s .c n k i .n e t /k c m s 2/d e t a i l /22.1340.o .20230713.1056.001.h t m l .Copyright ©博看网. All Rights Reserved.0 引 言分数阶微分方程的边值问题是分数阶微分系统理论的重要课题.目前,对分数阶微分方程边值问题的研究已取得了丰富成果,其中最主要的是基于R i e m a n n -L i o u v i l l e 和C a p u t o 分数阶导数的定义[1-9].但这两种导数均不满足经典链式法则,并且这两种导数的某些性质使得分数阶导数的应用很困难.因此,K h a l i l 等[10]提出了一种新的分数阶导数和分数阶积分的定义,称为一致分数阶导数和积分.这种新的分数阶导数的定义可满足经典的分数阶导数不能满足的一些性质,如乘积法则㊁商法则㊁链式法则㊁罗尔定理和中值定理等,并且其在生物物理学㊁电容理论㊁控制理论和实验数据拟合等领域应用广泛[11-13].但对带有时滞的分数阶微分方程边值问题的研究目前报道较少[14-16].Y a n g 等[17]利用S c h a e f e r 不动点定理和K r a s n o s e l s k i i s 不动点定理研究了一类非线性分数阶微分方程边值问题cD α0+u (t )=f (t ,u (t ),u ᶄ(t )),u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)={正解的存在性,其中0<t <1,1<αɤ2,f :[0,1]ˑ[0,+ɕ)ˑℝң[0,+ɕ)是连续函数,c D α0+是α阶C a p u t o 分数阶导数.X u [18]利用B a n a c h 压缩映射原理㊁L e r a y -S c h a u d e r 度理论和K r a s n o s e l s k i i s 不动点定理研究了一类分数阶微分方程边值问题cD q x (t )=f (t ,x (t )), t ɪ[0,1],x (1)=μʏ1x (s )d s , x ᶄ(0)+x ᶄ(1)={解的存在唯一性,其中1<q <2,f :[0,1]ˑX ңX 是连续函数,c D q 是q 阶C a p u t o 分数阶导数.基于上述研究,本文利用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理考虑如下一类一致分数阶时滞微分方程边值问题:D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0(1)解的存在性与唯一性,其中1<βɤ2,τ>0,f :[0,1]ˑℝңℝ是连续函数,D β0+是阶数为β的一致分数阶导数.1 预备知识定义1[10] 假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶导数定义为D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε, t >0,(2)其中β是大于等于β的最小整数.式(2)右端极限存在,此时称函数f 是β阶可微的.特别地,当βɪ(1,2]时,D βf (t )=l i m εң0f ᶄ(t +εt 2-β)-f ᶄ(t )ε, t >0.(3) 注1 如果函数f 在(0,b )(b >0)上是β阶可微的,并且l i m t ң0+D βf (t )存在,则D βf (0)=l i m t ң0+D βf (t).注2 由一致分数阶导数定义可知,当β=1时,一致分数阶导数定义即为传统的一阶导数定义.引理1[10] 当βɪ(n ,n +1]并且f 在t >0处n +1阶可微时,有D βf (t )=t β⌉-βf(β⌉)(t ).(4) 证明:令k =εt β⌉-β,则ε=t β-β⌉k ,因此由定义1可得D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε=l i m k ң0t β⌉-βf (β⌉-1)(t +k )-f (β⌉-1)(t )k=t β⌉-βf (β⌉)(t ). 定义2[19]假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶积分定义为8001 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.I βf (t )=1n!ʏt 0(t -s )n s β-n -1f (s )d s .(5)特别地,当βɪ(1,2]时,I βf (t )=ʏt 0(t -s )s β-2f (s )d s .引理2[19] 假设函数f :[0,ɕ)ңℝ连续,并且βɪ(n ,n +1],则有D βI βf (t )=f (t ).(6) 引理3[19]假设f :[0,ɕ)ңℝ是β阶可微函数,并且βɪ(n ,n +1],则有I βD βf (t )=f (t )+a 0+a 1t + +a nt n ,(7)其中a i ɪℝ,i =0,1,2, ,n .引理4 设函数f :[0,1]ˑℝңℝ是连续的,u (t )是边值问题(1)的解,则u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],(8)其中格林函数G (t ,s)为G (t ,s )=(1-s )(2-t )sβ-2,0ɤs ɤt ɤ1,(1-t )(2-s )sβ-2,0ɤt ɤs ɤ1{.(9) 证明:由引理3知,有u (t )=I β0+f (t ,u (t -τ))-a 0-a 1t =ʏt 0(t -s )s β-2f (s ,u (s -τ))d s -a 0-a 1t ,(10)从而u ᶄ(t )=ʏts β-2f (s ,u (s -τ))d s -a 1.根据u (0)+u ᶄ(0)=0,有a 0+a 1=0;(11)根据u (1)+u ᶄ(1)=0,有a 0+2a 1-ʏ10(2-s )s β-2f (s ,u (s -τ))d s =0.(12)结合式(11),(12)可得a 0=-ʏ10(2-s )s β-2f (s ,u (s -τ))d s , a 1=ʏ10(2-s )s β-2f (s ,u (s -τ))d s .(13)将式(13)代入式(10)可得u (t )=ʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(2-s )s β-2f (s ,u (s -τ))d s -t ʏ1(2-s )s β-2f (s ,u (s -τ))d s =ʏt 0(1-s )(2-t )s β-2f (s ,u (s -τ))d s +ʏ1t(1-t )(2-s )sβ-2f (s ,u (s -τ))d s =ʏ10G (t ,s )f (s ,u (s -τ))d s . 引理5(A r z e l a -A s c o l i 定理)[20] 集合P ⊂C ([a ,b ])列紧的充分必要条件为:1)集合P 有界,即存在常数ψ,使得对∀u ɪP ,有u (t )ɤψ(∀t ɪ[a ,b ]);2)集合P 等度连续,即对∀ε>0,始终存在σ=σ(ε)>0,使得对于∀t 1,t 2ɪ[a ,b ],只要t 1-t 2<σ,即有u (t 1)-u (t 2)<ε(∀u ɪP ).2 主要结果设A 为C ([-τ,1],ℝ)按范数 u =m a x t ɪ[-τ,1]u (t )构成的B a n a c h 空间,在A 上定义一个算子Q ,Q u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0]{. 假设条件:(H 1)函数f ɪC ([0,1]ˑℝ,ℝ),并且φɪC ([-τ,0],ℝ);9001 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.(H 2)存在常数α,B >0,使得∀(t ,u )ɪ[0,1]ˑℝ,有f (t ,u )ɤαu +B ;(H 3)存在函数η(t )ɪL 1/2([0,1],ℝ+),使得∀t ɪ[0,1],当任取u ,v ɪℝ时,有f (t ,u )-f (t ,v )ɤη(t )u -v ,其中 η =ʏ10η2(s )d ()s 1/2.为方便,引入记号:Λ1=β+2β(β-1),Λ2=1(β-1)(2β-1)(2β-3),Λ3=2β2-β+1(β-1)(2β-1)(2β-3),32<βɤ2.定理1 如果条件(H 1)和(H 2)成立,并且αɪ(0,Λ-11),则边值问题(1)至少存在一个解.证明:由函数G (t ,s ),f (s ,u (s -τ))的连续性可知算子Q 是连续的,并且易证Q (A )⊂A .设P 是A 中的一个有界集,则存在常数M >0,使得对任意的u ɪP ,有 u ɤM .下面利用L e r a y -S c h a u d e r 度理论证明边值问题(1)正解的存在性,分以下3个步骤.1)证明算子Q (P )是一致有界的.对任意的u ɪP ,有Q u (t)=ʏ10G (t ,s )f (s ,u (s -τ))d s ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t ,s )d s ɤ(αM +B )ʏ10(2-s )(1-t )s β-2d s +ʏt(t -s )s β-2d []s =(αM +B )β+1β(β-1)(1-t )+1β(β-1)㊃t éëêêùûúúβɤ(αM +B )β+1β(β-1)+1β(β-1éëêêùûúú)=(αM +B )Λ1,因此,算子Q (P )是一致有界的.2)证明算子Q (P )是等度连续的.对任意的u ɪP ,t 1,t 2ɪ[-τ,1]且t 1<t 2:①当0ɤt 1<t 2ɤ1时,有Q u (t 2)-Q u (t 1)=ʏ10G (t 2,s )f (s ,u (s -τ))d s -ʏ1G (t 1,s )f (s ,u (s -τ))d s ɤʏ10G (t 2,s )-G (t 1,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t 2,s )-G (t 1,s )d s ɤ (αM +B )ʏt 10G (t 2,s )-G (t 1,s )d s +ʏt 2t 1G (t 2,s )-G (t 1,s )d s +ʏ1t 2G (t 2,s )-G (t 1,s )d []s = (αM +B )ʏt 10{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+[(t 2-s )s β-2-(t 1-s )s β-2]}d s + (αM +B )ʏt 2t 1{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+(t 2-s )s β-2}d s + (αM +B )ʏ1t 2[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]d s =(αM +B )ʏt 10(t 1-t 2)(2-s )s β-2d s +ʏt 10(t 2-t 1)s β-2d s +ʏt 2t 1(t 1-t 2)(2-s )s β-2d [s + ʏt 2t 1(t 2-s )s β-2d s +ʏ1t 2(t 1-t 2)(2-s )s β-2d ]s ɤ(αM +B )(t β2-t β1)-(β+1)(t 2-t 1)β(β-1); ②当-τɤt 1<t 2ɤ0时,有Q u (t 2)-Q u (t 1)ɤφ(t 2)-φ(t 1);③当-τɤt 1<0<t 2ɤ1时,有Q u (t 2)-Q u (t 1)ɤQ u (t 2)-Q u (0)+Q u (0)-Q u (t 1)ɤʏ10G (t 2,s )-G (0,s )㊃f (s ,u (s -τ))d s +φ(0)-φ(t 1)ɤ(αM +B )ʏ10G (t 2,s )d s +φ(0)-φ(t 1)ɤ0101 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.(αM +B )t β2β(β-1)+φ(0)-φ(t 1)ɤ(αM +B )t β2-t β1β(β-1)+φ(0)-φ(t 1). 在上面3种情形中,当t 1ңt 2时,总有Q u (t 2)-Q u (t 1)ң0,表明Q (P )是等度连续的.故由引理5可知,Q (P )是列紧的,从而算子Q :A ңA 是全连续的.3)利用L e r a y -S c h a u d e r 度理论证明问题(1)正解的存在性.定义范数 φ [-τ,0]=m a x t ɪ[-τ,0]φ(s ).假设当γɪ[0,1],u ɪA 时,u =γQ u ,则u (t )=γQ u (t )ɤQ u (t)ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤʏ10G (t ,s )(αu +B )d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(αu +B )ʏ10(2-s )(1-t )s β-2d s +ʏt 0(t -s )s β-2d []s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(α u +B )Λ1,t ɪ[0,1], φ [-τ,0],t ɪ[-τ,0{],从而 u ɤB Λ11-αΛ1 φìîíïïïɤT .令ω=T +1,B ω={u ɪA : u <ω},则u ʂγQ u ,对任意的u ɪ∂B ω,γɪ[0,1].定义一个映射:F γ(u )=u -γQ u ,则F γ(u )=u -γQ u ʂ0,对任意的u ɪ∂B ω,γɪ[0,1].因此,由L e r a y -S c h a u d e r 度的同伦不变性,有d e g (F γ,B ω,θ)=d e g (I -γQ ,B ω,θ)=d e g (F 1,B ω,θ)=d e g (F 0,B ω,θ)=d e g (I ,B ω,θ)=1ʂθ.从而根据L e r a y -S c h a u d e r 度的可解性可知,方程F 1(u )=u -Q u =0在B ω上至少存在一个解,进而边值问题(1)至少有一个正解.证毕.定理2 如果条件(H 1)和(H 3)成立,并且 η (Λ2+Λ3)<1,则边值问题(1)存在唯一解.证明:假设s u p t ɪ[0,1]f (t ,0)=ζ<ɕ.定义B δ={u ɪA : u ɤδ}为A 中的有界闭球,并选择δȡζΛ11- η (Λ2+Λ3).下面利用B a n a c h 压缩映射原理证明边值问题(1)解的存在唯一性,分以下两个步骤.1)证明Q (B δ)⊂B δ.对任意的u ɪB δ,有Q u (t)ɤʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))d s ɤʏt 0(t -s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s +ʏ10(1-t )(2-s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s ɤ u ʏt(t -s )s β-2η(s )d s +ζʏt(t -s )s β-2d s +u (1-t )ʏ10(2-s )s β-2η(s )d s +ζʏ10(1-t )(2-s )s β-2d s ɤ u ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+ζβ(β-1)t β+ u (1-t )ʏ10(2s β-2-s β-1)2d []s 1/2ʏ10η2(s )d ()s 1/2+(β+1)ζβ(β-1)(1-t )ɤ1101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.1(β-1)(2β-1)(2β-3) u η t β-1/2+ζβ(β-1)t β+2β2-β+1(β-1)(2β-1)(2β-3) u η (1-t )+(β+1)ζβ(β-1)(1-t )ɤδ η (Λ2+Λ3)+ζΛ1,则 Q u ɤδ.表明算子Q 将B δ中的有界子集映为B δ中的有界子集,即Q (B δ)⊂B δ.2)证明算子Q 为压缩映射.对任意的u ,v ɪA :①当t ɪ[0,1]时,有Q u (t )-Qv (t )ɤʏt 0(t -s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s ɤ u -v ʏt(t -s )s β-2η(s )d s + u -v (1-t )ʏ10(2-s )s β-2η(s )d s ɤu -v ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+u -v (1-t )ʏ10(2s β-2-s β-1)2d ()s 1/2ʏ10η2(s )d ()s 1/2ɤ1(β-1)(2β-1)(2β-3) u -v ㊃ ηt β-1/2+2β2-β+1(β-1)(2β-1)(2β-3) u -v ㊃ η (1-t )ɤ η (Λ2+Λ3) u -v ; ②当t ɪ[-τ,0]时,有Q u (t )-Q v (t )=φ(t )-φ(t )=0.由①,②可得Q u -Q v [-τ,1]ɤ η (Λ2+Λ3) u -v [-τ,1]. 因为 η (Λ2+Λ3)<1,所以算子Q 为压缩映射.即由B a n a c h 压缩映射原理可知算子Q 存在唯一的不动点,故边值问题(1)存在唯一解.3 应用实例考虑下列一致分数阶时滞微分方程边值问题:D 7/40+u (t )=e -3t s i n 1/2t 5(2+t )2㊃u (t -τ)1+u (t -τ), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0,u (1)+u ᶄ(1)=ìîíïïïïïï0(14)解的存在性与唯一性.证明:在边值问题(14)中,β=74,函数f (t ,u (t ))=e -3t s i n 1/2t 5(2+t)2㊃u 1+u 是连续的,满足条件(H 1);对任意的u ,v ɪℝ,t ɪ[0,1],有f (t ,u (t -τ))-f (t ,v (t -τ))ɤe -3t s i n 1/2t 5(2+t )2u -v ɤe -3t s i n 1/2t ㊃u -v .所以存在η(t )=e -3t s i n 1/2t ɪL 1/2([0,1],ℝ+),满足条件(H 3),且 η =0.1667.又因为Λ2=1(β-1)(2β-1)(2β-3)ʈ1.0328, Λ3=2β2-β+1(β-1)(2β-1)(2β-3)ʈ2.3944.所以 η (Λ2+Λ3)ʈ0.5713<1.因此根据定理2可知,边值问题(14)存在唯一解.2101 吉林大学学报(理学版)第61卷Copyright ©博看网. All Rights Reserved.参考文献[1] K I Y AM E H RZ ,B A G HA N I H.E x i s t e n c eo fS o l u t i o n so fB V P sf o rF r a c t i o n a lL a n g e v i n E q u a t i o n sI n v o l v i n g C a p u t oF r a c t i o n a lD e r i v a t i v e s [J ].J o u r n a l o fA p p l i e dA n a l ys i s ,2021,27(1):47-55.[2] Z O U Y M ,H EGP .O n t h eU n i q u e n e s s o f S o l u t i o n s f o r aC l a s s o f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n s [J ].A p p l i e d M a t h e m a t i c sL e t t e r s ,2017,74:68-73.[3] J O N G K S ,C HO I H C ,R IY H.E x i s t e n c eo fP o s i t i v eS o l u t i o n so faC l a s so f M u l t i -p o i n tB o u n d a r y V a l u e P r o b l e m s f o r p -L a p l a c i a nF r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sw i t hS i n g u l a rS o u r c eT e r m s [J ].C o mm u n i c a t i o n s i n N o n l i n e a r S c i e n c e a n dN u m e r i c a l S i m u l a t i o n ,2019,72:272-281.[4] C U IYJ ,MA WJ ,S U N Q ,e t a l .N e w U n i q u e n e s sR e s u l t s f o r B o u n d a r y V a l u e P r o b l e mo f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].N o n l i n e a rA n a l y s i s :M o d e l l i n g an dC o n t r o l ,2018,23(1):31-39.[5] L IY H ,Y A N G H J .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r N o n l i n e a rF o u r -P o i n tC a p u t oF r a c t i o n a lD i f f e r e n t i a l E q u a t i o nw i t h p -L a p l a c i a n [J ].B o u n d a r y V a l u eP r o b l e m s ,2017,2017:75-1-75-15.[6] A HMA DB ,N T O U Y A SSK ,Z HO U Y ,e t a l .AS t u d y o fF r a c t i o n a lD i f f e r e n t i a l E qu a t i o n s a n d I n c l u s i o n sw i t h N o n l o c a l E r d él y i -K o b e rT y p eI n t e g r a lB o u n d a r y C o n d i t i o n s [J ].B u l l e t i no ft h eI r a n i a n M a t h e m a t i c a lS o c i e t y ,2018,44(5):1315-1328.[7] X U ET T ,L I U W B ,Z HA N G W.E x i s t e n c eo fS o l u t i o n sf o rS t u r m -L i o u v i l l eB o u n d a r y V a l u eP r o b l e m so f H i g h e r -O r d e rC o u p l e d F r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sa tR e s o n a n c e [J ].A d v a n c e si n D i f f e r e n c e E q u a t i o n s ,2017,2017:301-1-301-18.[8] L IY H ,Q I A B .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r M u l t i -p o i n tB o u n d a r y V a l u eP r o b l e m so fC a p u t o F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].I n t e r n a t i o n a l J o u r n a l o fD y n a m i c a l S y s t e m s a n dD i f f e r e n t i a l E q u a t i o n s ,2017,7(2):169-183.[9] S E V I N I K A D I G ÜZ E LR ,A K S O Y Ü,K A R A P I N A R E ,e ta l .O nt h eS o l u t i o no faB o u n d a r y Va l u eP r ob l e m A s s oc i a t ed w i t ha F r a c t i o n a lD i f fe r e n t i a lE q u a t i o n [J /O L ].M a t h e m a t i c a l M e t h o d si nt h e A p pl i e d S c i e n c e s ,(2020-06-23)[2022-09-13].h t t p s ://d o i .o r g/10.1002/mm a .6652.[10] K HA L I LR ,A lHO R A N I M ,Y O U S E F A ,e ta l .A N e w D e f i n i t i o no fF r a c t i o n a lD e r i v a t i v e [J ].J o u r n a lo f C o m p u t a t i o n a l a n dA p pl i e d M a t h e m a t i c s ,2014,264:65-70.[11] I Y I O L A OS ,T A S B O Z A N O ,K U R T A ,e t a l .O n t h eA n a l y t i c a l S o l u t i o n s o f t h e S y s t e mo f C o n f o r m a b l eT i m e -F r a c t i o n a lR o b e r t s o nE q u a t i o n sw i t h1-DD i f f u s i o n [J ].C h a o s ,S o l i t o n s&F r a c t a l s ,2017,94:1-7.[12] Z HO U H W ,Y A N GS ,Z HA N GSQ.C o n f o r m a b l eD e r i v a t i v eA p p r o a c ht oA n o m a l o u sD i f f u s i o n [J ].P h y s i c a A :S t a t i s t i c a lM e c h a n i c s a n d I t sA p pl i c a t i o n s ,2018,491:1001-1013.[13] H ESB ,S U N K H ,M E IX Y ,e ta l .N u m e r i c a lA n a l y s i so fa F r a c t i o n a l -O r d e rC h a o t i cS y s t e m B a s e do n C o n f o r m a b l eF r a c t i o n a l -O r d e rD e r i v a t i v e [J ].T h eE u r o p e a nP h y s i c a l J o u r n a l P l u s ,2017,132:36-1-36-11.[14] L IY N ,S U N S R ,Y A N G D W ,e ta l .T h r e e -P o i n t B o u n d a r y V a l u e P r o b l e m s o f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a l E q u a t i o n sw i t hD e l a y [J /O L ].B o u n d a r y V a l u eP r o b l e m s ,(2013-02-22)[2022-08-25].h t t ps ://d o i .o r g/10.1186/1687-2770-2013-38.[15] HA N Z L ,L I Y N ,S U I M Z .E x i s t e n c e R e s u l t sf o r B o u n d a r y V a l u e P r o b l e m so f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a lE q u a t i o n sw i t hD e l a y [J ].J o u r n a l o fA p p l i e dM a t h e m a t i c s a n dC o m p u t i n g,2016,51(1/2):367-381.[16] L IM M ,WA N GJR.F i n i t eT i m eS t a b i l i t y o fF r a c t i o n a lD e l a y D i f f e r e n t i a l E q u a t i o n s [J ].A p pl i e d M a t h e m a t i c s L e t t e r s ,2017,64:170-176.[17] Y A N G X ,W E IZL ,D O N G W.E x i s t e n c eo fP o s i t i v eS o l u t i o n s f o r t h eB o u n d a r y Va l u eP r ob l e m o fN o n l i n e a r F r ac t i o n a lD i f f e r e n t i a lE qu a t i o n s [J ].C o mm u n i c a t i o n si n N o n l i n e a rS c i e n c ea n d N u m e r i c a lS i m u l a t i o n ,2012,17(1):85-92.[18] X U YF .F r a c t i o n a l B o u n d a r y V a l u eP r o b l e m sw i t h I n t e g r a l a n dA n t i -p e r i o d i cB o u n d a r y C o n d i t i o n s [J ].B u l l e t i n o f t h eM a l a y s i a n M a t h e m a t i c a l S c i e n c e sS o c i e t y,2016,39(2):571-587.[19] A B D E L J AWA D T.O nC o n f o r m a b l e F r a c t i o n a l C a l c u l u s [J ].J o u r n a l o f C o m p u t a t i o n a l a n dA p p l i e dM a t h e m a t i c s ,2015,279:57-66.[20] 许天周.应用泛函分析[M ].北京:科学出版社,2002:67-72.(X U T Z .A p p l i e dF u n c t i o n a lA n a l ys i s [M ].B e i j i n g :S c i e n c eP r e s s ,2002:67-72.)(责任编辑:赵立芹)3101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.。
一类高维时滞微分方程正周期解的存在性

K y wo d e r s:hg e— i n in;p st ep r dcs lt n;L ry S h u e h r aiep icpe ea ih rdme s o o iv ei i oui i o o ea —c a d ra en t rn il ;d ly v
记 ] 实数 集 , 为 非 负实数 集.考 虑如 下 n维 时滞微 分 方程 R为 R+
X ( )=A() ()+ ( , ( 一7 t ) t tX £ , £X解的存在性 , 其中
A( ): da ( l t ,2 t , ,, t ) t ig a ( ) a () … a ( )
是 对角 矩 阵 函数 ,对任 意 的 i ,, ,,a∈C :, ; 对任 意 的 t :12 … n ( R) 且 ∈R, 有 都
a( +T =a () t ) t ;
∈C R, ) 对 任意 的 t ( , ∈曼, 有 都
r t ) = rt ; ( +T ( )
f tX) (, ∈C( R×R ,R ) 对 任意 的 t , ∈R, X∈R , 有 f t 都 ( , , t ,) )= ( +TX . 文献 [ ] 1 应用锥 不 动点定 理 研究 了标 量方 程
Ab ta t s r c :Usn h r y Sc a d rn n i a le n t e t e a t o r v d t e e itn e o o i v e idi i g t e Le a — h u e o l ne ratr ai v h u h rp o e h x se c fp st e p ro c i
g∈C R+ R+ , 对任 意 的 ∈]+ 均有 0<z ( ≤L<∞ ; ( , )且 R , u ≤g ) /∈C R+ R+ ; 任 意 的 >0 均有 ( , )对 ,
应用数学毕业论文选题题目

应用数学毕业论文选题题目应用数学,是利用数学方法解决实际问题的一门学科,在经济金融、工程科技等领域都有应用。
如何对应用数学专业的论文进行选题呢?下面小编给大家带来应用数学毕业论文选题题目推荐,希望能帮助到大家!最新应用数学论文题目1、当前高中数学教学中应用数学史知识的调查研究2、应用数学模型评价Ⅱ类错(牙合)功能矫治后软硬组织的改变3、高师院校数学与应用数学专业学生数学文化素养的现状调查与分析4、高师院校数学与应用数学专业学生数学认识信念的调查分析5、职业学校数学教师关于教学中应用数学史的调查研究6、高校高等数学教学培养学生数学应用能力的研究和实践7、浅谈线性变换的对角化问题8、中美高中数学教材的数学应用水平的比较研究9、高中物理教学培养学生应用数学能力的方法与实践10、地方高师职前教师教育课程体系的构建11、应用数学力学方法研究沥青路面结构特性12、高师生数学认识信念的调查研究13、注重问题发现培养学生学习数学和应用数学的能力14、应用数学模型研究宁夏围栏内甘草的分布格局和土壤水分对甘草生长发育的影响15、培养中专生应用数学意识的研究16、数学史在数学概念教学中的应用研究17、高等应用数学系列教程出版项目的进度管理研究18、数学建模思想在小学数学教学中的应用研究19、拉曼光谱的数学解析及其在定量分析中的应用20、数学形态学及其应用21、数学形态学在信号处理方面的应用研究22、波利亚的数学解题思想及其在中学数学教学中的应用23、高中数学应用翻转课堂的实践研究24、中职数学教学中“学案导学”模式的应用研究25、初中数学教学中数学史应用开发研究26、基于MATLAB的数学实验系统的实现及应用27、信息技术在小学数学课堂教学中的应用研究28、数学形态学图象处理算法应用研究29、“学案导学”模式在中学数学教学中的应用研究30、波浪与建筑物作用的数学模型研究与应用31、模糊数学在膝关节骨性关节炎诊断和疗效评价中的应用32、非线性数学期望下的随机微分方程及其应用33、思维导图在小学六年级数学教学中的应用研究34、极限与极限思想在中学数学中的应用35、高中数学概念图教学的应用研究36、电子书包在小学数学学科教学中的应用研究37、《数学的发现》中的思想在中学数学教学的应用研究38、数形结合方法在高中数学教学中的应用39、高中数学教学中培养学生数学应用意识的实验研究40、高等数学方法在中学数学中的应用研究41、数学中的研究性学习42、经济问题中的概率统计模型及应用43、中学数学中的化归方法44、高斯分布的启示45、a2+b2≧2ab的变形推广及应用46、网络优化 7、泰勒公式及其应用47、浅谈中学数学中的反证法 9、数学选择题的利和弊48、浅谈计算机辅助数学教学 11、论研究性学习49、浅谈发展数学思维的学习方法50、关于整系数多项式有理根的几个定理及求解方法51、数学教学中课堂提问的误区与对策52、中学数学教学中的创造性思维的培养53、浅谈数学教学中的“问题情境”54、市场经济中的蛛网模型55、中学数学教学设计前期分析的研究数学与应用数学专业毕业论文题目1、初中生利用数学解决实际问题的教学研究2、初中生应用题“懂而不会”现象的原因分析与对策研究3、高中物理教学培养学生应用数学能力的方法与实践4、数学与数学文化对人类文明发展的作用5、数学史在高中数列教学中的应用探究6、高中生数学应用意识与应用能力培养7、数学思想对高中解析几何学习影响的研究8、高职院校工科学生数学应用意识及其培养研究9、高中数学教学渗透物理知识现状的调查研究10、应用数学模型评价Ⅱ类错(牙合)功能矫治后软硬组织的改变11、初中数学应用意识和能力的研究12、新课标数学中考的发展趋势13、培养中职生数学应用意识的教学对策研究14、高中数学应用题教学的调查和研究15、高师院校数学与应用数学专业学生数学文化素养的现状调查与分析16、高师院校数学与应用数学专业学生数学认识信念的调查分析17、数学史在中职数学教学中的应用研究18、职业学校数学教师关于教学中应用数学史的调查研究19、初中数学教学中数学史应用开发研究20、数理经济学史研究21、高中数学课程价值取向研究22、科学个案研究与中国科学观的发展23、审计判断研究24、数学建模的认知机制及其教学策略研究25、钱伟长治学理念及教育思想初探26、力学期刊群的内外关系与学科结构27、高师院校数学教师多元化、分层次培养方案设计与研究28、数学实验的历史考察与理论研究29、日本中小学数学综合学习研究30、高中开展数学建模活动的实验研究31、新课程标准视野下的数学建模研究32、中等职业学校数学应用教学模式研究33、培养中专生应用数学意识的研究34、新课程在初中数学教学实施中的几点体会35、将数学建模融入高中日常教学的实践研究36、基于“三环节”模式的教学设计研究37、培养初中生数学应用能力的教学研究38、师范生的培养研究39、中美高中数学教材的数学应用水平的比较研究40、数学史在高中数学课堂教学中的应用研究高等数学论文题目1、将数学建模的思想融入高等数学的教学2、初等数学与高等数学教学衔接问题的研究3、高等数学自主学习的问题与对策研究4、高等数学分层教学方法的实践研究5、信息技术与高等数学课程整合的实践研究6、高校高等数学教学培养学生数学应用能力的研究和实践7、《高等数学》网络课程设计与开发8、数学史在高等数学教学中渗透的研究9、高等数学视角下的中学数学教学研究10、对话理念下的高等数学教师课堂提问11、高职机电类专业高等数学课程改革与实践12、高等数学方法在中学数学中的应用研究13、高等职业技术学院学生《高等数学》满意度研究14、高职院校高等数学课程教学改革的研究15、基于云计算技术的《高等数学》网络教学设计16、基于“翻转课堂”的文科高等数学教学设计研究17、高职院校高等数学课程内容的调查研究18、高职教育高等数学课程教学内容与教学方法改革的研究19、高等数学探究式教学模式及其评价分析20、高等数学“研究性教学”的研究21、周期函数的判定22、阶的估计与应用23、一致连续的判定与应用24、N-L公式的推广与应用25、对称函数的条件极值26、多元函数极值的一阶微分判别法及多元函数最值的极限形式27、非线性时滞Josephson方程的概周期解28、一类二阶非线性系统概周期解29、一类含有概周期强迫项的二阶非线性系统的概周期解30、一类广义时滞Logistic方程的全局吸引性31、一类方程概周期解和有界解的存在性32、一类脉冲系统的周期解33、利用数列的上下极限来计算数列的极限34、Cauchy中值定理的反问题35、微分中值定理中间点的性质36、递推数列上界的判定方法37、曲线积分中间点性质38、开区间内有不可导点的Dabox定理39、最短路径与改进型Dijkstra算法?40、映射一致连续性的判别方法?41、函数高阶微分的表达式42、映射的性质与可积性的关系43、函数列一致收敛性的判定方法44、可数集合的判定方法45、映射对聚点的影响46、谈《几何画板》在几何教学中的作用47、数学CAI课件制作和使用48、反例在数学论证中的应用49、线性方程组解的再讨论50、二元域上对合矩阵的性质51、二次整环中因子分解的讨论52、形式幂级数半环的同余与同态53、具有相同正解的线性方程组的讨论54、矩阵方程的正解、半正解55、陪同矩阵的性质及其应用56、线性递推数列线性空间及其应用57、广义正交变换与广义对称变换的性质58、初等变换与向量组的极大无关组59、Cramer法则的应用60、杨辉三角中的行列式的性质及计算。
时滞微分方程解的存在性

时滞微分方程解的存在性时滞方程更能反映真实的自然现象,关于Banach 空间中具有整数阶物质导数的时滞微分方程解的存在性的研究已有了不少,包括积分方程最优控制,边值问题,方法也都类似,但对于分数阶导数的方程的研究不多。
可能是因为分数阶导数问题还没有被应用到更广泛的领域,或者是因为分数阶导数较整数阶研究更为困难。
一般研究微分方程是在实数空间内,为了使结果更具一般性,下面本文研究抽象空间中一般分数阶物质导数的方程解的存在性,从而得到一般性的结论。
为后文的工作做理论准备。
现有的研究分数阶导数的微分方程解的存在性的文章不多,事先查得的的一篇文章是研究整数阶的有时滞项的微分方程的解的存在性的。
由于分数阶导数和整数阶导数的性质有很大差异,研究整数阶导数方程的方法不能照搬到分数阶导数方程上,所以我们研究时加上了一条限制条件,即方程右端的非线性项的范数小于一个常数加上一个常数和解函数范数的乘积,之后用了皮卡迭代方法,得到一个函数序列,然后用数学归纳法证明此序列一致有界且等度连续,然后结合相关文献,就证明了上面得到的函数序列有弱收敛子列,最后证明弱收敛子列的极限函数就是方程的解。
从而证明了该方程解的存在性。
具体过程如下:令E 为Banach 空间,E*为其对偶空间并且E 0 =C([−h,0],E),上面的范数分别为:,* 和 0E ,0[,0]max ()t h E t ϕϕ∈-=,同时, 00(,){:},X X B y r y X y y r =∈-≤其中,X E =或0E ,(), 表示E 和E*中的元素的内积。
考虑如下Banach 空间分数阶微分方程的初值问题:00()(,),0,01,(2.0.1)t D u t f t u t u E ααψ⎧=≥<<⎪⎨=∈⎪⎩其中D α是Caputo 分数阶导数。
f:[0,+∞)×E 0→E 。
同时对于任意u ∈C([−h,0],E)函数0,0,t u E t ∈≥定义为成u t (s)=u(t+s),s ∈[−h,0]。
几类时滞微分方程解的振动性和正解存在性的开题报告

几类时滞微分方程解的振动性和正解存在性的开题报告时滞微分方程(Delay Differential Equations,DDE)是一种具有时滞项的微分方程,其解的振动性和正解存在性是研究时滞微分方程的重要问题之一。
本文将介绍几类时滞微分方程解的振动性和正解存在性的研究情况。
1. 时滞线性微分方程时滞线性微分方程是一种常见的时滞微分方程形式。
对于具有时滞项的线性微分方程,可以通过矩阵指数函数的方法得到其正解存在性,并进一步确定其解的振动性。
研究表明,当时滞项小于一定值时,时滞线性微分方程的解为渐近稳定的;当时滞项在一定范围内时,时滞线性微分方程的解会出现振荡;当时滞项超过一定值时,时滞线性微分方程的解将变得不稳定。
2. Michaelis-Menten型时滞微分方程Michaelis-Menten型时滞微分方程是一种具有广泛应用的时滞微分方程形式。
研究表明,在一定参数范围内,Michaelis-Menten型时滞微分方程的解存在且唯一,并且解的振动性是有限的。
此外,当时滞项的大小超过一定值时,该方程解将趋于无穷大。
3. Hopfield型神经网络模型Hopfield型神经网络模型是模拟神经网络的常用模型之一,也是一种具有时滞项的微分方程。
研究表明,在一定条件下,Hopfield型神经网络模型的解存在唯一,并且解的振动性也是有限的。
此外,当时滞项的大小超过一定值时,该方程解将趋于发散。
4. Logistic型时滞微分方程Logistic型时滞微分方程是一种描述种群生长和传染病传播的时滞微分方程形式。
研究表明,在一定参数范围内,Logistic型时滞微分方程的解存在唯一,并且解的振动性也是有限的。
此外,当时滞项的大小超过一定值时,该方程解将趋于无穷大或消失。
综上所述,时滞微分方程的解的振动性和正解存在性受时滞项大小和模型参数等因素影响。
研究时滞微分方程解的振动性和正解存在性对于深入理解时滞微分方程模型的特性,有助于应用时滞微分方程模型解决实际问题。
一阶时滞微分方程周期解的存在性

t t I ( )=一 ( ( —r )i s de , h rf ( R )a dr 0, n e slf e x t c f e o i S- - “ t ) s t i w ee eC R , n > a dan wr ut r h i e eo p r d O 厂 u d e t e sn o i c
Vo1 9 No 5 .1 .
S p. e 201 0
d i1 .9 9 ji n 1 7 o:0 3 6 /.s . 6 2—8 1 .0 0 0 . 1 s 5 3 2 1 .5 0 3
一
阶 时 滞 微 分 方 程 周 期 解 的存 在 性
张 绍康
( 昭通师范高等专科学校 数学系 , 云南 昭通 67 0 ) 5 00
定义 2 设 E是一个 H let 间 , c , i r空 b 曰c E .称 A, 曰是弱 环绕 的 ,如果对 E上满 足 Ⅱ:sp ≤ n u,
b=i I 0 n 的弱对 弱 连续泛 函 , 都存在 { f , “ }C E及常
数c 得 b 使 o≤ c< ∞ ,( c ,( 0 , I) t , I) t . 引理 18 设 E是 一个可 分 的 Hi et 间且它 l l r空 b
第 1 9卷 第 5期 21 0 0年 9月
云 南 民族 大 学 学 报 ( 自然 科 学 版 )
Junlo Y na nvrt o a oa ts N trlSi csE io ) ora f u nn U iesy fN t nli ( a a c ne dt n i i ie u e i
一类二维时滞差分系统正周期解的存在性

0 引言
众 所 周知 ,关 于泛 函微 分 方程 正 周 期解 存 在 性 的研 究 是非 常深 入广 泛 的 。最 近 ,关于微 分 方程 多
0 i ) ; ∈c z×R ], ) <a( <1 ( [ ;关于 第 二个 及第
三个变量是连续的, 且
立 ,其 中 n ,=12。 ∈Z i ,
’ I u .ig L AO H ayn ,XU Xi gy n ,H Q .h u a —a g U i o n z
(ag intueo E uai Naca g inx 3 09C ia J n x Istt f d ct n, nhn,ag i 02 ,h ) i i o J 3 n
第 3 第 2期 2卷 2 1 年 3 月 01
V 1 2 No o. . 3 2 Ma.0 1 r2 1
井冈山大学学报 ( 自然科学版 ) Jun l f ig a gh nUnv ri Na rl c n e o ra o n gn sa iesy( t a i c) J t u Se
Ab t a t B mp o i g afx d p i t h o e o e wep e e t o u c e t o d t n ih g a a t et e sr c : y e l y n e o n e r m i c n , r s n mes f in n ii swh c u r n e i t n s i c o h
+ O ,) f(,,) C Y = , n Y 成
下 面 引入一 些概 念和 几个 引理 :
个周期解存在性 的研究也备受关注,并取得 了一些 研 究成 1,] -1。刘 利 用 K ansl i不动 点 定理 20 rsoe ki s 研究了时滞微分系统 。) 一 ( xt+ (xt (, f () 1 ( = at ( f t (一 f …,(一 f )() f ) ) , ) )
一类带有传输时滞方程的概周期解存在性及其指数稳定性

关键字:记忆神经网络方程、非线性脉冲、概周期解、指数稳定性概周期函数又称殆周期函数,是周期函数的一种推广,具有某种近似周期性的有界连续函数。
概周期函数是在研究周期函数某种性质的基础上进一步提出来的。
概周期函数具有指数型二分性法,既从第一近似观点出发,在原点附近的非线性系统(式中的特征根的实部不为零),与它的线性部分有相同的拓扑结构,原因在于后者具有指数型二分性。
对于线性部分为变系数的非线性系统,当它的线性部分是概周期系统且其特征指数不为零时,r.j.萨克和塞尔研究了a(t)和其外壳的性质,得到具有指数二分性的条件。
为了得到及证明我们的结论,我们首先把方程中的变量统一到一些矩阵当中,这样可以极大地方便以后的证明。
为了使后面结论的证明更加清晰,我们把命题分解为两个分命题加以证明:(1)证明概周期解的存在性及唯一性;(2)证明概周期解的指数稳定性。
接下来就是对这两个分命题的证明。
由于命题的证明非常复杂以及要用到大量的定理,为了使推理过程中更加具有说服力及严谨性,我们在参考大量论文的基础上,引用了9大定理推论,为之后的证明作好铺垫。
在计算过程中,我们发现计算非常复杂,过程非常麻烦。
首先体现在给出的方程中,我们可以看到方程的构成是非常复杂的。
其次,后面又要涉及到大量该复杂方程的计算。
所以在经过研究思考之后,我们决定引进矩阵来进行简化,即将很多的平行变量放在同一个矩阵里面,使得到的新方程变得简洁对称,整理所得的新方程为:在给出相关的定理及推论时,这些定理适合的方程具有普遍性,而不是只限定于我们要研究的方程,使得该计算方法更有适用性。
此普适方程为:下面给出命题(1)与命题(2)证明中的关键步骤:命题(1):证明概周期解的存在性及唯一性。
如此就可以证明概周期解的存在性及唯一性。
命题(2):证明概解的指数稳定性。
令如此就可以证明概周期解的指数稳定性。
综上所述,即可证明概周期解的存在性、唯一性及其指数稳定性。
该证明有简单易理解的特点。