Ultra high energy photon showers in magnetic fieldangular distribution of produced particle
新方法可使高太阳能电池自清洁且高效率

入 电路从而产生 电流 。G P F 的优势在 于,其非常 廉 价 ,不 需 要 昂 贵 的 添 加 剂 或 复 杂 的 加 _ , 并 1 且 还 能 被 封 装 成 独 立 的 、 不 需 要 外 光 源 的燃 料 电池 。科 学 家 相 信 , 此 能源 装 置 缩 小 后 可 用 来 驱动微小的纳米设备 。 ( 周洪英 )
科 彼 1 思 吾
度 反 应 离 子蚀 刻 方 法 , 在 硅
瑞典提取小母绿色粘|物 7 I c 造太l f电; li 也 BE
表面 制造 金字塔 形 的纳米 结构 。然 后 ,将 硅 品 片 作 为 模 板 来 创 建 弹 性 印 记 ,将 原 始 的 纳 米 结 构 复制到 宽范 围 的聚 合物 上 。不 同于光滑 的硅 表面 会反 映散 乱的光 线 ,纳米 结构硅 和聚 合物 表 面 儿 乎 完 仝 无 反 射 。他 们 使 从 空 气 到 基 材 的 折 射 指 数 可 以平 滑 地 过 渡 , 从 而 降 低 了在 宽 的 波 长 范 围 内 的反 射 率 。 这 种非反 射面 是提 高太 阳能 电池 效率所 需 要 的。如果聚 合物 纳米 结构 涂 以低表 而能薄 膜 涂 层 ,可使 太 阳能 电池获得 又一 重要 改进 ,实 现 自清 洁 。 该 方 法 可 被 放 大 , 并 可 在 工 业 上 被 应 用 于 简单 的、低成本的制造大面积 的纳米 结构 。
S 》上。 )
l4 2 1 年 第7 第5 6 ( 第3 - 9 ) 2 O 0 卷 —期 总 8 3期
人 员研发 出 一 种柔 软灵活 、能控制 光线 的超 常 材 料 ,这种 材料 更 易用于 制造 一种 隐身羊 毛衫 或其他 类 型的 隐身衣 ,让 人们 离真 正意义 上的 可见光 下 隐身衣 又近 了 步 。有 关研 究结 果发 表 于近 期的 《 新物理学刊》上 。 要使 隐身衣 在可 见光 下起作 用 ,其组成 而
前驱体转化法制备超高温陶瓷粉体研究进展

第42卷第8期2023年8月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.8August,2023前驱体转化法制备超高温陶瓷粉体研究进展孙楚函,王洪磊,周新贵(国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073)摘要:超高温陶瓷(UHTC)在航空航天的热防护领域具有重要作用,高质量的UHTC 粉体是制备高性能UHTC 的重要原料㊂在制备UHTC 粉体的工艺中,前驱体转化法制备的粉体纯度高㊁粒径小㊁各组分分布均匀,具有广阔的应用前景㊂本文根据前驱体合成机理将UHTC 前驱体转化法分为金属醇盐配合物合成法㊁基于格氏反应合成法以及引入支链合成法,综述了近年来通过三种方法制备UHTC 粉体的研究进展,分析总结了三种方法的优缺点,指出了UHTC 前驱体转化法目前存在的问题以及未来发展方向㊂关键词:前驱体转化法;超高温陶瓷粉体;反应机理;碳热还原;陶瓷产率;微观结构中图分类号:TH145㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)08-2865-16Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived MethodSUN Chuhan ,WANG Honglei ,ZHOU Xingui(Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)Abstract :Ultra-high temperature ceramics (UHTC)plays an important role in the field of thermal protection in aerospace.High quality UHTC powder is important raw material for the preparation of high performance UHTC.In the process of preparing UHTC powder,the powder prepared by precursor-derived method has high purity,small particle size and uniform distribution of component,so it has broad application prospects.According to the synthesis mechanism of precursor,the precursor-derived methods of UHTC were divided into metal alkoxides complex synthesis method,synthesis based on Grignard reaction method and synthesis by introducing branch chains method.The research progress of preparation of UHTCby three methods in recent years was reviewed.The advantages and disadvantages of three methods were analyzed and summarized.The existing problems and future development direction of the UHTC powder prepared by precursor-derived method were pointed out.Key words :precursor-derived method;ultra-high temperature ceramics powder;reaction mechanism;carbothermic reduction;ceramic yield;microstructure 收稿日期:2023-04-12;修订日期:2023-05-30作者简介:孙楚函(2001 ),男,硕士研究生㊂主要从事超高温陶瓷的研究㊂E-mail:151****6953@通信作者:王洪磊,博士,副教授㊂E-mail:honglei.wang@0㊀引㊀言近年来,航空航天技术快速发展,先进飞行器正朝着高机动㊁轻质化㊁低成本和可重复使用等方向发展[1],其发动机热端㊁鼻锥和机翼前缘等部件往往要承受2000ħ甚至3000ħ以上的高温,同时还将处于高温氧化㊁热疲劳和高应力等恶劣服役条件下[2-5],传统的难熔合金材料难以满足使用要求,而超高温陶瓷(ultra-high temperature ceramics,UHTC)因其优良的性能已成为该领域的研究重点[6-8]㊂超高温陶瓷一般是指熔点超过3000ħ,且在高温㊁高载荷等极端环境下仍能保持物理及化学性能稳定的过渡金属化合物,主要包括第IVB 族和第VB 族的钛(Ti)㊁锆(Zr)㊁铪(Hf)和钽(Ta)的硼化物㊁氮化物和碳化物[9-10]㊂表1列出了常见UHTC 的物理及力学性能[10-29](HCP 为密排六方结构,FCC 为面心立方结构)㊂2866㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷表1㊀常见超高温陶瓷的物理及力学性能Table1㊀Physical and mechanical properties of common ultra-high temperature ceramicsMaterial Crystalstructure Meltingpoint/ħDensity/(g㊃cm-3)CTE/(10-6㊃K-1)Thermalconductivity/(W㊃m-1㊃K-1)Elasticmodulus/GPaHardness/GPa ReferenceTaB2HCP304012.58.54155126[12-15] TiB2HCP3225 4.58.66556025[11-13,16] ZrB2HCP3245 6.1 6.26048923[12-13,17-18] HfB2HCP338011.2 6.610448028[12-13,17-18] TiC FCC3100 4.97.41740026[13,16,19-20] ZrC FCC3530 6.6 6.72036933[17,19-23] TaC FCC388014.5 6.32250322[17,24-25] HfC FCC389012.7 6.62245229[17,19-23] TaN FCC308713.4 3.2849010[10,26-27] TiN FCC2950 5.49.32946021[10,13,19,26,28] ZrN FCC29507.37.22039016[10,13,19,26,28-29] HfN FCC338513.9 6.92138516[10,13,19,26,28]㊀㊀Note:CTE,coefficient of thermal expansion.高质量UHTC粉体是制备高性能UHTC的关键,UHTC粉体的传统合成工艺是利用相应的金属氧化物粉体经碳热还原反应实现的㊂但原料颗粒的尺寸较大㊁反应物无法充分接触以及可能存在杂质等因素,导致反应温度较高㊁产物晶粒尺寸过大㊁纯度不高等问题,使其应用存在较大的局限性㊂近年来被广泛研究的前驱体转化法是通过化学手段在溶液体系中合成一类包括合成陶瓷时所需元素的金属有机聚合物,再将前驱体在一定温度范围进行交联㊁热解,最终得到陶瓷粉体产物的方法㊂前驱体转化法可对前驱体分子结构进行设计,且在制备过程中具有很好的加工性,可应用于制备陶瓷粉体㊁纤维㊁涂层和复合材料等[30]㊂由于原料组分可以在分子层面均匀混合,缩短元素间的扩散距离,进而降低热解温度,这避免了晶粒粗大的问题,且使产物的相组成分布均匀㊂前驱体转化为陶瓷粉体主要包含两个过程:1)在100~400ħ低温条件下的交联过程中,前驱体分子将交联形成不熔的网状结构;2)在600~1400ħ高温条件下的热解过程中,在600~1000ħ时交联的前驱体发生有机-无机转变,生成非晶陶瓷,继续升高热解温度则会发生相分离与结晶化过程,最终得到多晶陶瓷㊂含氧前驱体会额外发生碳热还原反应,将氧化物陶瓷转化为碳化物陶瓷[31]㊂目前合成UHTC前驱体的工艺按照反应机理可大致分为三类:一是采用金属醇盐配合物经水解缩合形成聚合物前驱体;二是以格氏反应为核心合成单体,再经缩合反应得到聚合物前驱体;三是将有机金属化合物单体作为支链引入聚合物,从而得到目标前驱体㊂1㊀金属醇盐配合物前驱体制备UHTC粉体在制备金属醇盐配合物前驱体的过程中,主要采用过渡金属氯化物作为金属源,通过与醇的取代反应得到金属醇盐㊂由于金属醇盐水解剧烈,利用乙酰丙酮等配体与金属醇盐反应形成配合物以实现可控水解缩合,得到聚合物前驱体㊂同时为保证后续碳热还原反应充分,往往还需向前驱体溶液中加入碳源㊂该方法既可以利用单种金属醇盐配合物制备单相高纯UHTC粉体,也可以通过引入多种金属醇盐配合物制备UHTC 固溶体粉体,或引入含Si聚合物制备复相UHTC粉体㊂1.1㊀金属醇盐配合物前驱体制备单相UHTC粉体TaC具有高熔点㊁高硬度和高强度等诸多优点,是超高温碳化物陶瓷的研究热点之一㊂Jiang等[32]以TaCl5为钽源,酚醛树脂为碳源,乙醇和乙酰丙酮为溶剂,混合得到TaC的前驱体溶液㊂随后在80ħ下固化, 200ħ下保温2h除去溶剂,在1000ħ时开始发生碳热还原反应,1200ħ时反应完全,得到的TaC陶瓷粉体元素分布均匀,平均晶粒尺寸为40nm,但陶瓷产率为57%(质量分数),仍有提升空间㊂图1为前驱体合成和热解过程中可能发生的反应(Hacac为乙酰丙酮;acac为失去一个H原子的乙酰丙酮根)㊂第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2867㊀图1㊀TaC 前驱体制备可能发生的反应机理[32]Fig.1㊀Possible reaction mechanism for preparation of TaC precursor [32]常规的前驱体碳热还原法包括前驱体合成㊁固化㊁惰性气氛热解以及最终的碳热还原处理等多个步骤,存在反应时间长㊁生产效率低的问题㊂为优化生产工艺,Cheng 等[33]通过高温喷雾热解(high temperature spray pyrolysis,HTSP)工艺,低成本㊁单步合成了纳米TaC 粉体㊂TaC 前驱体溶液由TaCl 5和酚醛树脂溶解在乙醇和1-戊醇中得到,然后通过喷雾器将其破碎成细小的液滴,液滴处在Ar 气氛的高温管式炉中,再经过溶剂一次性去除㊁热解和1650ħ的快速原位碳热还原,在几分钟内即可制得纳米TaC 粉体㊂但由于采用的是医用雾化器,难以产生足够细小的液滴,且部分产物附着在管式炉内壁上,所以生成的TaC 颗粒存在团聚现象,产率较低,工艺流程需要继续改进㊂图2为高温喷雾热解示意图(CTR 为碳热还原反应)㊂图2㊀高温喷雾热解示意图[33]Fig.2㊀Schematic diagram of high temperature spray pyrolysis [33]单相UHTC 的高温抗氧化能力较弱,尤其是过渡金属碳化物表面被氧化后,无法生成致密氧化膜来阻止内部被进一步氧化㊂例如,当HfC 暴露在空气中时,400ħ以上就开始氧化[34],TaC 在850ħ时即会被完全氧化[35]㊂在实际应用过程中,使用单相UHTC 的情况较少㊂1.2㊀金属醇盐配合物前驱体制备UHTC 固溶体粉体为改善TaC 和HfC 的抗氧化性能,Zhang 等[36]系统地研究了Ta-Hf-C 三元陶瓷在1400~1600ħ等温条件下各种成分的氧化机理,研究表明氧化过程取决于成分㊂与单相TaC 和HfC 陶瓷相比,1TaC-1HfC 和1TaC-3HfC 的抗氧化性显著提高,这是因为氧化生成的三维共晶Hf 6Ta 2O 17-Ta 2O 5结构和致密纯Hf 6Ta 2O 17层都能够抑制O 2扩散,改善抗氧化性㊂因此,与单相UHTC 相比,使用钽醇盐配合物与铪醇盐配合物混合得到前驱体所制备的UHTC 固溶体具有更好的抗高温氧化能力[37]㊂在碳热还原过程中,多相氧化物由于各相反应活化能不同,往往会发生某相优先析出㊁碳化物之间固溶不充分和碳源过剩等问题㊂为解决以上问题,蒋进明[38]以Ta㊁Hf㊁Zr 的氯化物为金属源,乙酰丙酮多齿配体为螯合剂,酚醛树脂为碳源,经200ħ溶剂热处理12h,合成出具有多层核壳结构的前驱体㊂前驱体中心区富含Ta㊁次外层富含Hf(Zr),外壳由树脂包覆㊂该结构的前驱体在热解过程中可以实现外层碳原子向内核逐层扩散,使元素分布均匀,得到粒径为200~300nm 的Ta-Hf(Zr)-C 三元陶瓷纳米粉体㊂图3为Ta-Hf(Zr)-C 碳热还原转化机理示意图㊂2868㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图3㊀Ta-Hf(Zr)-C 碳热还原转化机理示意图[38]Fig.3㊀Schematic diagram for carbothermal reduction synthesis of Ta-Hf(Zr)-C [38]TaC 和HfC 晶体结构相同(均为NaCl 结构)且晶格常数相近(分别为0.445和0.464nm),可以形成不同比例的固溶体,其中Ta 4HfC 5具有目前已知物质中的最高熔点4215ħ[39],是一种极具发展前景的耐超高温陶瓷㊂Cheng 等[40]等以酚醛树脂作为碳源,与摩尔比为4ʒ1的TaCl 5和HfCl 4溶解在乙醇和乙酰丙酮的混合溶剂中,经过磁力搅拌得到Ta 4HfC 5前驱体溶液,随后在Ar 气氛中200ħ油浴交联固化2h,再通过真空蒸馏除去剩余溶剂,接下来在Ar 气氛中进行热解,Ta 2O 5的碳热还原在1000ħ左右开始,1200~1400ħ时,Hf 6Ta 2O 17的碳热还原以及TaC 和HfC 之间的固溶反应同时发生,最后HfC 和TaC 在1800ħ下固溶充分反应,得到粒度为200~300nm㊁元素分布均匀的Ta 4HfC 5粉体㊂高温下生成的熔融Hf 6Ta 2O 17层可作为氧扩散屏障,使得陶瓷具有优秀的高温抗烧蚀性能㊂但1800ħ的固溶温度过高,不利于得到晶粒细小的高质量粉体㊂图4㊀Ta 4HfC 5粉体TEM 照片[42]Fig.4㊀TEM image of Ta 4HfC 5powder [42]改进前驱体合成工艺可以降低HfC 和TaC 发生固溶反应的温度㊂Lu 等[41]利用摩尔比4ʒ1的TaCl 5和HfCl 4与三乙胺㊁甲基叔丁基醚和乙酰丙酮反应后缩聚,得到聚钽铪氧烷(polytantahafnoxane,PTHO),再将其与含烯丙基的树脂混合即得到Ta 4HfC 5前驱体,固化后在1600ħ下热解制备得到了Ta 4HfC 5粉体㊂孙娅楠等[42]则将含烯丙基的树脂替换为酚醛树脂,与PTHO 混合后得到了Ta 4HfC 5前驱体,将前驱体在250ħ下保温2h 以固化,随后在Ar 气氛中1350~1450ħ热解1.5~3.0h,得到粒径为100~200nm㊁晶粒尺寸为25~50nm 的Ta 4HfC 5粉体㊂图4为Ta 4HfC 5粉体的TEM 照片㊂综合以上研究发现,固溶反应发生的温度普遍高于碳热还原反应㊂与Cheng 等[40]和Lu 等[41]相比,孙娅楠等[42]将固溶反应完成温度从1800ħ降至1450ħ,且所得陶瓷粉体粒径更小㊂通过金属醇盐配合物前驱体制备的超高温陶瓷粉体多为碳化物,也可以通过向前驱体溶液中加入硼酸以制备硼化物复相陶瓷粉体㊂IVB 族硼化物陶瓷ZrB 2和HfB 2在高于1200ħ的氧化环境中,表面的B 2O 3保护层将蒸发,因此主要依赖于ZrO 2或HfO 2层作为抗氧化屏障[43-44]㊂在向ZrB 2和HfB 2中添加高价阳离子Ta 5+后,氧化生成的Ta 2O 5可以填充氧晶格空位以减缓O 2传输速率,并与ZrO 2或HfO 2形成中间相,从而增强相稳定性[45]㊂Xie 等[46]采用乙酰丙酮与Zr(OPr)4通过回流生成Zr(OPr)4-x (acac)x ,得到ZrO 2前驱体㊂类似地,使用Ta(OC 2H 5)4作为Ta 源合成Ta 2O 5前驱体,然后在溶液中分别加入酚醛树脂和硼酸,将溶液浓缩㊁干燥获得前驱体粉末后,在800~1800ħ的Ar 气氛中热解,热解过程中金属氧化物优先进行碳热还原生成金属碳化物,在硼源过量的情况下会继续反应生成金属二硼化物㊂图5为ZrB 2-TaB 2在1300ħ热第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2869㊀图5㊀ZrB 2-TaB 2在1300ħ热处理2h 的SEM 照片[46]Fig.5㊀SEM image of ZrB 2-TaB 2after heat treated at 1300ħfor 2h [46]处理2h 的SEM 照片㊂ZrB 2和TaB 2之间的固溶反应从1400ħ开始,1800ħ时TaB 2相完全消失㊂与由ZrB 2和TaB 2两相混合的陶瓷粉体相比,固溶体陶瓷粉体在性能上具有哪些差异值得继续研究㊂1.3㊀金属醇盐配合物前驱体制备复相UHTC 粉体另一种提高UHTC 抗氧化性能的方法则是引入SiC,高温下SiC 氧化生成的玻璃相SiO 2可提高多孔结构的金属氧化物致密度,具有良好的抗高温氧化和抗烧蚀性[47]㊂同时两种成分在结晶过程中的相互抑制效应可以起到细化晶粒的作用㊂聚碳硅烷(polycarbosilane,PCS)是一种以Si 和C 交替排列作为聚合物骨架的有机硅化合物,常被用来作为制备SiC 的前驱体[48]㊂Lu 等[49]以三乙胺为共沉淀剂,用TaCl 5㊁正丁醇和乙酰丙酮反应制备得到Ta 2O 5前驱体溶液,将其与PCS 混合后蒸馏得到TaC-SiC 前驱体溶液,前驱体充分交联固化后,在1600ħ的Ar 气氛中热解2h,得到了平均晶粒尺寸50nm 的TaC-SiC 陶瓷粉体㊂图6为1800ħ热解的TaC-SiC 陶瓷粉体的HR-TEM 照片(标尺101/nm 为10个1/nm,下文图17㊁18中标尺含义类似)㊂由图6可知,TaC 和SiC 晶粒以接近球形的形态均匀分散,同时还有少量无定形碳嵌在晶界位置㊂该前驱体合成方法同样适用于IVB 族UHTC,可推广用于制备ZrC-SiC 和HfC-SiC㊂图6㊀1800ħ热解的TaC-SiC 陶瓷粉体的HR-TEM 照片[49]Fig.6㊀HR-TEM images of TaC-SiC ceramics powder pyrolyzed at 1800ħ[49]PCS 的交联主要依靠硅氢化反应,通过向前驱体中加入如二乙烯基苯(divinylbenzene,DVB)等含不饱和C C 键的物质可以进一步提升前驱体的交联程度㊂Cai 等[50]利用该原理,以HfCl 4与异丙醇和乙酰丙酮反应得到铪醇盐配合物,再通过水解得到HfO 2前驱体(polyhafnoxane,PHO),随后将PHO 与PCS 和DVB 混合,控制n (Hf)/n (Si)摩尔比为1ʒ1,交联后在1600ħ下碳热还原得到了元素分布均匀㊁结晶质量高㊁粒径分布窄的HfC-SiC 复相陶瓷粉末㊂图7为HfC-SiC 复相陶瓷的TEM 照片,可以观察到分别属于HfC 和SiC 的晶格条纹㊂由于PHO 的弱极性,其与PCS 和DVB 具有良好的相容性,可以大范围改变n (Hf)/n (Si)摩尔比来调控陶瓷粉体成分㊂合成前驱体的单体中交联位点越多,前驱体越易形成高度交联的三维网状结构㊂每个四乙氧基硅烷(tetraethoxysilane,TEOS)分子中含有四个Si O C 键可供交联,是另一种理想的制备含Si 前驱体的原料㊂Patra 等[51]采用TEOS 与HfCl 4㊁乙酰丙酮㊁对苯二酚反应合成HfC-SiC 前驱体㊂经过回流和固化后,在1500ħ的Ar 气氛中发生碳热还原反应,生成HfC-SiC 陶瓷粉体㊂图8为1500ħ热解的HfC-SiC 前驱体亮场TEM 照片和平均粒径㊂由图8可知,碳热还原所生成的球形HfC 和SiC 颗粒平均尺寸为25~50nm㊂由于对苯二酚和四乙氧基硅烷具有较高的C㊁Si 含量,因此前驱体在热解过程中质量损失较少,1600ħ时陶瓷产率高达65%,具有很好的应用前景㊂PCS 作为SiC 前驱体的缺陷在于其常温下为固态,需要利用二甲苯等有机溶剂将其配制成溶液使用,增2870㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷加了前驱体合成的复杂程度㊂Wang 等[52]采用常温下为液态的低分子量SiC 前驱体(LPVCS)与HfCl 4㊁乙酰丙酮和1,4-丁二醇反应合成了HfC-SiC 前驱体(PHCS)㊂HfO 2和SiO 2的碳热还原主要发生在1400~1600ħ,生成的HfC-SiC 复相陶瓷粉体的SEM 照片和EDS 分析如图9所示㊂与PCS 相比,LPVCS 结构中引入的V4分子具有 CH CH 2基团,可在较低温度下实现自交联,有利于陶瓷产率的提升[53]㊂同时LPVCS 中较高的碳含量可以补偿PHCO 热解产物中碳含量的不足,制备出不含HfO 2和微量游离碳的高性能HfC-SiC 陶瓷㊂图7㊀1600ħ热解的HfC-SiC 粉末TEM 照片[50]Fig.7㊀TEM images of HfC-SiC powder pyrolyzed at 1600ħ[50]图8㊀1500ħ热解的HfC-SiC 前驱体亮场TEM 照片和平均粒径[51]Fig.8㊀Bright-field TEM image and average particle size of HfC-SiC precursor pyrolyzed at 1500ħ[51]第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2871㊀图9㊀HfC-SiC 粉末的SEM 照片和EDS 分析[52]Fig.9㊀SEM images and EDS analysis of HfC-SiC powder [52]㊀㊀综上可见,合成金属醇盐配合物前驱体所需的原料结构简单,反应时间较短㊂但由于前驱体中存在氧元素,有可能会导致生成的UHTC 粉体中有氧残留,使陶瓷高温抗氧化性能和机械性能下降㊂另外为防止金属醇盐水解,该反应需全程在惰性气氛中进行,对设备要求较高㊂2㊀基于格氏反应的前驱体制备UHTC 粉体基于格氏反应的前驱体制备工艺主要采用茂金属化合物和含不饱和键的格氏试剂合成单体,再通过与非金属源分子的聚合反应得到前驱体㊂金属醇盐配合物前驱体的各目标元素由不同种聚合物提供,多数通过机械搅拌的方法实现分子间的混合㊂不同的是,基于格氏反应的前驱体中金属源与非金属源在同种聚合物分子中,实现了分子内的混合㊂所合成的聚合物分子包括线型聚合物与网状聚合物㊂2.1㊀线型聚合物前驱体制备UHTC 粉体合成线型聚合物前驱体的原料通常依靠分子两端的基团发生缩聚反应,交联程度相较于网状聚合物更低,可以通过在主链上插入交联位点来减少热解过程中的质量损失㊂Cheng 等[54]在四氢呋喃(tetrahydrofuran,THF)溶剂中利用反-1,4-二溴-2-丁烯与镁反应制备格氏试剂,再与Cp 2HfCl 2和氯甲基三甲基硅烷通过缩聚合成了主链包含Hf C㊁Si C 和 CH CH 基团的线性PHCS 前驱体聚合物,图10为前驱体合成过程中可能发生的化学反应㊂前驱体在经过1600ħ热解后得到了元素分布均匀的HfC-SiC 纳米复合陶瓷粉体㊂前驱体主链中的不饱和 CH 2CH CHCH 2 基团提供了潜在的交联位点或反应位点,可用于后续固化或改性㊂图10㊀PHCS 前驱体合成过程中可能发生的反应[54]Fig.10㊀Reactions that may occur during synthesis of PHCS precursors [54]基于格氏反应的MC-SiC(M =Zr,Hf)前驱体分子结构中往往含有M C Si 键,普遍认为该键是由格氏反应所致㊂Gao 等[55]提出了一种新的前驱体合成机制,该机制基于㊃MgCl 辅助下的活性物质Cp 2Zr(II)的自由基聚合,合成过程如图11所示,首先将二氯二茂锆Cp 2ZrCl 2与Mg 和四氢呋喃在60ħ下搅拌混合2872㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷4h 后冷却,得到活性物质双环戊二烯基锆Cp 2Zr (II),再将Cp 2Zr (II)分别与CH 3Si (CH CH 2)Cl 2和(CH 3)2Si(CH 2Cl)2在110ħ下反应16h,经过冷却过滤并真空浓缩得到了含有[ Zr C Si ]n 主链结构的单源聚合物前驱体聚锆碳硅烷(PZCS-1,PZCS-2)㊂随后将前驱体在N 2气氛中进行热解,SiO 2和ZrO 2相在1000ħ时析出,随着温度继续升高转化为SiC 和ZrC 相,且均匀分布在自由碳基体中,形成ZrC /SiC /C 复合陶瓷㊂由于该前驱体为线型聚合物且不含可作为交联位点的不饱和基团,热解过程中质量损失较为严重,900ħ时陶瓷产率仅有43.9%㊂图11㊀PZCS-2前驱体合成过程[55]Fig.11㊀Synthesis process of the PZCS-2precursor [55]2.2㊀网状聚合物前驱体制备UHTC 粉体与线型聚合物前驱体相比,合成网状聚合物前驱体的原料多含有三个以上的交联位点,前驱体交联程度高,质量损失较少,有利于陶瓷产率的提高㊂Wang 等[56]通过格氏反应将Cp 2ZrCl 2和CH 2 CHMgCl 制成Cp 2Zr(CH CH 2)2,然后将其与B 源H 3B㊃SMe 2混合,利用氢化反应得到网状结构的大分子前驱体聚锆碳硼烷(polyzirconcarborane,PZCB),合成机理如图12所示㊂随后将前驱体放置于Ar 气氛的石墨管式炉中进行热解,1600ħ时碳热还原完全,得到充分结晶且分布均匀的ZrC-ZrB 2陶瓷粉体,继续加热至2200ħ,产物失重仅为2.5%,说明该复相陶瓷粉体具有良好的耐热性㊂在该合成过程中,利用了硼烷分子具有三个反应位点的特征,以其作为骨架合成了网状大分子,使得前驱体充分交联㊂SiBNC 非晶陶瓷在2000ħ仍具有很好的高温稳定性,而引入过渡金属元素可以进一步抑制其在高温下的结晶与氧化[57]㊂龙鑫[58]将锆源(Cp 2ZrCl 2)与格氏试剂(CH 2 CHCH 2MgCl)反应制备得到双官能度的活性单体(PZC),然后引入低分子量聚硼硅氮烷(LPBSZ),PZC 中的C C 键与LPBSZ 中的Si H 发生硅氢化反应,ZrC /SiBNC 前驱体合成机理如图13所示(Me 3Si 为三甲基亚砜)㊂未参与反应的C C 键则为后续交联提供活性位点,最终形成网状结构的ZrC /SiBNC 前驱体㊂随后将前驱体置于Ar 气氛中经过1200ħ热解生成ZrC /SiBNC 陶瓷粉体,其中ZrC 纳米颗粒均匀分散在无定形SiBNC 基体中㊂ZrC 相提高了SiBNC 的第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2873㊀热稳定性,经过1800ħ以上高温处理后,ZrC /SiBNC 仍能够保持均匀细小的纳米晶结构,同时SiBNC 也改善了ZrC 的耐高温氧化性能㊂但该前驱体的不足之处在于碳含量过高导致陶瓷粉体产物中含有过量的碳,影响UHTC 的高温抗氧化性能㊂图12㊀PZCB 前驱体合成机理[56]Fig.12㊀Synthesis mechanism of PZCB precursor[56]图13㊀ZrC /SiBNC 前驱体合成机理[58]Fig.13㊀Synthesis mechanism of ZrC /SiBNC precursor [58]基于格氏反应的前驱体制备工艺实现了各目标元素在聚合物分子内的混合,比金属醇盐配合物前驱体混合更加充分,能更好地避免陶瓷产物中元素偏析现象的发生㊂同时原料中不含氧元素,热解过程中不会发生碳热还原反应,能降低热解温度㊂但该工艺的原料结构较为复杂,反应时间较长,为避免合成过程中引入空气中的氧等杂质,反应必须在保护气氛中进行,对设备要求较高㊂3㊀引入支链的前驱体制备UHTC 粉体在制备引入支链的前驱体过程中,需以一种聚合物分子作为主链,再将其他含目标元素的小分子通过反应作为支链连接到主链上㊂常见的作为主链的大分子有聚碳硅烷和聚硅氮烷等,其分子结构中包含大量可与含目标元素的小分子发生交联反应的基团,同时自身足够大的分子量可避免在热处理过程中分解挥发㊂3.1㊀以聚碳硅烷作主链制备UHTC 粉体聚碳硅烷的主链由Si 和C 交替组成,Si 和C 上连接有H 或 CH 2 CH CH 2等基团作为交联位点[48],通过向主链上引入UHTC 组分,热解后可原位生成含SiC 的UHTC 粉体㊂Amorós 等[59]系统性地研究2874㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图14㊀1350ħ热解的SiC-TiC-C 陶瓷粉体的SEM 照片[59]Fig.14㊀SEM image of SiC-TiC-C ceramics powder pyrolyzed at 1350ħ[59]了采用聚二甲基硅烷(polydimethylsiloxane,PDMS)和PCS 与Cp 2MCl(M =Ti,Zr,Hf)反应制备SiC-MC-C 陶瓷粉体的机理和工艺流程㊂与PDMS 相比,PCS 中的Si H 键促进了前驱体的交联,提高了陶瓷产率,金属配合物则通过取代反应连接在前驱体的网状结构中㊂经过900ħ热解后,前驱体转变为非晶态陶瓷,结晶化在1350ħ下基本完成,生成由β-SiC㊁MC 以及自由碳组成的复相陶瓷粉体,但仍有部分非晶态物质存在㊂图14是1350ħ热解所得的SiC-TiC-C 陶瓷粉体的SEM 照片㊂该研究采用同种前驱体转化工艺成功制备出了含IVB 族三种元素碳化物的复相UHTC 粉体,但对热解过程的探究不够深入,1350ħ时结晶尚未完成㊂通过对PCS 进行改性,可以进一步提高前驱体交联程度㊂Yu 等[60]以含烯丙基的聚碳硅烷AHPCS(商品名SMP10)为SiC 源,与TaCl 5的CHCl 3溶液混合后,在真空中加热至160ħ脱除溶剂得到前驱体,前驱体合成过程如图15所示,随后将前驱体在Ar 气氛下的管式炉中进行热解,得到SiC-TaC-C 陶瓷粉体㊂研究发现,随着热解温度升高,前驱体由于发生脱氢耦合反应而失重,在900ħ时聚合物完全转化为非晶陶瓷粉末,1200ħ时TaC 相开始析出,并被非晶态碳薄壳所包裹,形成核壳结构的TaC@C 纳米颗粒,而β-SiC 相则在1400ħ下结晶㊂所得的β-SiC 和TaC 的晶粒尺寸均小于30nm㊂前驱体热解后的游离碳需要通过生成TaC 来消耗,由于没有额外添加碳源,所以需要准确掌握TaCl 5和AHPCS 的比例以保证陶瓷产物中有少量包裹在TaC 晶粒表面的游离碳㊂图15㊀SiC-TaC-C 前驱体合成过程[60]Fig.15㊀Synthesis of SiC-TaC-C precursor [60]在利用引入支链的前驱体制备含N 原子的超高温陶瓷粉体时,Wen 等[61]以AHPCS 为SiC 源,四(二甲氨基)铪(TDMAH)为Hf 源和N 源合成SiHfCN 陶瓷前驱体㊂AHPCS 中的Si H 键可与TDMAH 中的N CH 3键反应生成Si N Hf 键,使Hf 连接到大分子上㊂Si H 键还会与AHPCS 侧链上的烯丙基发生硅氢化反应以增加前驱体交联程度,可能发生的化学反应如图16所示㊂热解后所得UHTC 组分为HfC 0.87N 0.13,其被碳层包裹镶嵌在SiC 基体中,两相的晶粒尺寸均小于100nm㊂2~4nm 厚的碳层可作为扩散屏障,有效。
阳光储存罐等

阳光储存罐等
作者:
来源:《学苑创造·C版》2020年第05期
这款阳光储存罐Sun Jar,来自英国著名设计品牌Suck UK。
Sun Jar可以将白天收集的阳光转化为电能进行储存,到了夜晚再释放电能发光,这样的设计既环保又浪漫。
美國一家设计公司开发了一款名为CleanseBot的消毒机器人。
该机器人利用紫外线清除细菌和尘螨。
它的体积小巧,可以消毒房间里的每个角落。
在外出居住旅馆的时候,拥有这款便携消毒机器人就太棒了!
中国产品设计师邱思敏设计了一款名为Swirl的概念涡轮旋转水龙头。
当你打开开关的时候,出水涡轮开始旋转,可以创造出三种不同形状的漩涡状水流。
线条优美的水流不仅给人很好的视觉体验,还能大大提高节水效率。
日本设计师Mac Funamizu设计了一款概念电池,用直观的视觉效果“胖与瘦”显示电池的电量变化。
当电池处于满电状态时,它跟普通电池无异。
但随着电量的减少,电池会慢慢变“瘦”,从而提醒你该更换新电池了。
设计师Lee Yin-Kai和Wang Szu-Hsin通过融合夹子与大头钉的功能,使这款新式大头钉更易于使用,它可以在不损害纸张的情况下轻松固定纸张。
水陆两栖的露营车长啥样呢?这款露营车由英国人发明,既可以在陆地上使用,也可以漂浮在水面上。
该露营车看着小,但是内部可以同时容纳六个人,还配备了沙发、水槽、卫生间、音响系统等。
纳米防晒霜英语作文两百字

纳米防晒霜英语作文两百字Nanotech Sunscreen: A Revolutionary Approach to Sun Protection.In the realm of sun protection, the advent of nanotechnology has heralded a groundbreaking advancement: nanoformulated sunscreens. These innovative products leverage the unique properties of nanoparticles to offer unparalleled efficacy and benefits that surpass conventional chemical and mineral sunscreens.Nanoformulated sunscreens utilize nanoparticles, particles with sizes ranging from 1 to 100 nanometers, as their active ingredients. These nanoparticles are typically composed of inorganic materials such as zinc oxide or titanium dioxide, which inherently possess UV-absorbing properties. By reducing the particle size to the nanoscale, these sunscreens achieve remarkable sun protection while addressing the drawbacks of traditional formulations.Enhanced Sun Protection:The diminutive size of nanoparticles enables them to interact with UV radiation more effectively than larger particles. This increased surface area enhances their UV-absorbing capacity, resulting in superior sun protection. Nanoscale particles can effectively scatter, absorb, and reflect both UVA and UVB rays, providing broad-spectrum protection against the full range of harmful solar radiation.Improved Transparency:Conventional sunscreens often leave an unsightly white cast on the skin, particularly when applied in sufficient quantities to achieve adequate protection. This unappealing effect arises from the larger particle size of these formulations, which can scatter visible light. In contrast, nanoscale particles are too small to interact significantly with visible light, rendering them virtually transparent. Nanoformulated sunscreens can therefore provide high levels of sun protection without compromising aesthetics.Reduced Chemical Penetration:Chemical sunscreens rely on organic compounds that penetrate the skin to absorb UV radiation. However, some of these chemicals have raised concerns about potentialtoxicity and skin irritation. Nanoparticles, on the other hand, are designed to remain on the skin's surface, forming a physical barrier that deflects UV rays. This minimized chemical penetration reduces the risk of adverse reactions and ensures the safety of nanoformulated sunscreens.Broader Applications:Nanoformulated sunscreens offer unique advantages for a wider range of applications. They can be incorporated into clothing, cosmetics, and other products that are not traditionally associated with sun protection. This versatility extends their utility to situations where traditional sunscreen use is impractical or ineffective.In conclusion, nanoformulated sunscreens represent asignificant advancement in sun protection technology. Their enhanced efficacy, improved transparency, reduced chemical penetration, and broader applications make them a highly effective and convenient solution for protecting skin from the harmful effects of solar radiation. As research continues, the potential of nanotechnology in the realm of sunscreens is bound to expand even further, providing even greater protection and benefits for years to come.。
美国研发适用于大容量高功率锂离子电池的新型纳米材料

子 ,比 现 有 锂 离 子 电 池 实 现 更 高 的 效 率 ,同 时 不 会 对 电池 产 生 持 续 性 损 害 ,在 高 速 充 放 电 的 情 况
下 也 能 实 现 电极 稳 定 运行 。该 自然 应 力 递 变 有 利 于 材 料 界 面 避 免 出 现 应 力 骤 变 ,从 而 提 高 电 极 结 构 的完 整 度 。
了能 量 密 度 不 相 上 下 之 外 ,其 电极 充 放 电速 度 比 前 者 快 4 ~ O倍 ,其 卓 越 的 性 能 有 助 于 设 计 和 制 06
造 出 大 容 量 高 功 率 锂 离 子充 电 电池 。 研 究 人 员 表 示 ,全 电动 汽 车 的 电池 需 同 时 具
能 电池 组 件 的使 用 寿 命 并 降 低 成 本 。
美 国普 渡 大 学 研 究 人 员研 发 出一 种 新 型 太 阳 能 电 池 ,该 电 池 可 利 用 碳 纳 米 管 和 D A 技 术 模 N 拟 植 物 光 合 系 统 ,实 现 自我 修 复 , 旨在 延 长 太 阳
受 目前 锂 离 子 电池 无 法 实 现 的 超 高 速 充 放 电 。 研 究 证 明 ,与传 统 电 池 阳极 相 比 ,该 电 池 除
业化牛产 。
摘 译 自 互 联 网
研 究 人 员 发 现 ,当 电 流 密 度 增 至 5 . A/ 1 g 2
电 动 汽 车 采 用 高 功 率 密 度 的 超 级 电 容 器 实 现 启
采 用 具 有 特 殊 电学 性 能 的单 壁 碳 纳 米 管 作 为 光 电
池 的 “ 子 导线 ” moe ua i s 。 分 ( lc lrwr ) e
SPIE-法国

Media PartnerPhotonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 12 Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747SPIE Europe thanks the following sponsorsfor their generous supportAttendee Pens Stand #511www.micos.wsCoffee Breaks Stand #420www.klastech.deConference Bags Stand #Exhibitor Lounge Stand #Lanyards Stand #Pastries Stand #511www.micos.wsVertical Banner Stand #231www.hamamatsu.frExhibitor list as of 3 March 2008.AMA Association for Sensor Technology. . . . #209A.T. Wall Company. . . . . . . . . . . . . . . . . . . . . #224AFOP - French Optics and PhotonicsManufacturers Association . . . . . . . . . . . . #124AHF analysentechnik AG . . . . . . . . . . . . . . . . #316Alcatel Thales III V Lab. . . . . . . . . . . . . . . . . . #329AT -Fachverlag GmbH. . . . . . . . . . . . . . . . . . . #534Avantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #232Becker & Hickl GmbH . . . . . . . . . . . . . . . . . . #405Bookham . . . . . . . . . . . . . . . . . . . . . . . . . . . . #317Breault Research Organization. . . . . . . . . . . . #117Brush Ceramic Products . . . . . . . . . . . . . . . . #104Carl Hanser Verlag . . . . . . . . . . . . . . . . . . . . . #530Cedrat Technologies. . . . . . . . . . . . . . . . . . . . #118CEIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #323CILAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #416Conerefringent Optics SL. . . . . . . . . . . . . . . . #508Crystal Fibre. . . . . . . . . . . . . . . . . . . . . . . . . . #306CST - Computer Simulation Technology . . . . #226CVI Melles Griot Ltd. . . . . . . . . . . . . . . . . . . . #507Draka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #230EDP Sciences. . . . . . . . . . . . . . . . . . . . . . . . . #532EKSPLA Co.. . . . . . . . . . . . . . . . . . . . . . . . . . #330Electro Optics Magazine . . . . . . . . . . . . . . . . #430Consortium. . . . . . . . . . . . . . . . . . . . . . . . . . . #331ePIXnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #431Epner Technology, Inc.. . . . . . . . . . . . . . . . . . #423EQ Photonics GmbH . . . . . . . . . . . . . . . . . . . #223ET Enterprises Ltd . . . . . . . . . . . . . . . . . . . . . #328European Optical Society. . . . . . . . . . . . . . . . #536EuroPhotonics . . . . . . . . . . . . . . . . . . . . . . . . #100Fibercore Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . #515Fibercryst . . . . . . . . . . . . . . . . . . . . . . . . . . . . #426FiberTech Optica Inc.. . . . . . . . . . . . . . . . . . . #415Fischer Connectors . . . . . . . . . . . . . . . . . . . . #122Flexible Optical BV. . . . . . . . . . . . . . . . . . . . . #514FRAMOS GmbH. . . . . . . . . . . . . . . . . . . . . . . #106Frank Optic Products GmbH . . . . . . . . . . . . . #105Fraunhofer Heinrich Hertz Institut . . . . . . . . . #321Fujian CASTECH Crystals, Inc. . . . . . . . . . . . #501Gorman-Rupp Industries . . . . . . . . . . . . . . . . #413GWU-Lasertechnik GmbH . . . . . . . . . . . . . . . #501Hamamatsu . . . . . . . . . . . . . . . . . . . . . . . . . . #231HC Photonics Corp . . . . . . . . . . . . . . . . . . . . #501Heptagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . #521HOLOEYE Photonics AG . . . . . . . . . . . . . . . . #309HORIBA Jobin Yvon SAS. . . . . . . . . . . . . . . . #327id Quantique SA. . . . . . . . . . . . . . . . . . . . . . . #405Impex HighTech GmbH . . . . . . . . . . . . . . . . . #411Innolume GmbH. . . . . . . . . . . . . . . . . . . . . . . #115Institut d’Optique Graduate School . . . . . . . . #437International Society for Stereology. . . . . . . . #529iXFiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #126KERDRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #120Kimoga Material Technology Co., Ltd.. . . . . . #520KLASTECH. . . . . . . . . . . . . . . . . . . . . . . . . . . #420Laser Components GmbH. . . . . . . . . . . . . . . #220Laser Focus World . . . . . . . . . . . . . . . . . . . . . #414Laser Zentrum Hannover e.V . (LZH). . . . . . . . #505LEONI Fiber Optics GmbH. . . . . . . . . . . . . . . #406Leukos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #123LINOS Photonics France . . . . . . . . . . . . . . . . #307Lovalite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #121Lumera Laser GmbH . . . . . . . . . . . . . . . . . . . #310Lumerical Solutions, Inc. . . . . . . . . . . . . . . . . #121M.C.S.E.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #128Mad City Labs, Inc. . . . . . . . . . . . . . . . . . . . . #214Materials Today . . . . . . . . . . . . . . . . . . . . . . . #435Menlo Systems GmbH. . . . . . . . . . . . . . . . . . #517Exhibitor ListPhotonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 47473T Advertiser Index Alcatel Thales III-V Lab. . . . . . . . . . . . . . . . . . . . . . . . . . . p. 11CVI Melles Griot Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . Cover 4ET Enterprises Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 23EPIC—European Photonics Industry Consortium . . . . . . p. 13KLASTECH—Karpushko Laser Technologies . . . . . . . . . p. 19LINOS Photonics France . . . . . . . . . . . . . . . . . . . . . . . . . p. 17Photoniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 5RSoft Design Group. . . . . . . . . . . . . . . . . . . . . . . . . . . Cover 2Space Light srl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 21Exhibition Floor PlanMesse Stuttgart . . . . . . . . . . . . . . . . . . . . . . . #524MICOS GmbH . . . . . . . . . . . . . . . . . . . . . . . . #511Nature Publishing Group . . . . . . . . . . . . . . . . #208NEMO (Network of Excellence onMicro-Optics). . . . . . . . . . . . . . . . . . . . . . . #217New Focus, Inc. . . . . . . . . . . . . . . . . . . . . . . . #317Newport Spectra-Physics . . . . . . . . . . . . . . . #205NEYCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #212NIL Technology. . . . . . . . . . . . . . . . . . . . . . . . #125NP Photonics . . . . . . . . . . . . . . . . . . . . . . . . . #501Nufern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #428NuSil Technology . . . . . . . . . . . . . . . . . . . . . . #525Ocean Optics . . . . . . . . . . . . . . . . . . . . . . . . #110OLLA Project . . . . . . . . . . . . . . . . . . . . . . . . . #429Omega Optical, Inc.. . . . . . . . . . . . . . . . . . . . #107OpTIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #333Optics & Laser Europe . . . . . . . . . . . . . . . . . . #312Optics Pages . . . . . . . . . . . . . . . . . . . . . . . . . #527OptiGrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . #510Optima Research . . . . . . . . . . . . . . . . . . . . . . #131OptoIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . #531Opton Laser International. . . . . . . . . . . . . . . . #130Optronis GmbH . . . . . . . . . . . . . . . . . . . . . . . #216OXXIUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #304Phoenix BV. . . . . . . . . . . . . . . . . . . . . . . . . . . #315Photon Design . . . . . . . . . . . . . . . . . . . . . . . . #204Photonex 2008. . . . . . . . . . . . . . . . . . . . . . . . #527Photonic Cleaning Technologies . . . . . . . . . . #421Photonics 4 Life - Network of Excellence . . . #427Photonics Spectra - Laurin Publishing. . . . . . #100Photonik Zentrum Hessen in Wetzlar AG. . . . #222Physik Instrumente (PI) GmbH & Co.. . . . . . . #308Point Source. . . . . . . . . . . . . . . . . . . . . . . . . . #113Quantel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #305Raicol Crystals Ltd. . . . . . . . . . . . . . . . . . . . . #206Rhenaphotonics Alsace . . . . . #533, 535, 537, 539Royal Society of Chemistry . . . . . . . . . . . . . . #541RSoft Design Group. . . . . . . . . . . . . . . . . . . . #320RSP Technology BV . . . . . . . . . . . . . . . . . . . . #424Santec Europe Ltd.. . . . . . . . . . . . . . . . . . . . . #409Scientec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #412SEDI Fibres Optiques. . . . . . . . . . . . . . . . . . . #313SEMELAB PLC. . . . . . . . . . . . . . . . . . . . . . . . #109Sill Optics GmbH & Co., KG. . . . . . . . . . . . . . #221SIOF-Italian Society of Optics and Photonics #516Space Light srl . . . . . . . . . . . . . . . . . . . . . . . . #518Spectroscopy Magazine. . . . . . . . . . . . . . . . . #433SphereOptics GmbH . . . . . . . . . . . . . . . . . . . #504Spiricon GmbH. . . . . . . . . . . . . . . . . . . . . . . . #419Springer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #211Stanford Computer Optics GmbH . . . . . . . . #114bTaylor & Francis - Contemporary Physics . . . #528Taylor & Francis - Fiber and Integrated Optics #528Taylor & Francis - Informa UK Ltd.. . . . . . . . . #528Taylor & Francis - International Journal ofOptomechatronics. . . . . . . . . . . . . . . . . . . #528Taylor & Francis - Journal of Modern Optics . #528THALES Laser . . . . . . . . . . . . . . . . . . . . . . . . #506The Institution of Engineering andTechnology (IET) . . . . . . . . . . . . . . . . . . . . #425Thorlabs GmbH . . . . . . . . . . . . . . . . . . . . . . . #517TSP Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . #417UCM AG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #116Unice E-O Services Inc.. . . . . . . . . . . . . . . . . #422Universal Photonics, Inc. . . . . . . . . . . . . . . . . #207VTT Technical Research Centre of Finland. . . #129Wiley-VCH GmbH & Co. KGaA . . . . . . . . . . . #523Xiton Photonics GmbH. . . . . . . . . . . . . . . . . . #501XLITH GmbH . . . . . . . . . . . . . . . . . . . . . . . . . #432Yole Développement . . . . . . . . . . . . . . . . . . . #225ZODIAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #322Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 5The French magazine specializing in Optics-Photonics Photoniques :the magazine of theFrench Optical CommunityPhotoniques,magazine of the French OpticalSociety,establishes links and partnerships betweenall the entities working in Optics-Photonics :at national level with AFOP (French ManufacturersAssociation in Optics and Photonics)and in eachregion of France.Photoniques :The source of information for all the professionals in thefield of Optics-Photonics in France.In each issue :industry news,technical articles written by specialists,new products…A useful and efficient circulation :7500copiesAfter 7years of existence,cooperation and networking withthe specialists of the optic world in France,Photoniques hasbuilt a large qualified database of potential users :researchers,technicians,engineers and managers,fromindustry such as communications,industrial vision,lasers,test and measurements,imaging/displays…Are you interested in the French optics and photonics markets?Photoniques is your partner!How to keep you informed about Optics-Photonics in France?Become a Photoniques reader!123For additionnal information,contact:Olga Sortais :+33134042144o.sortais@ to request an issue of Photoniques and a media kit6 Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747As a new addition to Photonics Europe, the Industry PerspectivesProgramme will provide a series of executive briefi ngs coveringkey technologies and sectors.Come hear key members of Europe’s photonics industrydiscuss their successes, future plans and the way in which theyintend to maximize their market penetration and growth. Hearreviews of the European Innovation landscape highlightinggeographical areas of strengths in areas such as business R&D,knowledge transfer and demonstrate the outcomes from recentsuccessful European-funded industry programmes.Industry Perspectives Programme Included with Conference registration.Individual Sessions can be purchased at the Cashier. Individual sessions, €100. The sessions will deliver a strategic perspective into each application area, allowing you to uncover and confirm the future prospects for your business. Benchmark your aspirations for your business and technology against some of Europe’s leading companies and engage with them as a potential supplier or partner. You will hear presentations from Philips, Audi, PCO, Coherent Scotland, GlaxoSmithKline, Carl Zeiss, Yole Development, Koheras and Fraunhofer on their successes and strategic priorities. Tuesday 8 April Morning SessionPhotovoltaics10.15 to 10.45 hrs.Photovoltaics - Market and Technology TrendsGaëtan Rull, Market Analyst for New Energy Technologies,Yole Développement 10.45 to 11.15 hrs.High Throughput Manufacturing for BulkHeterojunction PVsMarkus Scharber, Head of Materials Group, Konarka 11.15 to 11.45 hrs.Managing JGrowth in the Production of Thin Films(To be confi rmed.)Dr. Immo Kotschau, Director of Research and Development,Centrotherm GmbH 11.45 to 12.30 hrs.End to End Mass Production of Silicon Thin FilmModulesDetlev Koch, Head of BU Solar Thin Films & Senior Vice President,O C Oerlikon Balzers AG Break – 12.30 to 14.00 hrs.Afternoon SessionMEMS/MOEMS14.00 to 14.30 hrs.Market Trends and Technical Advances in M(O)EMSDr. Eric Mounier, Manager for MEMS & Optoelectronics andMicronews Chief Editor, Yole Développement14.30 to 15.00 hrs.Inorganic/Organic Hybrid Polymers (ORMOCER) forOptical InterconnectsDr. Michael Popall, Head of Microsystems and Portable PowerSupply, Fraunhofer ISC15.00 to 15.30 hrs.Future MOEMS and Photonic MicrosystemsDr. Thomas Hessler, Director Axetris, Leister Process Technologies15.30 to 16.15 hrs.Innovations in MOEMS product developmentProf. Hubert Karl, Director, Fraunhofer IPMSWednesday 9 AprilMorning Session Multimedia, Displays and Lighting 10.15 to 10.45 hrs.Plasmonics for Photonics: Challenges and Opportunities Ross Stanley, Section Head: MOEMS & Nanophotonics, CSEM 10.45 to 11.15 hrs.Photonic Microsystems for Displays Edward Buckley, VP Business Development, Light Blue Optics Ltd.11.15 to 11.45 hrs.Matrix-Beam – the antiglaring LED-high beam Benjamin Hummel, Research for Concept Lighting T echnologies, Audi 11.45 to 12.30 hrs.High Brightness OLEDs for Next Generation LightingPeter Visser, Project Manager, OLLA Project, The Netherlands Break –12.30 to 14.00 hrs.Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 7Thursday 10 AprilMorning SessionImaging10.15 to 10.45 hrs.High Resolution Imaging detectors for invisiblelight –Development and IndustrialisationHans Hentzell, CEO, Acreo10.45 to 11.15 hrs.(Presentation to be confi rmed.)11.15 to 11.45 hrs.Raman Spectroscopy, Raman Imaging and FutureTrendsSopie Morel, Sales Manager, Molecular & Microanalysis Division,HORIBA Jobin Yvon 11.45 to 12.30 hrs.World Markets for Lasers and Their Application Steve Anderson, Associate Publisher/Editor-in-Chief,Laser Focus World Break – 12.30 to 14.00 hrs. Afternoon SessionBiomedical and Healthcare Photonics 14.00 to 14.30 hrs.Photonic Systems for Biotechnology Research Karin Schuetze, Director of R&D, Carl Zeiss Microimaging 14.30 to 15.00 hrs.Photonics 4 Life Prof. Jeürgen Popp, Director, IPHT Germany 15.00 to 15.30 ser System Development for Biophotonics Chris Dorman, Managing Director, Coherent Scotland15.30 to 16.15 hrs.Supercontinuum Light - a paradigm shift in lasersources for biophotonicsJakob Dahlgren Skov, CEO, Koheras Husain Imam, Business Development Manager, Koheras Industrial Perspectives ProgrammeWednesday 9 April Afternoon Session OPERA 2015: European Photonics - Corporate and Research Landscape 13.30 to 13.45 hrs.Optics and Photonics in the 7th Framework ProgrammeGustav Kalbe, Head of Sector - Photonics, Information Society andMedia, Directorate General, European Commission 13.45 to 14.00 hrs.OPERA 2015: Aims, Results and link to Photonics 21Markus Wilkens, VDI 14.00 to 14.20 hrs.European Photonics Industry Landscape Bart Snijders, TNO 14.20 to 14.40 hrs.European Photonics Research Landscape Marie-Joëlle Antoine, Optics Valley 14.40 to 15.00 hrs.Resources for Photonics Development Peter Van Daele, IMEC Break – 15.00 to 15.15 hrs. 15.15 to 15.35 hrs.Towards the Future on Optics and Photonics ResearchDr. Eugene Arthurs, SPIE Europe (UK)15.35 to 16.15 hrs.Strategic Opportunities for R&D in EuropeMike Wale, Bookham, UK16.15 to 16.45 hrs.A Sustainable Business Model for Optics andPhotonicsDavid Pointer, Managing Director, Point Source (Pending)16.45 to 17.15 hrs.Final Open DiscussionChaired by: Gustav Kalbe, Head of Sector - Photonics, InformationSociety and Media, Directorate General, European Commission8Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747Photonics Innovation Village Tuesday to Thursday during Exhibition HoursThe Photonics Innovation Village will showcase the latest projects and breakthroughs from optics-photonics researchers at universities, research centres and start-up companies. This is a great opportunity to see how EU R&D and project funds are being used by some of the great young innovators in Europe.A window on creative products developed by universities and research centres. Under the patronage of the European Commission, fi fteen entrants from across Europe complete to win categories ranging from Best Marketability to Best Design, Best Technology, and Best Overall Product.Low power remote sensing system Y. A. Polkanov, Russia (Individual work)New approach is based on use of a low-power radiation source with specifi ed gating, when time of source radiation interruption is equal to a pulse duration of ordinary lidar. We propose to reconstruct the average values of these characteristics over the parts commensurable with the sounding path length. As scanning systems is offered with speed of circular scanning is determined by time of small linear moving of a laser beam. It allows to predict a reduction of the meteorological situation stability from an anticipatory change of the revealed structure character of optical heterogeneities of a atmosphere ground layer atmosphere.Point of care sensor for non-invasive multi-parameter diagnostics of blood biochemistry Belarusian State University, Belarus; Ruhr-Universität-Bochum, Germany; Second Clinical Hospital, Belarus Compact fi bre optical and thermal sensor for noninvasive measurement of blood biochemistry including glucose, hemoglobin and its derivatives concentrations is developed as a prototype of the point-of-care diagnosticdevices for cardiologic, tumour and diabetic patients. Integrated platform for data acquisition, data processing and communication to remote networks has been developed on the pocket PC.Polarization-holographic gratings and devices on their basisLaboratory of Holographic Recording & Processing of Information, Institute of Cybernetics, GeorgiaWe have developed the technology of obtaining of polarization-holographic gratings that have anisotropic profi le continuously changing within each spatial period and also the technology of obtaining of polarization-holographic elements on the basis of such gratings. Special highly effective polarization-sensitive materials developed by us are used for obtaining such gratings and elements. We can present samples of gratings and elements and give a demonstration of their work.Ultra-miniature omni-view camera moduleImage Sensing group of the Photonics Division of CSEM (Centre Suisse d’Electronique et de Microtechnique), SwitzerlandA live demonstration with a working prototype of a highly integrated ultra-miniature camera module with omni-directional view dedicated to autonomous micro fl ying devices is presented.Femtosecond-pulse fi bre laser for microsurgery and marking applicationsMultitel, BelgiumMultitel presents a new prototype of an all-fi bred femtosecond amplifi ed laser. The device has been specifi cally developed for micromachining and microsurgery applications and operates at 1.55µm, which corresponds to a high absorption peak of water (molecule contained in large quantity in living tissue and cells). Since no free-space optics is used for pulse compression or amplifi cation the prototype is compact and very stable. Moreover, the seed laser source has a high repetition rate therefore enabling multiphoton absorption applications and use in multi-pulse and burst modes.Flexible artifi cial optical robotic skinsDepartment of Applied Physics and Photonics (VUB-TONA) and Robotics & Multibody Mechanics Research Group (VUB-R&MM) of the Vrije Universiteit Brussel, Belgium; Thin Film Components Group (UG-TFCG) and Polymer Chemistry & Biomaterials Research Group (UG-PBM) of the Universiteit Gent, BelgiumWe will present a paradigm shifting application for optical fi bre sensors in the domain of robotics. We propose fi bre B ragg gratings (FB Gs) written in highly-birefringent microstructured optical fi bres integrated in a fl exible skin-like foil to provide a touch capability to a social pet-type robot for hospitalized children named “Probo”. The touch information is complementary to vision analysis and audio analysis and will be used to detect where Probo is being touched and to differentiate between different types of affective touches such as tickling, poking, slapping, petting, etc.Co-Sponsored by: Location: Galleri de Marbre Under the patronage of the European Commission, Photonics Unit Join us for the Photonics Innovation Village Awards 2008 which will take place on Wednesday, 9th April 2008, from 17.00 hrs. in the Galerie de Marbre.3D tomographic microscopeLauer Technologies, FranceThe 3D tomographic microscope generates 3D high-resolution images of non-marked samples. The demonstration will show 3D manipulation of images obtained with this microscope.Polar nephelometerInstitute of Atmospheric Optics of Tomsk, RussiaMaterial comprising a matrix, apatite and at least one europium composite compound with particle medium sizes more 4-5 micron. The composition for the production of the material comprises (wt. %) apatite 0.01-10.0; composite compound. 0.01-10.0, and the balance is a matrix-forming agent, such as a polymer, a fibre, a glass-forming composition, or lacquer/adhesive-forming substance.High speed Stokes portable polarimeterMIPS Laboratory of the Haute Alsace University, FranceThe implementation of an imaging polarimeter able to capture dynamic scenes is presented. Our prototype is designed to work at visible wavelengths and to operate at high-speed (a 360 Hz framerate was obtained), contrary to commercial or laboratory liquid crystal polarimeters previously reported. It has been used in the laboratory as well as in a natural environment with natural light. The device consists of commercial components whose cost is moderate. The polarizing element is based on a ferroelectric liquid crystal modulator which acts as a half-wave plate at its design wavelength.Diffractive/refractive endoscopic UV-imaging system Institut für Technische Optik (ITO) of the University of Stuttgart, GermanyWe present a new optical system with an outstanding high performance despite of demanding boundary conditions of endoscopic imaging to enable minimal invasive laser-based measurement techniques. For this purpose the system provides a high lens speed of about 10 times the value of a conventional UV-endoscope, a multiple broad band chromatic correction and small-diameter but wide-angle access optics. This was realized with a new design concept including unconventional, i.e. diffractive components. An application are UV-LIF-measurements on close-to-production engines to speed up the optimization of the combustion and produce aggregates with less fuel consumption and exhaust gases like CO2.Light-converting materials and composition: polyethylene fi lm for greenhouses, masterbatch, textile, sunscreen and aerosolUsefulsun Oy, Finland; Institute Theoretical and Experimental Biophysics Russian Academy of Sciences, RussiaThe composition for the production of the material comprises (wt. % ) composite compound (inorganic photoluminophore particles with sizes 10-800nm) -0.01-10.0; coordination compound of metal E (the product of transformation of europium, samarium, terbium or gadolinium ) - 0,0-10,0 and the balance is a matrix-forming agent, such as, a polymer, a fi ber, a glass-forming composition or gel, aerosol, lacquer/adhesive-forming substance. The present invention relates to composite materials, in particular to light-converting materials used in agriculture, medicine, biotechnology and light industry.HIPOLAS - a compact and robust laser sourceCTR AG (Carinthian Tech Research AG), AustriaThe prototype covers a robust, compact and powerful laser ignition source for reciprocating gas and petrol engines that could be mounted directly on the cylinder.We have developed a diode pumped solid-state laser with a monolithic Neodymium YAG resonator core. A ring of 12 high power laser diodes pumps the resonator. Due to the adjustment-free design, the laser is intrinsically robust to environmental vibrations and temperature conditions. With overall dimensions of Æ 50 x 70 mm the laser head is small enough to be fi tted at the standard spark plug location on the cylinder head. The dimensions can be reduced for future prototypes. OLLA OLED lighting tile demonstratorOLLA project-consortiumOLED technology is not only a display technology but also suited for lighting purposes. The OLLA project has the goal to demonstrate viability of OLED technology for general lighting applications. The demonstrator tile shown here combines the current results of the project : a large sized (15x15cm2) white OLED stack with high effi cacy (up to 50 lm/W), combined with long lifetime (>10.000 hours).During Photonics Europe, we will show several OLEDs tiles in different colors. The demonstrators are made by the OLLA project-consortium members. The large OLED demonstrator tile was fabricated on the inline tool at Fraunhofer IPMS in Dresden.Analyze-IQNanoscale Biophotonics Laboratory, School of Chemistry,and Machine Learning / Data Mining Group, Department ofInformation Technology, National University of Ireland, Galway, IrelandAnalyze-IQ is the next generation spectral analysis software tool for optical and molecular spectroscopies such as Raman, Mid-IR, NIR, and Fluorescence. The Analyze-IQ software is based on patented machine-learning algorithms and a model based approach in which the software learns to recognise the relevant information in complex mixtures from sample spectra. It then uses these models to rapidly and accurately identify or quantify unknown materials such as narcotics and explosives, in complex mixtures commonly found in law-enforcement and industrial applications.Micro-optical detection unit for lab-on-a-chipDepartment of Applied Physics and Photonics (VUB-TONA) of the Vrije Universiteit Brussel, BelgiumWe present a detection unit for fl uorescence and UV-VIS absorbance analysis in capillaries, which can be used for chromatography. By usinga micro-fabrication technology (Deep Proton Writing) the optics aredirectly aligned onto the micro-fl uidic channel. This integration enables the development of portable and ultimately disposable lab-on-a-chip systems for point-of-care diagnosis. We will explain the working principle of our detection system in a proof-of-concept demonstration set-up while focusing on some specifi c applications of micro-fl uidics in low-cost lab-on-a-chip systems.Photonics Innovation Village。
太赫兹 硅 超表面

太赫兹硅超表面英文回答:Terahertz metasurfaces have emerged as promising platforms for manipulating and controlling electromagnetic waves due to their subwavelength feature sizes and unique optical properties. Silicon, with its high refractive index and low optical loss, is a widely used material for fabricating terahertz metasurfaces. By carefully designing the shape, size, and arrangement of silicon structures, it is possible to achieve tailored optical responses, such as focusing, beam steering, and polarization conversion, at terahertz frequencies.One of the key advantages of silicon terahertz metasurfaces is their compatibility with standard silicon fabrication processes, which enables large-scale and cost-effective manufacturing. Additionally, the high refractive index of silicon allows for the realization of subwavelength structures with strong electromagneticresonances, leading to enhanced optical performance.Various types of silicon terahertz metasurfaces have been demonstrated, including periodic, aperiodic, andchiral structures. Periodic metasurfaces are composed of regularly arranged silicon elements, while aperiodic metasurfaces feature irregular or random arrangements. Chiral metasurfaces exhibit handedness-dependent optical responses, which can be utilized for polarization control and circular dichroism.The applications of silicon terahertz metasurfaces are diverse, ranging from imaging and sensing to communication and spectroscopy. For instance, metasurface lenses can be designed to focus terahertz waves, enabling high-resolution imaging and non-destructive testing. Metasurface absorbers can be employed for selective absorption and detection of terahertz radiation, with potential applications in chemical sensing and environmental monitoring. Moreover, metasurface antennas can be used for beam steering and polarization control, which are crucial for terahertz wireless communication systems.中文回答:太赫兹硅超表面由于其亚波长特征尺寸和独特的光学特性,已成为操纵和控制电磁波的有前途的平台。
酷夏来袭,高科技产品帮你防暑降温

酷夏来袭,高科技产品帮你防暑降温作者:朝暮来源:《科学之友》2021年第07期这款冷感毛巾采用三层独特构造、三维立体编织工艺,由高科技纤维面料制作而成,具有吸汗排汗、水分循环、调节蒸发三大功能。
面料的高密度网状结构能将水分子深度吸收到纤维内核,然后将其压缩到面料的纤维空隙中。
当产品受到外力(例如甩动)时,会因水汽大量蒸发而达到冷却效果。
用户只需将毛巾充分打湿拧干,然后在空中甩动几下,便可实现降温,体验到凉爽感。
此外,毛巾面料中不包含化学制品、胶剂、晶体等对皮肤有刺激的材质,可以在有效降低皮肤表面温度的同时,起到防菌防臭、阻隔紫外线的作用。
美国一家公司发明的Veskimo降温背心采用水冷设计,类似于穿着厚厚航天服的宇航员用来防止过热的装备。
这款产品主要面向摩托车驾驶者和需要在高温下工作的人。
此款背心有两个版本,比较笨重的经典版本配有由电池供电的12伏特水泵和一个外置水箱。
水箱中的冷水由水泵推送到背心的水管里不断流通,以便将身体的核心温度维持在较低的水平,一次最多可维持6个小时。
便携版本与经典版本原理相同,只不过水箱被设计成背包形式,有效保冷时间相对较短。
头顶烈日出门不光难受,还会要命。
医学专家指出,人在超过35 ℃的户外湿热环境中毫无防护地停留6小时以上,可能会有生命危险。
在烈日照射下,遮阳伞具有一定的隔热效果,但时间久了也无济于事。
国外一家公司推出一款名为“飓风伞”的产品,它不仅能有效抵挡危害人体的紫外线,更特别的地方在于雨伞内部安装有可折叠的电动风扇,只要按下把手底部的按钮,风扇就可以送来凉爽的微风,帮助人体降温。
谁说空调就一定是挂在墙上或者笨笨地呆在墙角?冬天的时候可以随时抱着热水袋,夏天的时候也可以随身带着空调。
这款便携式空调外形小巧,形似音箱,整体是由含有矿物纤维的纳米材料制成,自带一个710毫升的水箱,不需要使用化学物质(如氟),只需清水,它便能够开始工作。
在空调中注入清水后,由于水的蒸發和纳米材料的挥发作用,水分散发的湿气可以在小范围环境内达到自然降温的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:h ep-ph/21107v17Oct22INFNCA-TH0206Ultra high energy photon showers in magnetic field:angular distribution of produced particles.Massimo Coraddu,1,2,∗Marcello Lissia,2,1,†and Giuseppe Mezzorani 1,2,‡1Dipart.di Fisica dell’Universit`a di Cagliari,S.P.Sestu Km 1,I-09042Monserrato (CA),Italy 2Ist.Naz.Fisica Nucleare (I.N.F.N.)Cagliari,S.P.Sestu Km 1,I-09042Monserrato (CA),Italy (Dated:October 7,2002)Abstract Ultra high energy (UHE)photons can initiate electromagnetic showers in magnetic field.We analyze the two processes that determine the development of the shower,e +e −pair creation and synchrotron radiation,and derive formulae for the angular distribution of the produced particles.These formulae are necessary to study the three-dimensional development of the shower.I.INTRODUCTIONMagneticfields play a foundamental rˆo le not only for the acceleration and propagation of charged cosmic rays,but also for the absorption of neutral particles,photons and neutrinos, if the magneticfield is sufficiently strong or the particles have sufficiently high energy[1]. In particular,photons can initiate an electromagnetic shower in magneticfield which is analogous to the showers produced in matter;the main features of such showers(longitudi-nal development and particles energy spectra)has been analyzed in Refs.[2,3]under the assumption that momenta be orthogonal to the magneticfield.Important examples of electromagnetic showers in strong magneticfields are theγand radio emission in pulsars[4]and blasars[5]in active galatic nuclei[6].Strong magnetic fields of the order of1012G can be found in the proximity of pulsars[7,8,9,10]:in magneticfield of this order of magnitude photons loose energy by radiating photons(photon splitting[11])or creating e+e−pairs[12,13]which feed the cascade by producing more bremsstrahlung photons.In suchfields even neutrinos radiate photons[14,15,16],create e+e−pairs[16,17,18]or even W particles[19].If the energy of the primary particle is sufficiently high,an electromagnetic shower can develop even in weakfields,such as those present in the interstellar medium or in the vicinity of stars and planets[20,21].A very important such a case is the shower produced by UHE(E>∼1018eV)photons in the magneticfield outside the earth atmosphere:thisearly shower influences the later atmospheric shower.These UHE photons are predicted by top-down theories as possible explaination of the experimental spectrum of ultra high energy cosmic rays[22,23,24,25,26]).In this paper we study the two processes that are the building block of the electromagnetic shower in magneticfield:synchrotron radiation by UHE electrons and e+e−pair production by UHE photons.In particular,we derive formulae for the angular distribution.The precise dependence of the angular distribution from thefield strength and from the energies of the particles is necessary to determine important features of the phenomena,such as the three-dimensional development and the lateral spreading.A foundamental question is whether the three-dimensional development of the shower could experimentally discriminate between UHE air showers originated from a primary pho-ton or from a primary proton(or heavier hadron)[21,27,28,29]and,therefore,discrim-inate between competing theories of the high energy tail of the cosmic ray spectrum.In fact,UHE photons start the shower well outside the atmosphere producing an additional lateral spread to the subsequent atmospheric shower relative to a shower originated by a proton.In addition a shower that begins outside the atmosphere is less affected by the Landau-Pomeranchuk-Migdal effect[30,31,32,33].Another context where it is important the precise knowledge of the angular distribution of the particles produced in the electromagnetic shower is the modeling of the pulsar emission. For instance in the polar cup model proposed by Sturrock[4,7,9]high energy electrons, due to the intense(∼1012G)magneticfields,follow thefield lines to minimize synchrotron radiation energy losses:photons are emitted in a narrow cone nearly parallel to thefield lines.The contribution of pair production to the photon interaction length depends on the magneticfield component orthogonal to the photon momentum:since momenta of the particles in the shower are nearly parallel to thefield,the precise emission angle might be critical for the shower development.In the following Section II we introduce the notation,derive formulae for the synchrotron radiation(magnetic bremsstrahlung)by UHE electrons/positrons,discuss these formulae and show some relevant plots.In Section III we make the analogous derivations and discus-sion for e+e−pair creation by UHE photon in magneticfield.The last Section IV is reserved to our conclusions.II.SYNCHROTRON RADIATIONSynchrotron radiation(or magnetic bremsstrahlung)from ultrarelativistic electrons has been studied by many authors,see for instance Refs.[13,34,35,36,37],where many results mediated over the angular distribution can be found.For our study of the angular dependence of both for the synchrotron radiation and the pair production we shall follow the approach of Berestetskii-Lifshitz-Pitaevskii-Landau(BLPL)[35].In the following discussion we shall assume that the electron momentum p is perpendicular to the magneticfield H: eventually we discuss results for the general case in the last section(conclusions).We recall some of the relevant notation.The characteristic parameter isκ=Hmc2,(1)where H is the stationary magnetic field,m and E the electron mass and energy and H c is the critical fieldH c =m 2c 3(2π)3withV fi (t )=e d 3r ψ∗f αψi A∗=e √√dt =e 2(2π)2 +∞−∞dτ i Q +(t +τ/2)Q (t −τ/2) i e −iωτ,(3)where d 3k =ω2dωd Ω=ω2dωsin ϑdϑdϕwith ϑthe angle between k and p ,and ϕthe angle between H and the projection of k on the plane orthogonal to p .In Eq.(3)the probability can be expanded in powers of τ,since the main contribution comes from small values of τ,when there is superposition between the amplitudes.In fact the values of τfor which the superposition is significant can be evaluated using semiclassical arguments.For kinematical reasons ultra-relativistic electrons radiate in a narrow cone ϑ<∼m/E :the amplitudes for the emission sum coherently along a section of the classicalelectron path where the direction changes of an angle ϑ∼m/E ,i.e.,ω0τ∼m/E ,giving a formation timeτf ∼meH =1H =¯h H =1.29·10−21(H c /H )sec −1.(4)To leading order in ω0τ∼m/E the resulting non-polarized photon emission probability is:dw (2π)2 +∞−∞dτ E 2+E ′2EE ′ (5)×exp −i E 24τ2 ,where v is the initial electron velocity.The integration in dτof Eq.(5)yieldsdw πE 2+E ′2κE ′ 2/3 Φ(X ),(6a)whereX ≡2 E2E 2cos ϑ 1E ′2π ∞0dt cos xt +t 3dt d ¯h ωd cos ϑ=2α(1−u )X − um 2 1− 1−m 2(1−u )κ 2/3(8b)= 1+2(1−cos ϑ)E 2(1−u )κ 2/3(8c)where αis the fine-structure constant.In the ultrarelativistic limit it is convenient to use 2(1−cos ϑ)∼ϑ2∼(m/E )2as angular variable.Equations(6)or,equivalently,Eqs.(8)are our main new result,together with the anal-ogous result for pair creation,Eqs.(17),result which is presented in the next Section,i.e., the angular dependence of the produced particles.The integral of Eq.(8)in d cosϑyields the differential emission probability per unitenergy:dwE 2 ∞ξΦ(x)dx+E2+E′2ξ (9a)whereξ≡ ωκ(1−u) 2/3.(9b) The result in Eqs.(9)agrees with previous calculations[13,30,35,37].Other important quantities in the study of the electromagnetic shower in magneticfield are the differential energy loss for unit time and unit of photon energy:dE¯h(mc2)2u ∞ξΦ(x)dx+1+(1−u)2ξ ,(10) whereξis given in Eq.(9b),and the total energy loss per unit time(emissivity):dE¯h (mc2)2κ2(1+κx3/2)4xΦ′(x)dx.(11)Note that,as expected from the lack of other dimensional scales in the limit of E≫m, the spectral emissivity in Eq.(10)depends only fromκand u(scaling),and the emissivity in Eq.(11)depends only from the characteristic parameterκ,apart from the overall factor (mc2)2.Before studying the angular dependence of the emitted photons let us discuss the total energy loss as a function ofκ,Eq.(11),and the energy dependence of the differential energy loss,Eq.(10).Forκ≪1the energy loss goes to zero asκ2,therefore we limit our discussion to the more physically important caseκ>∼1.The main feature of Eqs.(8)and(10)which determines both the energy and the angular dependence is the presence of the Airy functionΦ(x)that goes to zero exponentially for large values of x.Only for the purpose of this discussion we use x<∼1as a simple threshold value(note thatΦ(1)/Φ(0)=0.381,whileΦ(2)/Φ(0)=0.0984),i.e.,we assume for the purpose of this discussion that most of the photons be emitted for value of x<∼1(the discussion does not change if we use2or3intestead of1),and use the ultrarelativistic limit 2(1−cosϑ)∼ϑ2∼(m/E)2≪1.According to this criterion the differential energy loss per unit of photon energy,Eq.(10), is large whenξ<∼1,and,therefore,most of the photons are emitted with a fractional energyu that verify the conditionu<∼κum 2<∼ u 2/3−1=mκ(1−u)/u.In other words photons with large energy fraction,u∼1,can be emitted within a smaller angle than photons of low energy u≪1.Figure(2)demonstrate this effect by showing the probability of emission as function of the variablebution can also be found in [13,30,34,37,39,40,41].The calculationfollows closely the steps in the previous Section with the necessary formal differences.The characteristic parameter χis analogous to κin Eq.(1)with the substitution of the incoming-electron energy E with the incoming-photon energy ¯h ω:χ=Hmc 2:(15)we use a different notation for clarity.Now the four-momenta of the incoming photon and of the outcoming electron and positron are K =(ω,k ),P −=(E −,p −),and P +=(E +,p +).As in the previous section,we work in the limit when incoming and outgoing particles are relativistic and the field is relatively low,H ≪H c .After performing the cross-channel transformations (E,p )→(−E +,−p +),(E ′,p ′)→(E −,p −),(ω,k )→(−ω,−k ),and substituting the emitted-photon phase space with the one of the created positron (or electron),we obtain the analogous of Eq.(5)for the probability of pair production by an unpolarized high-energy photon that propagates othogonal to the magnetic field (the probability is summed over the final spins and integrated over the electron direction,if we measure the positron energy:the rˆo les of electron and positron can be exchanged).This formula can again be expanded in the formation time τf ,Eq.(4),and the result is:dwπ(E +2+E −2)E +χωE − 2/3 Φ(X )(16a)whereX ≡2 E +2E 2+ cos ϑ ω2dtdE +d cos ϑ=2α(1−v )X +v 1m 2 1− 1−m 2v (1−v )χ 2/3(17b)= 1+2(1−cos ϑ)E 2+v (1−v )χ2/3,(17c)and2(1−cosϑ)∼ϑ2∼(m/E)2the convenient angular variable in the ultrarelativistic limit.As in the case of the synchrotron radiation,we can cross-check our result by integrating Eq.(17)over the polar angle and comparing the differential emission probability per unit energy with Refs.[13,30,34,35,37,41]:dwω 2 ∞ξΦ(x)dx−E2++E2−ξ (18a)whereξ≡ 1E+E− 2/3= 1dtdv =α¯hω∞ξΦ(x)dx−v2+(1−v)2ξ (19)withξdefined in Eq.(18b),while the total pair production probability is:dw¯h (mc2)2x11/4(x3/2−4/χ)1/2Φ′(x)dx.(20)Note again that the differential emission probability depends only fromχand v and the total pair production probability only fromχ(scaling),apart the dimensional constant in front(mc2)2,as a consequence of the lack of other dimensional scales in the limit of E≫m. Note also that the pair production probability,differently from the synchrotron emission,is exponentially suppressed in the limit ofχ≪4,since the Airy function decays exponentially for large values of its argument.The physical cause of this suppression is the presence of a threshold for pair creation.In the following discussion we consider the rangeχ>∼4.As in the case of the synchrotron radiation the main feature of Eqs.(17)and(19)that determines both the energy and the angular dependence is the exponential suppression of the Airy functionΦ(x)with growing x;we use the threshold value x<∼1and work in the ultrarelativistic limitϑ∼m/E≪1.In addition the pair creation probability is symmetric in the two variable E+and E−,i.e.,is symmetric respect to the point v=1/2.In this case the chosen criterion imples that the differential energy loss per unit of elec-tron/positron energy,Eq.(19),is large whenξ<∼1,and,therefore,most of the e+e−are emitted with a fractional energy v that verify the condition− 4−12<∼ 4−1whenχ>4,i.e.,e+e−can be emitted with one of them carrying a large fraction of the photon energy only for relatively large values ofχ.Figure3summarizes this discussion by showing the probability of emission as function of the energy fraction with the area arbitrary normalized to1for different values ofχ.The smallest value ofχ=0.1(curve 1)is strongly peaked at v=1/2,while the largest value ofχ=100(curve6)has a much flatter distribution with peaks at values close to v=0and v=1,in spite of the fact that the distribution must go to zero at exactly v=0and v=1.The angular distribution is described by exactly the same constrain found for the syn-chrotron radiationX= 1+ ϑE v(1−v)χ 2/3<∼1,(22) which implies that the energy-dependent angle within which most of the pairs are emittedis:ϑE(v(1−v)χ)2/3−1=(1−v)vχ.Inother words pairs that share equally their energy v∼1/2can be emitted within a larger angle than pairs where one of the two particles carries a large part of the energy,v∼1or v∼0.Figure(4)demonstrates this effect by showing the probability of emission as function of the variable2(1−cosϑ)(E/m)2∼ϑ2;the distribution has been arbitrary normalized suchthat it is equal to1atϑE/m=10−1.Going from an asymmetric distribution of the energy, v=0.1,(curves1and3)to a symmetric one,v=0.5,(curves2and4)the angle becomes wider;the same happens whenχincreases from4(curves1and2)to100(curves3and4).IV.CONCLUSIONSIn this paper we have studied the angular dependence of photons emitted by UHE elec-trons and of the e+e−pairs emitted by UHE photons in a static magneticfield:this de-pendence is needed for detailed studies of the electromagnetic cascade in magneticfields, such as those initiated by UHE cosmic rays in the geomagneticfield,or by charged particles emitted by pulsar.The main results are shown in Eqs.(8)for the magnetic bremsstrahlung and in Eqs.(17) for the pair production.For simplicity we have sketched the derivation of these formulae in the case of propagation in the plane orthogonal to the magneticfield,but it is possible to show,as we have explicitely verified by performing the appropriate Lorentz transformations, that the same formulae are valid in the general case if H is substituted with H⊥,the component of the magneticfield perpendicular to the propagation.These results are also plotted as function of the angle for different values of the fractional energy in Figs.2and4and briefly discussed in text.The angle becomes wider for larger values of the characteristic parameter and for smaller energy fraction(synchrotron radiation) or more symmetric energy fraction(pair production).We have verified that our results,when integrated over the emission angle,reproduce the known results for the differential in the energy and total probability of emission.AcknowledgmentsThis work is partially supported by M.I.U.R.(Ministero dell’Istruzione,dell’Universit`a e della Ricerca):“Cofinanziamento”P.R.I.N.2001.[1]V.L.Ginzburg,V.A.Dogiel,V.S.Berezinsky,S.V.Bulanov and V.S.Ptuskin,“AstrophysicsOf Cosmic Rays,”Amsterdam,Netherlands:North-Holland(1990)534p.[2] A.I.Akhiezer,N.P.Merenkov and A.P.Rekalo,J.Phys.G20,1499(1994)[Phys.Atom.Nucl.58,440(1995YAFIA,58,491-500.1995)].[3]V.Anguelov and H.Vankov,J.Phys.G25,1755(1999)[arXiv:astro-ph/0001221].[4]P.A.Sturrock,Astrophys.J.164,529(1971).[5]W.Bednarek,J.G.Kirk and A.Mastichiadis,Astron.Astrophys.307,L17(1996)[arXiv:astro-ph/9601131].[6]W.Bednarek and R.J.Protheroe,Mon.Not.Roy.Astron.Soc.302,373(1999)[arXiv:astro-ph/9802288].[7]J.K.Daugherty and I.Lerche,Phys.Rev.D14,340(1976).[8]J.K.Daugherty and A.K.Harding,Astrophys.J.252,337(1982).[9]ov and D.B.Melrose,Austral.J.Phys.48,571(1995)[arXiv:astro-ph/9506021].[10]M.G.Baring and A.K.Harding,Astrophys.J.547,929(2001)[arXiv:astro-ph/0010400].[11]ov,Astrophys.J.572,L87(2002)[arXiv:astro-ph/0205018].[12]J.K.Daugherty and A.K.Harding,Astrophys.J.273,761(1983).[13]M.G.Baring,Mon.Not.Roy.Astron.Soc.235,51(1988).[14] A.A.Gvozdev,N.V.Mikheev and L.A.Vassilevskaya,Phys.Rev.D54,5674(1996)[arXiv:hep-ph/9610219].[15] A.N.Ioannisian and G.G.Raffelt,Phys.Rev.D55,7038(1997)[arXiv:hep-ph/9612285].[16] A.A.Gvozdev,A.V.Kuznetsov,N.V.Mikheev and L.A.Vassilevskaya,Phys.Atom.Nucl.61,1031(1998)[Yad.Fiz.61,1125(1998)][arXiv:hep-ph/9710219].[17] A.V.Borisov,A.I.Ternov and V.Ch.Zhukovsky,Phys.Lett.B318,489(1993).[18] A.V.Kuznetsov and N.V.Mikheev,Phys.Lett.B394,123(1997)[arXiv:hep-ph/9612312].[19] A.Erdas and M.Lissia,arXiv:hep-ph/0208111.[20] F.A.Aharonian,B.L.Kanevsky,and V.A.Sahakian,J.Phys.G17,1909(1991).[21] C.P.Vankov and P.V.Stavrev,Phys.Lett.B266,178(1991).[22]V.Berezinsky and A.Vilenkin,Phys.Rev.Lett.79,5202(1997)[arXiv:astro-ph/9704257].[23]V.Berezinsky,M.Kachelriess and A.Vilenkin,Phys.Rev.Lett.79,4302(1997)[arXiv:astro-ph/9708217].[24]V.Berezinsky,Nucl.Phys.Proc.Suppl.70,419(1999)[arXiv:hep-ph/9802351].[25]V.Berezinsky,Nucl.Phys.Proc.Suppl.81,311(2000).[26] A.V.Olinto,Nucl.Phys.Proc.Suppl.110,434(2002)[arXiv:astro-ph/0201257].[27]Mahrous A.and Inoue N.,“Cascading parameters of EHE primary photons in the Sun’s mag-neticfield,”Prepared for27th International Cosmic Ray Conference(ICRC2001),Hamburg, Germany,7-15Aug2001[28]W.Bednarek,arXiv:astro-ph/9911266.[29]W.Bednarek,“Interaction of EHE gamma-rays with the magneticfield of the sun,”Preparedfor26th International Cosmic Ray Conference(ICRC99),Salt Lake City,Utah,17-25Aug 1999[30]Kasahara K.,“The LPM and geomagnetic effects on the development of air showers in theGZK cutoffregion,”Presented at ICRR International Symposium on Extremely High Energy Cosmic Rays:Astrophysics and Future Observatories,Tanashi,Japan,25-28Sep1996[31]T.Stanev and H.P.Vankov,Phys.Rev.D55,1365(1997)[arXiv:astro-ph/9607011].[32]Shinozaki K.et al.,“Properties of EHE gamma-ray initiated showers and their search byAGASA,”Prepared for27th International Cosmic Ray Conference(ICRC2001),Hamburg, Germany,7-15Aug2001[33]W.Bednarek,arXiv:astro-ph/0109015.[34]T.Erber,Rev.Mod.Phys.38,626(1966).[35]V.B.Berestetskii,E.M.Lifshitz,L.P.Pitaevskii,and ndau,Quantum Electrody-namics,Pergamon Press,Second edition,(1982).[36]J.S.Schwinger,“Particles,Sources,And Fields.Vol.3,”REDWOOD CITY,USA:ADDISON-WESLEY(1989)318P.(ADVANCED BOOK CLASSICS SERIES).[37] A.A.Sokolov,I.M.Ternov and C.W.Kilmister,“Radiation From Relativistic Electrons,”NEW YORK,USA:AIP(1986)312P.(AIP TRANSLATION SERIES).[38]M.Abramowitz and I.A.Stegun,“Handbook of Mathematical Functions,”Dover(1964).[39]J.S.Toll,Ph.D.thesis,Princeton Univ.(1952)(Unpublished).[40]H.Robl,Acta Phys.Austriaca6,105(1952).[41]W.Y.Tsai and T.Erber,Phys.Rev.D10,492(1974).carried by the photon u=ω/E,Eqs.(10),for several values of the characteristic parameter κ=(H/H c)(E/m):curve1(2,3,4,5,6)corresponds toκ=100(10,5,2,1,0.5).All curves are normalized such that the area is1.values of the fractional energy carried by the photon u=ω/E and of the characteristic parameter κ:curve1corresponds to u=0.5andκ=0.1;curve2to u=0.5andκ=1;curve3to u=10−3 andκ=0.1;curve4to u=10−3andκ=1.The angular variable isχ=(H/H c)(ω/m):curve1(2,3,4,5,6)corresponds toχ=0.1(0.5,1,4,10,100).All curves are normalized such that the area is1.FIG.4:Angular distribution of probability of emitting a positron(electron)with fractional energy v by a UHE photon,Eqs.(17),for two values of v and of the characteristic parameterχ=1:curve 1corresponds to v=0.1andχ=4;curve2to v=0.5andχ=4;curve3to v=0.1andχ=100; curve4to v=0.5andχ=100.The angular variable is。