2017概率作业纸答案

合集下载

概率作业纸第六章答案

概率作业纸第六章答案

概率作业纸第六章答案第六章参数估计第⼀节参数的点估计⼀、选择1. 以样本的矩作为相应(同类、同阶)总体矩的估计⽅法称为(A ). (A) 矩估计法 (B) ⼀阶原点矩法 (C) 贝叶斯法 (D) 最⼤似然法2. 总体均值)(X E 的矩估计值是(A ).(A )x (B )X (C )1x (D )1X⼆、填空1.设总体X 服从泊松分布)(λP ,其中0>λ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数λ的最⼤似然估计值为x .2.设总体X 在区间[]θ,0上服从均匀分布,其中0>θ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数θ的矩估计值为x 2. 三、简答题1. 设设总体X 的概率密度为,0()0, 0x e x f x x θθ-?>=?≤?,求参数θ的矩估计值.解:,0dx xe EX x ?+∞-=θθ设du dx u x x u θθθ1,1,===则00111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞==-+=+-?=θ1故1EXθ=,所以x 1?=θ2. 设总体X 服从⼏何分布.,3,2,1,)1();(1 =-=-x p p p x p x 如果取得样本观测值为n x x x ,,,21 ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v 1)()(1==,所以x x n p ni i ==∑=111由此可得参数的矩估计值为xp1=. 似然函数为nx n ni x ni i i p p p p p L -=-∑-=-==∏1)1())1(()(11取对数,得).1ln()(ln )(ln 1p n xp n p L ni i--+=∑=于是,得0)(11)(ln 1=---=∑=ni i n x p p n dp p L d .由此可得参数的最⼤似然估计值为x p1?=. 3. 设总体X 服从“0-1”分布: .1,0,)1();(1=-=-x p p p x p x x如果取得样本观测值为)10(,,,21或=i n x x x x ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v ==)()(1,所以x x n p ni i ==∑=11由此可得参数的矩估计值为x p=?. 似然函数为∑-∑=-===-=-∏ni ini iiix n x ni x x p pp pp L 11)1())1(()(11取对数,得).1ln()(ln )()(ln 11p x n p x p L ni ini i--+=∑∑==于是,得0)(111)(ln 11=---=∑∑==ni i n i i x n p x p dp p L d .由此可得参数的最⼤似然估计值为x p=?.第⼆节衡量点估计好坏的标准⼆、选择1. 估计量的⽆偏性是指( B ).(A )统计量的值恰好等于待估总体参数(B) 所有可能样本估计值的数学期望等于待估总体参数 (C) 样本估计值围绕待估总体参数使其误差最⼩ (D) 样本量扩⼤到和总体单元相等时与总体参数⼀致 2. 估计量的有效性是指( C ).(A )估计量的数学期望等于被估计的总体参数 (B) 估计量的具体数值等于被估计的总体参数 (C) 估计量的⽅差⽐其它估计量的⽅差⼩ (D) 估计量的⽅差⽐其它估计量的⽅差⼤ 3. 估计量的⼀致性是指( D ).(A) 估计量的具体数值等于被估计的总体参数 (B) 估计量的⽅差⽐其它估计量的⽅差⼩ (C) 估计量的⽅差⽐其它估计量的⽅差⼤(D) 随样本容量的增⼤,估计量的值越来越接近被估计的总体参数⼆、填空1.设),,(??2111n X X X θθ=与),,(??2122n X X X θθ=都是参数θ的⽆偏估计量,如果 )?()?(21θθD D <,则称1?θ⽐2θ有效. 2. 设总体X 的均值µ=)(X E ,⽅差2)(σ=X D ,则x 是总体均值的⽆偏的、有效的、⼀致的估计量,2S 是总体⽅差的⽆偏的、有效的、⼀致的估计量.三、简答题1.从总体X中抽取样本321,,X X X ,证明下列三个统计量,632?3211X X X ++=µ,442?3212X X X ++=µ,333?3213X XX ++=µ都是总体均值的⽆偏估计量;并确定哪个估计更有效.证:设总体X 的均值与⽅差分别为µ=)(X E ,2)(σ=X D .则因为样本与总体服从相同的分布,所以有µ=)(i X E ,.3,2,1,)(2==i X D i σ所以有;613121)632()?(3211µµµµµ=++=++=X X X E E ;412121)422()?(3212µµµµµ=++=++=X X X E E .313131)333()?(3213µµµµµ=++=++=X X X E E 所以1µ,2µ,3µ都是总体均值的⽆偏估计量.;1873619141)632()?(22223211σσσσµ=++=++=X X X D D ;8316116141)442()?(22223212σσσσµ=++=++=X X X D D ;31919191)333()?(22223213σσσσµ=++=++=X X X D D 因为),?()?()?(123µµµD D D <<所以认为估计量3?µ更有效. 2.设1?θ和2?θ为参数θ的两个独⽴的⽆偏估计量,且假定21?2?θθD D =,求常数c 和d ,使21θθθd c +=为θ的⽆偏估计,并使⽅差θ?D 最⼩. 解:由于θθθθθθ)(??)??(?2121d c dE cE d c E E +=+=+=,且知θθ=?E ,故得c+d=1。

概率作业纸第二章答案

概率作业纸第二章答案

第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。

三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。

解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

概率作业纸第二章答案

概率作业纸第二章答案

第二章 随机变量及其分布第二节 离散随机变量一、选择1. 设离散随机变量X 的分布律为:),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C )(A) 0>λ (B)1+=b λ (C)b +=11λ (D)11-=b λ 二、填空1.进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是{} 1,2, , 54)51(1=⋅==-K K X P K三、计算题1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============第三节 超几何分布 二项分布 泊松分布一、选择1.设随机变量),3(~),,2(~p B Y p B X , {}{}()CY P X P =≥=≥1,951则若(A)43 (B)2917 (C)2719 (D)97 二、填空1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{})0902.0_____(32_42-=e X P =则.三、计算题1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~10610682108≈-≈=-=≥≈===≈==≈====⨯====⋯===------X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、填空题1.设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 . ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取( A )(A)52,53-==b a (B)32,32==b a (C)23,21=-=b a (D)23,21-==b a 2.设⎪⎪⎩⎪⎪⎨⎧≥<<**≤=2,12)(,4)(,0)(2x x xx x F ,当(*)取下列何值时,)(x F 是连续型随机变量的分布函数.( A )(A) 0 (B) 0.5 (C) 1.0 (D)1.5三.计算题1.设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A 第六节 连续随机变量的概率密度一、选择1.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它(B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为+∞<<∞-+=x x x F ,arctan 121)(π(1)(11)P X -≤≤= 0.5 (2)概率密度()f x =2111x +⋅π 三、计算题1. 设随机变量X 的概率密度:,10(),010,1c x x f x c x x x +-≤≤⎛=-≤≤ >⎝求:(1)常数c ;(2)概率(0.5)P X ≤ 解:(1)1)()(11=-++⎰⎰-dx x c dx x c ,c=1(2) (0.5)P X ≤=75.0)1()1(5.005.0=-++⎰⎰-dx x dx x2.已知随机变量X 的概率密度1(),2xf x e x -=-∞<<+∞, 求:分布函数()F x 。

17概率题(卷子格式)

17概率题(卷子格式)

1.小王和小亮玩抛硬币的游戏,在抛两枚硬币时,规则如下:抛出两个正面小王胜,抛出一正一反,则小亮胜,请问:这个游戏规则对双方公平吗?2.小明的小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明胜,当所转到的数字之积为偶数时,小刚胜,这个游戏对双方公平吗?3.下面是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,配成紫色小明胜,配不成紫色小亮胜,游戏公平吗?4.在一纸箱中装入尺码相同的 2 双黑袜子和 1双白袜子(不分左右),你随意拿出 2 只,那么恰好是一双的概率是多少?5.小红一次写了3封信,又写了3个信封,如果她任意将3张信纸装入3个信封中,正好有一封信的信纸和信封是一致的概率是多少?6.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率. 1.有两组扑克牌各三张,牌面数字均为1,2,3随意从每组牌中各抽一张,数字和等于4的概率是()A.95B.92C.31D.942.( )A.525B.625C.1025D.19253.某厂生产的2000件产品中,有不合格产品m件,今分10次各抽取50件产品进行检测,平均有不合格产品1件,对m的叙述正确的是()A.40=m B.40≠m C.m的值应在40左右 D.无法确定4.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志。

从而估计该地区有黄羊()A.400只 B 600只 C800只 D1000只5.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中带有标记的鱼有32条,那么估计湖里大约有条鱼.A.300 B.332 C.625 D.128006.袋中有除颜色外其余完全相同的红色、黄色、蓝色、白色球若干个,小明现又放入5个黑球后,小颖通过多次的摸球实验后,发现摸到红色、黄色、白色及黑色的频率分别为25%,30%,10%,5%,试估计出袋中红色、黄色、蓝色及白色球各有多少个?7.口袋中放有2只红球和5只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取二只球,则两次都取到黄球的概率是_____.8.将分别标有1、2、3的三张卡片洗匀后(这三张卡片除号码外完全相同),背面朝上放在桌上,随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,恰好是“32”的概率是 .9.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是;10.图中所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是;1.王大爷承包了一个鱼塘养殖观赏鱼,经他精心喂养鱼的长势很好。

概率作业纸第一章答案

概率作业纸第一章答案

第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。

三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。

解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

概率课后习题答案(全)

概率课后习题答案(全)

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1, 且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1). 解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

概率作业纸第四章答案

概率作业纸第四章答案

第四章 正态分布第一节 正态分布的概率密度与分布函数一、选择1. 设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C ) (A) 增大 (B) 减少 (C) 不变 (D) 增减不定 2. 随机变量~(,1),X N μ且{2}{2},P X P X >=≤则μ=( B ) (A) 1 (B) 2 (C) 3 (D) 4二、填空1. 设随机变量),100(~2σN X ,且3085.0)103(=>X P ,则=<<)10397(X P 0.383 2.设随机变量),50(~2σN X ,且6826.0)5347(=<<X P ,则=>)53(X P 0.1587三、计算题1. 某地区的月降水量X (单位:mm )服从正态分布)4,40(2N ,试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x 第二节 正态分布的数字特征一、选择1. 设随机变量X 与Y 独立,)4.0,10(~,)2.0,10(~B Y B X ,则=+)2(Y X E ( D ) (A) 6 (B) 4 (C) 10 (D) 8二、填空___2______;1____e 1)(.1122的方差为的数学期望为则,的概率密度函数为已知连续型随机变量X X x f X x x-+-=π.___2___))21(,0(,.22π=--Y X E Y X N Y X 的数学期望则随机变量的随机变量,正态分布是两个相互独立且服从设三、计算题.d )(d )()2(;)1(e61)(.16442c x x p x x p DX EX x x p X c cx x ,求常数若已知,求,的概率密度函数为已知连续型随机变量⎰⎰∞+∞-+--=+∞<<∞-=π.203221)32()32(1)32()32(12132321)()32(2132321)()2(3)(,2)(),3,2(~32161)()1(32232)2(23232)2(32)2(644222222==-=-Φ-Φ-=-Φ-Φ-=-==-Φ=-======⎰⎰⎰⎰⎰⎰∞+--∞+⨯--∞+--∞-∞-⨯--∞-⨯--+--c c c c c c dt e x t dx edx x P c dt ex t dx edx x P X D X E N X eex P c t cx ct c c x c x x x 所以,,从而,知所以,得从而,知所以,由于解ππππππ第三节 二维正态分布一、计算题1.已知矢径OP 的终点的坐标为),(Y X 服从二维正态分布22221),(y x e y x f +-=π求矢径OP 的长度OP Z =的概率密度 解 22Y X OP Z +==)()()(22z Y X P z Z P z F Z ≤+=≤= 当0≤z 时,显然有0)(=z F Z ;当0>z 时dxdye z F y x zy x Z 2222221)(+≤+-=⎰⎰π.121222022z r z edr red ---==⎰⎰πθπ所以,Z 的分布函数为⎪⎩⎪⎨⎧≤>-=-.0,0;0,1)(22z z e z F z Z对z 求导数,即得Z 的概率密度⎪⎩⎪⎨⎧≤>=-.0,0;0,)(22z z ze z f z Z第四节 正态随机变量的线性函数的分布一、选择1.设X ,Y 是相互独立的随机变量,且),(~,),(~222211σμσμN Y N X ,则下列结论正确的是(B )(A ))(,(~22121σσμμ+++N Y X (B)),(~222121σσμμ+++N Y X (C)))(,(~22121σσμμ---N Y X (D)),(~222121σσμμ---N Y X{}{}212121212122,)D (,)C (,)B (,)A ()(,5,4);5,(~),4,(~,.2p p p p p p p p A Y P p X P p N Y N X Y X >=<=-≥=-≤=都有对任何实数才有的个别值只对都有对任何实数都有对任何实数则记均服从正态分布与设随机变量μμμμμμμμ二、填空1.设随机变量X 与Y 独立,且)2,1(~,)1,0(~2N Y N X ,则32+-=Y X Z 的概率密度为+∞<<-∞=--z ez f z z ,41)(16)2(2π2.设随机变量X 与Y 独立,且)1,1(~,)1,0(~N Y N X ,则)1(≤+Y X P = 0.5.___21___,21}1{).21,(.3=则如果分布相互独立且都服从正态与已知随机变量μμ=≤+Y X P N Y X第五节 中心极限定理一、填空____21___}2)({2.1≤≥-X E X P X 式有估计,则根据切比雪夫不等的方差为设随机变量二、计算题1.已知一本书有500页,每一页的印刷错误的个数服从泊松分布)2.0(P .各页有没有错误是相互独立的,求这本书的错误个数多于88个的概率.((1.2)0.8849Φ=) 解:设i X 表示第i 页上的错误个数,)500,2,1(, =i 则)2.0(~P X i ,因此2.0)(,2.0)(==i i X D X E )500,2,1(, =i设X 表示这本书上的错误总数,由列维中心极限定理知)100,100(~5001N X X i i ∑==因此{}{}12881881(1.2)0.884910P X P X P -⎫>=-≤=-≤=Φ=⎬⎭ 2.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. 求被盗索赔户不小于14户且不多于30户的概率近似值. ( 利用棣莫弗--拉普拉斯定理近似计算.933.0)5.1(,994.0)5.2(=Φ=Φ )解: )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1) )()(42014)42030(3014-Φ--Φ=≤≤X P )5.1)5.2(-Φ-Φ=(927.0)933.01(994.0=--=3.某品牌家电三年内发生故障的概率为0.2,且各家电质量相互独立.某代理商发售了一批此品牌家电,三年到期时进行跟踪调查:(1)抽查了四个家电用户,求至多只有一台家电发生故障的概率; (2)抽查了100个家电用户,求发生故障的家电数不小于25的概率( (2)利用棣莫弗---拉普拉斯定理近似计算. 8944.0)25.1(=Φ )解:设X 表示发生故障的家电数,则 (1) )(2.0,4~B X)(1≤X P =)(0=X P +)(1=X P=48.0+8192.08.02.0314=⨯⨯C(2) )(2.0,100~B X , 因为 100=n 较大,所以X 近似服从正态分布. 20=np , 16=npq . (p q -=1))()(420251)25(125-Φ-=≤-=≥X P X P )25.11(Φ-= 1056.08944.01=-=。

2017概率作业纸答案

2017概率作业纸答案

第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销”2.对于事件、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5卡片上,任取3排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率§1.1 随机事件§1.2 随机事件的概率一、单选题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销”(C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销”2.对于事件、A B ,有B A ⊂,则下述结论正确的是( C )(A )、A B 必同时发生; (B )A 发生,B 必发生;(C )B 发生,A 必发生; (D )B 不发生,A 必发生3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%.3. 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316.§1.3古典概率一、填空题1.将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它是奇数的概率为35.2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3. 3.若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15. 4. 盒中有2只次品和4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89. 二、计算题1.一份试卷上有6道题. 某位学生在解答时由于粗心随机地犯了4处不同的错误. 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率.解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296.(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P . 2. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率.解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。

(2)设B 表示抽取n 件产品中至少有一件不合格品的事件,则B 表示n 件产品全为合格品的事件,包含nN M C -个样本点。

则()1()1n N M n NC P B P B C -=-=-。

3.一批产品共20件,其中一等品9件,二等品7件,三等品4件。

从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率.解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故)()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,那么事件A 表示取出的3件产品中等级各不相同,则779.01)(1)(320141719=-=-=C C C C A P A P§1.4条件概率一、单选题1.设A ,B 互不相容,且()0,()0P A P B >>,则必有( D ). (A) 0)(>A B P (B ))()(A P B A P =(C) )()()(B P A P AB P = (D ) 0)(=B A P 2.已知()0.5P A =,()0.4P B =,()0.6P A B ⋃=,则()P A B =( D ).(A) 0.2 (B )0.45 (C) 0.6 (D )0.753.已知,()0.2,()0.3A B P A P B ⊂==,则()P BA =( C ).(A) 0.3 (B )0.2 (C) 0.1 (D )0.44.已知 ()0.4,()0.6,(|)0.5,P A P B P B A === 则 ()P A B ⋃=( D ).(A) 0.9 (B ) 0.8 (C) 0.7 (D ) 0.65. 掷一枚质地均匀的骰子,设A 为“出现奇数点”,B 为“出现1点”,则()=P B A ( C ).(A) 1/6 (B ) 1/4 (C) 1/3 (D ) 1/2二、填空题1. 已知5.0)(=A P ,6.0)(=B P 及8.0)(=A B P ,则=)(B A P 0.7 .2.设,A B 互不相容,且(),()P A p P B q ==;则()P AB =1--p q .3.设事件,A B 及A B ⋃的概率分别为0.4,0.3,0.5,则()P AB =0.2.4.已知事件B A ,互不相容,且()()6.0,3.0==B A P A P ,则()B P =0.5.5.设某种动物由出生算起活到20岁以上的概率为0.8, 活到25岁以上的概率为0.4. 如果一只动物现在已经活到20岁, 则它能活到25岁以上的概率是0.5. 三、计算题1. 一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率.解 设A i (i =1,2,3)为第i 次抽到合格品的事件,则有)(321A A A P =)()()(21312A A A P A A P A P =10/100·9/99·90/98≈0.0083.2.一个盒子装有6只乒乓球,其中4只是新球. 第一次比赛时随机地从盒子中取出2只乒乓球,使用后放回盒子.第二次比赛时又随机地从盒子中取出2只乒乓球. 试求第二次取出的球全是新球的概率.12322222113422442222222666666B B B 4P A 253i i i=1解:设:第一次取出的都是新球,:都是旧球,:一新一旧()=P(B )P(A|B )=⨯⨯+⨯⨯⨯=∑C C C C C C C C C C C C C3.某保险公司把被保险人分为3类:“谨慎的”、“一般的”、“冒失的”。

统计资料表明,这3种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%, “一般的”占50%,“冒失的”占30%,一个被保险人在一年内出事故的概率是多大?解:设1B =“他是谨慎的”, 2B =“他是一般的”, 3B =“他是冒失的”,则321,,B B B 构成了Ω的一个划分,设事件A =“出事故”,由全概率公式:)|()()(31i i i B A P B P A P ∑==0.0520%0.1550%0.3020%0.125.=⨯+⨯+⨯=§1.5 事件的独立性 §1.6 独立试验序列一、单选题1.设B A 、是两个相互独立的随机事件,0>⋅)()(B P A P ,则=)(B A P ( B )(A) )()(B P A P + (B) )()(B P A P ⋅-1 (C) )()(B P A P ⋅+1 (D) )(AB P -12.设甲乙两人独立射击同一目标,他们击中目标的概率分别为 0.9和0.8,则目标被击中的概率是( B ).(A) 0.9 (B ) 0.98 (C) 0.72 (D ) 0.83.每次试验成功率为)10(<<p p ,(1)进行10次重复试验成功4次的概率为( A )(2)进行重复试验,直到第10次试验才取得4次成功的概率为( B )(3)进行10次重复试验,至少成功一次的概率为( D )(4)进行10次重复试验,10次都失败的概率为( C )(A) 44610(1)C p p - (B) 3469(1)C p p - (C) 10(1)p - (D) 101(1)p --二、填空题1.设A 与B 为两相互独立的事件,)(B A P =0.6,)(A P =0.4,则)(B P =13.2.三台机器相互独立运转,设第一、二、三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率0.496.3.某人射击的命中率为4.0,独立射击10次,则至少击中1次的概率为1010.6-.4.某射手在三次射击中至少命中一次的概率为0.875,则这射手在一次射击中命中的概率为 0.5 .5.一批电子元件共有100个,次品率为0.05. 连续两次不放回地从中任取一个,则第二次才取到正品的概率为19396. 三、计算题1. 5名篮球运动员独立地投篮,每个运动员投篮的命中率都是80%.他们各投一次,试求:(1) 恰有4次命中的概率;(2) 至少有4次命中的概率;(3) 至多有4次命中的概率.解:设i i A 表示第i 个运动员命中,=1,2,3,4,5 (1)412345()5()50.20.80.4096=⨯=⨯⨯=P A P A A A A A(2) 512345()()()0.40960.80.7373P B P A P A A A A A =+=+=(3) 512345()1()10.80.6723P C P A A A A A =-=-= 2.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人看管的概率. 解:设事件i A 表示第i 台车床不需要照管,事件i A 表示第i 台车床需要照管,(i =1,2,3), 根据题设条件可知:1.0)(,9.0)(11==A P A P2.0)(,8.0)(22==A P A P3.0)(,7.0)(33==A P A P设所求事件为B ,则)()(321321321321A A A A A A A A A A A A P B P +++=根据事件的独立性和互不相容事件的关系,得到: )()()()()()()(321321A P A P A P A P A P A P B P += ++)()()(321A P A P A P )()()(321A P A P A P3.08.09.07.02.09.07.08.01.07.08.09.0⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.902.=3.甲、乙、丙3位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为0.4,0.3,0.5.(1)求恰有两位同学不及格的概率;(2)如果已经知道这3位同学中有2位不及格,求其中一位是同学乙的概率.解:(1)设{}A =恰有两位同学不及格,1{}B =甲考试及格,2{}B =乙考试及格,3{}B =丙考试及格.则123123123123123123()()()()()P A P B B B B B B B B B P B B B P B B B P B B B =⋃⋃=++ 123123123()()()()()()()()()0.29P B P B P B P B P B P B P B P B P B =++=(2)12312312312322()()()()15()()()()29P B B B B B B P B B B P B B B P AB P B A P A P A P A ⋃+====第二章 随机变量及其分布§2.1 随机变量§2.2 离散型随机变量及其概率分布一、单选题1. 离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是( A ).(A )1)1(-+=A λ且0>A (B )λ-=1A 且10<<λ(C )11-=-λA 且1<λ (D )0>A 且10<<λ2. 下面函数中,可以作为一个随机变量的分布函数的是( B ).(A )()211xx F += (B )()21arctan 1+=x x F π (C )()()⎪⎩⎪⎨⎧≤>-=-.0,0;0,121x x e x F x (D )()()()1,==⎰⎰+∞∞-∞-dt t f dt g f x F x 其中 3. 已知随机变量X 服从二项分布(6,0.5)B ~X ,则(2)P X ==( C ).(A )1664 (B )1516 (C ) 1564 (D ) 35 二、填空题 1. 已知随机变量X 的取值是-1,0,1,2,随机变量X 取这四个数值的概率依次是bb b b 162,85,43,21,则=b 2. 2. (1,0.8)B ~X ,则X 的分布函数是0,0()0.2,0 1.1,1<⎧⎪=≤<⎨⎪≥⎩x F x x x3. 设随机变量),3(~),,2(~p B Y p B X ,若{},951=≥X P 则{}=≥1Y P 1927.4.重复独立地掷一枚均匀硬币,直到出现正面向上为止,则抛掷次数Y 的分布为{}1(),1,2,3,2===k P Y k k .三、计算题1. 一寻呼台每分钟收到寻呼的次数服从参数为4的泊松分布.求(1)每分钟恰有7次寻呼的概率.(2)每分钟的寻呼次数大于10的概率. 解:,...)1,0(,!4)(4===-k e k k X P k(1)0596.08893.09489.0!64!74)6()7(4647=-=-=≤-≤--e e X P X P(2)0028.09972.01!1041)10(1410=-=-=≤--e X P 2. 已知盒子中有4个白球和2个红球,现从中任意取出3个,设X 表示其中白球的个数,求出X 的分布列.解:X 的可能取值为3、4、5,又53}5{,103}4{,1011}3{3524352335=========C C X P C C X P C X PX 3 4 5P 101 103 533. 设随机变量Y 的分布列为:Y 0 1 2 3P 2A 3A 4A 5A 求 (1)系数A 及Y 的分布列;(2)Y 的分布函数;(3){}{}{}13, 1.5 3.5, 2.5.P Y P Y P Y ≤≤≤≤≤ (1)∵()121520306054321+++=+++=A A A A A ∴7760=A (2)()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.3,132,7765,21,7750,10,7730,0,0x x x x x x F (3)7765,7727,7747.§2.3 连续型随机变量及其概率密度一、单选题1. 若函数cos ,()0,x x D f x ∈⎧=⎨⎩其它 是随机变量X 的概率密度,则区间D 为 ( A ) (A )π[0,]2 (B )ππ[,]2 (C )π[0,] (D )37ππ[,]242.下列函数为随机变量的密度函数的为( D )(A) ⎩⎨⎧∈=其他,0],0[,cos )(πx x x f (B) ⎪⎩⎪⎨⎧<=其他,02,21)(x x f (C) ⎪⎩⎪⎨⎧<≥=--0,00,21)(222)(x x e x f x σμπσ (D) ⎩⎨⎧<≥=-0,00,)(x x e x f x 3. 设随机变量X 的概率密度为()f x ,则()f x 一定满足( D )(A )()01f x ≤≤ (B )()()x P X x f t dt -∞>=⎰ (C ) ()1xf x dx +∞-∞=⎰ (D )()()x P X x f t dt -∞<=⎰4.设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C )(A)增大 (B)减少 (C)不变 (D)增减不定5. 设(),2~2,σN X 且6.0)40(=<<X P ,则()=<0X P ( C ) (A )0.3 (B )0.4 (C )0.2 (D )0. 5二、填空题1.设连续随机变量X 的分布函数为()arctan ,F x A B x x =+-∞<<+∞ (1)A =12; B =1π;(2)(11)P X -≤≤= 0.5 ;(3)概率密度()f x =2111x π+. 2.设随机变量X 在在区间[]1,2-上服从均匀分布,则(1)(61)P x -<<-= 0 , (2) (41)P x -<<= 2/3 , (3)(23)P x -<<= 1 , (4)(16)P x <<= 1/3 .3. 设随机变量,)9,1(~N X ,则若1()2P X k <=,k = 1 . 4. 设随机变量()2~1,2X N ,6915.0)5.0(=Φ,则事件}20{<≤X 的概率为0.383. 5. 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35 . 三、计算题1. 设连续型随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤-<≤=其它432230x x x cx x f , 求:⑴ 常数c ;⑵ 概率{}62<<X P .解:⑴ 由密度函数的性质()1=⎰+∞∞-dx x f ,得()()()()()⎰⎰⎰⎰⎰+∞∞-+∞∞-+++==44331dx x f dx x f dx x f dx x f dx x f⎰⎰⎰⎰+∞∞-+⎪⎭⎫ ⎝⎛-++=4433000220dx dx x cxdx dx412947229422432302+=⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=c c x x x c 所以,得61=c .即随机变量X 的密度函数为 ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤=其它04322306x x x xx f .⑵ {}()()()()⎰⎰⎰⎰++==<<6443326262dx x f dx x f dx x f dx x f X P⎰⎰⎰+⎪⎭⎫ ⎝⎛-+=6443320226dx dx x dx x 32411254212432322=+=⎪⎪⎭⎫ ⎝⎛-+=x x x .2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=,,1,1,ln ,1,0)(e x e x x x x F(1)求},2{<X P },41{≤<X P }23{>X P ; (2)求分布密度)(x f .解:(1)2ln )2(}2{}2{==≤=<F X P X P,11ln 1)1()4(}41{=-=-=≤<F F X P 23ln 1)23(1}23{-=-=>F X P(2)x dx x dF x f 1)()(==,⎪⎩⎪⎨⎧<≤=,,0,1,1)(其他e x xx f 3. 设k 在(0,5)上服从均匀分布,求方程02442=+++k kx x 有实根的概率. 解:x 的二次方程02442=+++k kx x 有实根的充要条件是它的判别式 ,0)2(44)4(2≥+⨯-=∆k k 即,0)2)(1(16≥-+k k 解得1,2-≤≥k k 或由假设k 在区间(0,5)上服从均匀分布,其概率密度为⎪⎩⎪⎨⎧<<=,,0,50,51)(其他x x f k故这个二次方程有实根的概率为⎰⎰⎰⎰-∞--∞-∞=+=+=-≤+≥=-≤≥=1152253051)()(}1{}2{)}1()2{(dx dx dx x f dx x f k P k P k k P p k k§2.4 随机变量的函数及其分布一、计算题1. 设随机变量X 的分布列为求2X Y =的分布列.解:2X Y =所有可能取值为0,1,4,9.2221{0}{0},5117{1}{1}{1}{1},1563011{4}{4}{2}{2}0,551111{9}{9}{3}{3}0,3030P Y P X P Y P X P X P X P Y P X P X P X P Y P X P X P X =========+=-=+======+=-=+======+=-=+=2.设随机变量X 的概率密度2,01()0,x x f x ≤≤⎧=⎨⎩其它,求下列随机变量的概率密度:(1)12Y X =+; (2) 2Y X =.解:(1)1(y),1320Y y f y -⎧⎪=≤≤⎨⎪⎩ (2)1,01()0,Y y f y ≤≤⎧=⎨⎩3. 设随机变量X 在)1,0(区间内服从均匀分布,求Xe Y =的分布密度. 解: Y 的分布函数)ln ()()()(y X P y e P y Y P y F xY ≤=≤=≤=当y>0时,y dx x f y F yY ln )()(ln ==⎰∞-(注意x 在)1,0(有值,y 在),0(e )y dy y dF y f Y Y 1)()(==, ⎪⎩⎪⎨⎧≤<=其他,0,1,1)(e y y y f Y第三章 二维随机变量及其分布§3.1 二维随机变量及其分布一、单选题1.设二维随机变量(,)X Y 的联合概率密度为 (),0,0;(,)0,.x y e x y f x y -+⎧>>=⎨⎩其他则()P X Y <=( A )(A )0.5 (B )0.55 (C ) 0.45 (D )0.62.二维随机变量(,)X Y 的联合分布函数(,)F x y 是以下哪个随机事件的的概率( B )(A )()()X x Y y ≤≤ (B )()()X x Y y ≤≤(C ) X x y ≤+ (D )X x y ≤-二、填空题1.设二维随机变量(,)X Y 的联合分布函数为(,)(arctan )(arctan )23x y F x y A B C =++ 则系数A =21π,B =2π,C =2π,(,)X Y 的联合概率密度为2226(,)(4)(9)f x y x y π=++ . 2.设二维随机变量,X Y ()的联合概率密度为(2),0,0;(,)0,.x y Ae x y f x y -+⎧>>=⎨⎩其他则 A = 2 .三、计算题1.设二维随机变量(,)X Y 的联合概率密度为:222(,),(,)(4)(9)Af x y x y x y π=-∞<<+∞++ 求 (1)系数A ;(2)}{02,03P X Y <<<<. 解:(1)由于⎰⎰+∞∞-+∞∞-=1),(y x f ,故2221(4)(9)Adxdy x y π+∞+∞-∞-∞=++⎰⎰, 222111(4)(9)Adx dy x y π+∞+∞-∞-∞=++⎰⎰1,6A=所以6A = (2)}{02,03P X Y <<<<232220611(4)(9)dx dy x y π=++⎰⎰ 116=2.设二维随机变量(,)X Y 的联合概率密度为(6),02,24;(,)0,.k x y x y f x y --<<<<⎧=⎨⎩其他试求:(1)常数k ;(2)概率(1,3)P X Y <<. 解:(1)由于⎰⎰+∞∞-+∞∞-=1),(y x f ,故1)6(--=--⎰⎰+∞∞+∞∞dxdy y x k ,18=k所以81=k (2))3,1(<<Y X P =83)6(811032=--⎰⎰dxdy y x3.将三个球随机的投入三个盒子中去,每个球投入盒子的可能性是相同的.以X 及 Y 分别表示投入第一个及第二个盒子中球的个数,求二维随机变量(,)X Y 联合概率分布. 解:3;3,2,1,0;3,2,1,0,)31()!3(!!!3),(3≤+==--===j i j i j i j i j Y i X P§3.2 边缘分布 §3.3 随机变量的独立性1.下表列出了二维随机变量(,)X Y 联合概率分布及关于X 和关于Y 的边缘概率分布的部 分数值,试将其余值填入表中的空白处2.已知随机变量1X 和2X 的概率分布如下12{0} 1.P X X ==而且(1)求1X 和2X 的联合分布;(2)问1X 和2X 是否独立?为什么? 解:(2)1X 和2X 不独立。

相关文档
最新文档