微积分上册习题课用题

合集下载

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案习题五(A)1.求函数 f x ,使 f ′ x x 23 x ,且 f 1 0 .解:f ′ x x 2 5x 6 1 5 f x x3 x 2 6 x C 3 2 1 5 23 f 1 0 6 C 0 C 3 2 6 15 23 f x x3 x 26 x 3 2 6 12.一曲线y f x 过点(0,2),且其上任意点的斜率为x 3e x ,求 f x . 2 1解:f x x 3e x 2 1 2 f x x 3e x C 4 f 0 2 3 C 2 C 1 1 2 f x x 3e x 1 4 ∫ 23.已知f x 的一个原函数为 e x ,求 f ′ xdx . 2 2解:f x e x ′ 2 xe x∫ f ′ xdx 2 f x C 2 xe x C dx4.一质点作直线运动,如果已知其速度为3t 2 sin t ,初始位移为s0 2 ,求s 和t 的函dt数关系.解:S t 3t 2 sin t S t t 3 cos t CS 0 2 1 C 2 C 1 S t t 3 cos t 15.设ln f x′ 1 ,求f x . 1 x2解:ln f x′ 1 ln f x arctan x C11 x2 f x earctan x C1 Cearctan x C gt 0 1 16.求函数f x ,使f ′ x e 2 x 5 且f 0 0 . 1 x 1 x 2 1 1 1解:f x e x 5 f x ln x 1 arcsin x e 2 x 5 x C 1 x 1 x 2 2 1 1 f 0 0 0 0C 0 C 2 2 1 2x 1 f x ln x 1 arcsin x e 5x 2 27.求下列函数的不定积分x x2 ∫ ∫ dt(1)dx (2)x a t 1 x2 1 ∫ ∫x m n(3)x dx (4)dx 2 1 x4 1 1 sin 2 x(5)∫x 2 1 dx (6)∫ sin x cos x dx 1 cos 2 x ∫ ∫ cos 2 x (7)dx (8)dx sin x cos x 1 cos 2 x ∫ sin (10)cos 2 sin 2 x dx ∫ cos 2 x x(9)2 2 dx x cos x 2 cos 2 x 1 2x 1 ∫ sin ∫e e (11)dx (12)dx 2 x cos x 2 x 1 2 × 8x 3 × 5x 2 x 1 5 x 1(13)∫ 8x dx (14)∫ 10 x dx e x x e-x (15)∫ x dx ∫ (16)e x 2 x 1 3x dx 1 x 1 x x 2 1 1 x 2 5 x(17)∫ dx 1 x 1 x (18)∫ x 1 x2 dx 1 x2 1 cos 2 x(19)∫ 1 x4 dx (20)∫ 1 cos 2 x sin2 x dx x3 x 1 x4 x2(21)∫ x 1 x 2 2 dx (22)∫ 1 x 2 dx 1 3 35 ∫ 2 2解:(1)x 2 x 2 dx x 2 x 2 C 3 5 1 d t 1 ∫ 1 2(2). 1 t 1 2 C a a t 1 2 n nm ∫ x m dx m x m C m ≠ n m ≠ 0 nm n ∫(3)x m dx In x C m n dx x C ∫ m0 2(4)1 ∫ x2 1 dx x 2 arctan x C x 2 x 2 1 x 2 1 x3(5)∫ x 1 2 dx 3 x 2 arctan x C sin 2 x cos 2 x 2 sin x cos x sin x cos x 2(6)∫ sin x cos x dx ∫ sin x cos x dx ∫ sin x cos xdx sin x cos x C cos 2 x sin 2 x(7)∫ sin x cos x dx cos x sin xdx ∫ sin x cos x C 1 cos 2 x ∫ 2 cos ∫ cos 1 1 1 x(8)2 dx 2 1 dx tan x C x 2 x 2 2 cos 2 x sin 2 x 1 1(9)∫ sin 2 x cos 2 x dx 2 ∫ sin x cos 2 x dx cot x tan x C cos x 1 1 cos 2 x cos x cos 2 x(10)∫ 2 2 dx 2 2 1dx ∫ 1 1 x sin x sin 2 x C 2 4 cos 2 x sin 2 x cos 2 x sin 2 x ∫ ∫ cos 1(11)2 2 dx 2 2 dx 2 tan x C sin x cos x x ∫(12)e x 1 dx e x x C x 5 x 5(13)2 dx 3 dx 2 x 3 8 C ∫ ∫ 8 5 ln 8 x x(14)2 dx dx ∫ 5 ∫ 1 1 1 2 x 1 5 2 x C 5 2 ln 5 5 ln 2(15)e x dx e x ln x C ∫ 1 x ∫ 2x 3e x 6x(16)e x6 x 2 x 3e x dx e x C ln 2 l ln 3 ln 6 1 x 1 x ∫ ∫ 1(17)dx 2 dx 2 arcsin x C 1 x 2 1 x2 x2 1(18)∫ dx 1 x 2 ln x 5 arcsin x C 5 x 2 1 x 2 ∫ 1(19)dx arcsin x C 1 x2 1 cos 2 x 1 1 ∫ 2 cos ∫ 1 x(20)dx 1dx tan x C 2 x 2 cos 2 x 2 2 x x 2 1 1 1 1 1 ∫ ∫ 1(21)dx 2 x dx ln x arctan x C x 2 1 x 2 x 1 x2 x x 4 1 x 2 1 2 2 x3(22)∫ 1 x 2 d x x 2 2 ∫ 2 1 x dx 3 2 x 2 arctan x C8.用换元积分法计算下列各题. x4(1)∫ x2 dx ∫ (2)3x 28 dx .。

微积分课后题答案习题详解

微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。

微积分作为数学中的基础学科,更是如此。

本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。

课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。

答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。

答案:y′=e+13.求f(x)=|x−2|的导函数。

大学一年级上学期-微积分课后练习及答案-4-4-定积分的计算

大学一年级上学期-微积分课后练习及答案-4-4-定积分的计算

dx x2 + 5x +1
t
3
− ∫1
1
t2
dt + 5t
+
1
=
3
−∫1
d(t + 5) 2
(t + 5 )2 − 21 24
1
= − ln t + 5 + t 2 + 5t + 1 3 = ln( 7 + 7 ) − ln 9 = ln 7 + 2 7
2
1
2
2
9
π
(8) ∫0 sin3 x − sin5 xdx
解:
e2
∫1 x
dx 1 + ln x
=
e2
∫1
d(1 + ln x) 1 + ln x
=2
e2
1 + ln x = 2(
1
3 − 1)
(3)
∫ 2ln 2 dx
ln 2 e x − 1
解:
∫ 2ln 2 ln 2
e
dx x−
1
=
∫ 2ln 2 ln 2
1
−ex +e ex −1
x
=
∫ 2ln 2 ln 2
《微积分 A》习题解答
1
(6) ∫ (1 − x 2 )3 dx 0
1
解: ∫ 0
π
(1 − x 2 )3 dx = ∫ 2 0
(1 − sin 2
t)3
cos tdt
π
=∫ 2 0
cos 4
tdt
=
3⋅ 4
1 2
⋅π 2
=
3π 16

微积分课后题答案习题详解

微积分课后题答案习题详解

微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

微积分上册试题及答案

微积分上册试题及答案

dy
dt dx
பைடு நூலகம்
t4 ln t
2
t
2t
t 4 ;
dx ln t
d 2 y 4t3 4t2 ln t ; dx2 t
d 2 y 4e2 dx 2
t e
ln t
2、 求不定积分 I
x2 dx .
x 1
I
3
1
1
[( x 1) 2 2(x 1) 2 (x 1) 2 ]dx 或(令
x 1 u)I 2
(u4 2u2 1)du
2 (x
5
1) 2
4
(x
3
1) 2
2( x
1
1) 2
C
5
3
1、 求定积分 I
2
(|
x
|
x)
sin 2
xdx
2
I
2
|
x
|
sin 2
xdx
2
2 x sin 2 xdx
0
2
2
x2
2 0
x(1
cos2x)dx
2
0
2
x 2
sin
2x
1 4
c
os2x
0
2
解: 设直杆长为 x ,则目标函数 L x 2 (16 x)2 36 ( 0 x 16 )
dL 1 2 x 16 ,
dx
(16 x)2 36

dL dx
0 ,得驻点 x0
16 2
3
比较: L(0) 4 73 , L(x0 ) 16 6 3 , L(16) 28
故直杆长为16 2 3 ,斜臂长为 4 3 时, L 有最小值.

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 7(2003) lim(cos x ) ln(1+x
x →0
2)
=
1

例 8(2003) 极限 lim[1 + ln(1 + x )] x =
x →0
2

例 9(2003) 若 x → 0 时, ( 1 − ax 2 ) 4 − 1 与 x sin x 是等价无穷小,则 a =
⎧ ⎪(cos x )x −2 , x ≠ 0 ,在 x = 0 处连续,则 a = ⎪ a, x =0 ⎪ ⎪ ⎩ 1 3 sin x + x 2 cos x 。 = 例 11(1997) lim x → 0 (1 + cos x )ln(1 + x )
。 。
例 10(1997) 已知 f (x ) = ⎪ ⎨
例 12(1996)
x →∞
⎡ 3 1 lim x ⎢ sin ln 1 + − sin ln 1 + ⎢⎣ x x
x →∞
(
)
(
) ⎤⎥⎥⎦ =

n ⎞
。 例 14(1995) lim(1 + 3x ) sin x =
x →0
例 13(1996) 设 lim (

⎧ ⎪2 + x 2 , x < 0 (D) ⎪ ⎨ ⎪ 2 + x, ⎪ ⎪ ⎩
⎧2 + x 2 , x < 0 ⎪ ⎪ ⎨ ⎪ 2 −x, x ≥ 0 ⎪ ⎪ ⎩
x ≥0
例 27(1995) 设 f (x ) 和 ϕ(x ) 在 (−∞, +∞) 内有定义, f (x ) 为连续函数,且 f (x ) ≠ 0 , ϕ(x ) 有间断点, 则 。 (A) ϕ[ f (x )] 必有间断点。 (C) f [ϕ(x )] 必有间断点。 例 28(1992) 当 x → 1 时,函数 (B) [ϕ(x )]2 必有间断点。 (D)
例 30(2004) 求极限 lim
(
)
⎜ f (x ) > 0 , lim f (x ) = 1 , 且满足 lim ⎜ 例 32(2002) 已知函数 f (x ) 在 (0, +∞) 内可导, ⎜
x →+∞
1 h ⎛ f (x + hx ) ⎞ ⎟ =e x , 求 f (x ) 。 ⎟ ⎟ ⎜ f பைடு நூலகம்x ) ⎠ h →0 ⎝
x →0
π )x
(
x 2 + 100 + x
)
第2页
微积分上册
习题课部分用题
导数与微分
f ′′′(2) = 2e
3 f (2)
往年考研题
(x )
【例 1】(2006) 设函数 f (x ) 在 x = 2 的某邻域内可导,且 f ′ ( x ) = e f
= 2e 。
dy dx
x =0 3
, f ( 2 ) = 1 ,则 f ′′′ ( 2 ) =
例 17(1993) lim+ x ln x =
x →0

1
例 18(1991) 若 x → 0 时, ( 1 + ax 2 ) 3 − 1 与 cos x − 1 是等价无穷小,则 a = 例 19(1990) 设 a 为非零常数,则 lim (
x →∞

x +a x ) = x −a

例 20(2004) 函数 f (x ) =
dy e 2x ,则 dx e +1
2x x =1
=

=
e −1 e2 +1
其中 ϕ(x ) 在 x=1 处连续, 则 ϕ(1) = 0 是 f (x ) 在 x = 1 处可导的 【例 6】 (2003) 设函数 f (x ) = x 3 − 1 ϕ(x ) , (A) 充分必要条件. (C) 充分但非必要条件 . (B) 必要但非充分条件. (D) 既非充分也非必要条件. 。 b 2 = 4a 6
sin x (cos x − b ) = 5 ,则 a = ,b = x −a (n − 1)x 例 6(2004) 设 f (x ) = lim , 则 f (x ) 的间断点为 x = n →∞ nx 2 + 1

例 5(2004) 若 lim
x →0 e
。 。
a = 1 , b = −4 。
1
2
) 是比 x sin x n 高阶的无穷小,而 x sin x n 是比 (e x
2
− 1 高阶的无
)
第1页
微积分上册
习题课部分用题
(A)
1
(B)
2。
(C)
3
(D) 4 。
x 在 (−∞, +∞) 内连续,且 lim f (x ) = 0 ,则常数 a , b 满足 例 24(2000) 设函数 f (x ) = x →−∞ a + e bx
4x 2 + x − 1 + x + 1 x 2 + sin x 2 + (π 4 n)
1 − cos x x ( 1 − cos x ) 2 x 1 x
例 39(1994) 例 41(1993) 求 lim x
x →−∞
计算 lim tan n
n →∞
例 40(1993) 求 lim x ln(sin + cos ) 例 42(1991) 求 lim+ (cos x
1
例 33(2002) 例 34(2001)
设 0 < x 1 < 3 , x n +1 = x n (3 − x n ) ( n = 1, 2, 3, " ) ,证明数列 {x n } 的极限存在,并求此极限。 求极限 lim ⎜ ⎜
1
sin t −sin x ⎛ sin t ⎞ ⎟ ,记此极限为 f (x ) ,求函数 f (x ) 的间断点并指出其类型。 ⎠ t →x ⎝ sin x ⎟
⎛ x n +1 凡求: (1)证明 lim x n 存在,并求之 ;(2)计算 lim ⎜ ⎜ ⎜ xn x →∞ x →∞ ⎝ ⎞ xn 2 ⎟ 。 ⎟ ⎟ ⎠
⎤ 1 ⎡ 2 + cos x x ⎢ −1⎥ . 3 x →0 x ⎢ 3 ⎣ ⎦⎥ 1 1 1 1 1 例 31(2003) 设 f (x ) = + − , x ∈ [ , 1). 试补充定义 f (1) 使得 f (x ) 在 [ , 1] 上连续. 2 2 πx sin πx π(1 − x )
| x | sin(x − 2) 在下列哪个区间内有界. x (x − 1)(x − 2)2
(A) (−1, 0)
(B) (0, 1)
(C) (1, 2)
(D) (2, 3)
1 ⎧ ⎪ ⎪f ( ) , x ≠ 0 x ,则 ⎪ 0 , x =0 ⎪ ⎪ ⎩
例 21(2004) 设 f (x ) 在(−∞ , +∞)内有定义,且 lim f (x ) = a , g (x ) = ⎪ ⎨

【例 2】(2006) 设函数 y = y (x ) 由方程 y = 1 − xe y 确定,则 【例 3】(2005) 设 y = (1 + sin x )x ,则 dy
x =π
=
。 −e
=
。 dy
x =π
= y ′( π )dx = −πdx . 。 y = x −1
dy dx
x =1
【例 4】(2004) 曲线 y = ln x 上与直线 x + y = 1 垂直的切线方程为 【例 5】(2004) 设 y = arctan e x − ln
A
【例 7】(2003) 已知曲线 y = x 3 − 3a 2x + b 与 x 轴相切,则 b 2 可以通过 a 表示为 b 2 =
【例 8】(2006) 设函数 y = f (x ) 具有二阶导数,且 f ′(x ) > 0, f ′′(x ) > 0 , Δx 为自变量 x 在点 x 0 处的增量,
1
ϕ(x ) 必有间断点。 f (x )
x 2 − 1 x −1 e 的极限 x −1
。 (C) 为 ∞
1
(A) 等于 2
(B) 等于 0
(D) 不存在但不为 ∞
例 29(2006) 设数列 {x n } 满足 0 < x 1 < π, x π +1 = sin x n ( n = 1, 2, ... ) 。
x →∞

(A) x = 0 必是 g (x ) 的第一类间断点. (C) x = 0 必是 g (x ) 的连续点.
(B) x = 0 必是 g (x ) 的第二类间断点. (D) g (x ) 在点 x = 0 处的连续性与 a 的取值有关.
n →∞ n →∞ n →∞
例 22(2003) 设 {a n }, {bn }, {c n } 均为非负数列,且 lim a n = 0 , lim b n = 1 , lim c n = ∞ 则必有 (A) (C)
(A)
a < 0,b < 0 。 (B)
a > 0,b > 0 。 (C)
n →∞
a ≤ 0,b > 0 。
(D)
a ≥ 0,b < 0 。

例 25(1998) 设数列 x n 与 y n 满足夫 lim x n y n = 0 ,则下列断言正确的是 (A) 若 x n 发散,则 y n 必发散。 (B) 若 x n 无界,则 y n 必有界。
Δy与dy 分别为 f (x ) 在点 x 0 处对应的增量与微分,若 Δx > 0 ,则
相关文档
最新文档