概率作业纸第二章答案
概率论与数理统计第二章习题参考答案]
![概率论与数理统计第二章习题参考答案]](https://img.taocdn.com/s3/m/02a7d8de6f1aff00bed51ebf.png)
(1)设
X
服从二项分布,其分布律为 P{X
=
k}=
C
k n
pk (1−
)p n−k
K=0,1,2,……n,问 K 取何值时 P{X = k}最大?
(2)设 X 服从泊松分布,其分布率为 p{X = k} = λke−λ ,k=0,1,2……
k!
问 K 取何值时 P{X = k}最大?
(1)
解: M
=
N 试确定常数 a
(2)设随机变量 X 的分布律为 P{X = k} = b ⋅ ⎜⎛ 2 ⎟⎞k , k = 1,2.....
⎝3⎠
试确定常数 b
(3)设随机变量 X 的分布律为 P{X = k} = c ⋅ λk , k = 0,1,2......λ > 0 为常数,
k!
试确定常数 c
N
解:(1) ∑ P{X
6、设随机变量 X 的分布律为 P{X = k} = k , k = 1,2,3,4,5
15
其分布函数为 F (x) ,试求:
(1)
P⎨⎧ ⎩
1 2
<
X
<
5 2
⎫ ⎬ ⎭
,
(2) P{1 ≤ X ≤ 2},
(3) F ⎜⎛ 1 ⎟⎞ ⎝5⎠
解:(1)
P⎨⎧ ⎩
1 2
<
X
<
5⎫
2
⎬ ⎭
=
P{X
= 1}+
0
2
1
x
xdx+
0
1
(2−
x)dx=
2x
−
x2
/
2−1
0< x ≤1 1< x≤2
概率作业纸第二章答案

第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为C B A第四节 概率的古典定义一、选择1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B )(A )21 (B )53 (C )103 (D )101 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概率为11322535C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队被分在不同组内的概率为1910102091812=C C C 。
三、简答题1.将3个球随机地投入4个盒子中,求下列事件的概率(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球;(3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。
解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 第五节 概率加法定理一、选择1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C )(A))()(AB P C P = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P2.已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。
A4版打印浙教版九年级上册数学第2章 简单事件的概率含答案

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、某班女生与男生的人数比为3:2,从该班学生中随机选取一名学生是女生的概率为()A. B. C. D.2、从-2、-1、0、1、2 、3这六个数中,随机抽取一个数,记作a,关于x的方程的解是正数,那么这 6 个数中所有满足条件的 a 的值有()个.A.1B.2C.3D.43、经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是()A. B. C. D.4、一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A. B. C. D.5、小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数小于3的概率为( )A. B. C. D.6、在一个不透明的口袋里,装有仅颜色不同的黑球和白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是()摸球的次数100 150 200 500 800 1000摸到白球的次数58 96 116 295 484 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.601A.0.5B.0.55C.0.6D.0.657、不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. B. C. D.8、下列事件中,属于随机事件的是()A.用长度分别是4cm,4cm,9cm的细木条首尾顺次相连可组成一个等腰三角形 B.以长度分别是5cm,4cm,3cm的线段为三角形三边,能构成直角三角形 C.分式的分子、分母同乘一个不等于零的整式,分式的值不变 D.任意画一个三角形,恰好是同一条边上的高线与中线重合9、掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.必有5次正面向上C.可能有7次正面向上D.不可能有10次正面向上10、若实数a<0,则下列事件中是必然事件的是()A.a 3>0B.3a>0C.a+3<0D.a﹣3<011、从1、2、-3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.112、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A. B. C. D.13、如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A. B. C. D.14、下列事件中,属于必然事件的是A.购买一张体育彩票,中奖B.太阳从东边升起C.2019年元旦是晴天 D.经过有交通信号灯的路口,遇到红灯15、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:抽检数量n/个20 50 100 200 500 1000 2000 5000 10000 合格数量m/个19 46 93 185 459 922 1840 4595 92130.950 0.920 0.930 0.925 0.918 0.922 0.920 0.919 0.921 口罩合格率下面四个推断合理的是()A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921; B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920; C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920; D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.二、填空题(共10题,共计30分)16、如图,A,B是固定箭头的两个转盘.均被分成三个面积相等的扇形,转盘A上的扇形分别写有数字1,6,8,转盘B上的扇形分别写有数字4,5,7.如果你和小亮各选择其中一个转盘,同时将它们转动,规定如果转盘停止时,箭头指的数字较大者获胜.你认为选择________转盘(填A或B).17、一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,则P(m,n)在双曲线y= 上的概率为________.18、“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是________.(填“必然事件”、“不可能事件”或“随机事件”)19、“任意买一张电影票,座位号是5的倍数”,此事件是________.20、某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 2848发芽的频率 0.960 0.947 0.950 0.952 0.948 0.951 0.949 那么这种油菜籽发芽的概率是________(结果精确到0.01).21、用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是________.22、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.23、一个装有6个白球,3个红球,1个黑球的布袋中,摸到黑球的可能性________摸到白球的可能性.(填“大于”或“小于”或“等于”).24、某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A,B,C,D四首歌曲随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是________。
概率论第二章习题及答案

三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p
或
P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.
S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,
2
0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为
x
f ( t )dt,
概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
2017概率作业纸答案

第一章 随机事件及其概率§1、1 随机事件§1、2 随机事件的概率一、单选题1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D )(A) “甲种产品滞销,乙种产品畅销”(B)“甲、乙两种产品均畅销”(C) “甲种产品畅滞销” (D)“甲种产品滞销或乙种产品畅销”2、对于事件、A B ,有B A ⊂,则下述结论正确的就是( C )(A)、A B 必同时发生; (B)A 发生,B 必发生;(C)B 发生,A 必发生; (D)B 不发生,A 必发生3、设随机事件A 与B 同时发生时,事件C 必发生,则下列式子正确的就是( C )(A)()()P C P AB = (B))()()(B P A P C P +=(C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P二、填空题1、 设,,A B C 表示三个随机事件,用,,A B C 的关系与运算表示(1)仅A 发生为:ABC ;(2),,A B C 中正好有一个发生为:ABC ABC ABC ++;(3),,A B C 中至少有一个发生为:A B C ;(4),,A B C 中至少有一个不发生表示为:AB C 、 2、某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比就是30%.3、 设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=716;()P ABC =916;(,,)P A B C =至多发生一个34;(,,P A B C =恰好发生一个)316、§1、3古典概率一、填空题1、将数字1,2,3,4,5写在5张卡片上,任取3张排成3位数,则它就是奇数的概率为35、 2、把10本书任意放在书架上,求其中指定的3本书放在一起的概率为!10!8!3、 3、若袋中有3个红球,12个白球,从中不返回地取10次,每次取一个,则第一次取得红球的概率为15,第五次取得红球的概率为15、 4、 盒中有2只次品与4只正品,有放回地从中任意取两次,每次取一只,则(1)取到的2只都就是次品19; (2)取到的2只中正品、次品各一只49; (3)取到的2只中至少有一只正品89、 二、计算题1.一份试卷上有6道题、 某位学生在解答时由于粗心随机地犯了4处不同的错误、 试求:(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率、解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296、(1)设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2)设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3)设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P 、 2、 已知N 件产品中有M 件就是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率、解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有nN C 种不同取法、(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为k n k M N M C C --,由古典概型计算公式,()k n k M N M n N C C P A C --=。
概率论与数理统计第二章随机变量习题答案

大学数学云课堂30.83028203.射手向目标独立地进行了次射击,每次击中率为,3求次射击中击中目标的次数的分布律及分布函数,32.并求次射击中至少击中次的概率,0123.X X =解设表示击中目标的次数则,,,3(0)(0.2)0.008P X ===123(1)C 0.8(0.2)0.096P X ===223(2)C (0.8)0.20.384P X ===3(3)(0.8)0.512P X ===X 故的分布律为01230.0080.0960.3840.512X p 0,00.008,01()0.104,120.488,231,3x x F x x x x <ìï£<ïï=£<íï£<ï³ïî(2)(2)(3)0.89P X P X P X ³==+==分布函数大学数学云课堂0.6,0.7,33028205.甲、乙两人投篮,投中的概率分别为今各投次,求:(1);两人投中次数相等的概率(2.)甲比乙投中次数多的概率~30.6),~(3,0.7)X Y X b Y b 解分别令、表示甲、乙投中次数,则(,1)()(0,0)(1,1)(2,2)(3,3)P X Y P X Y P X Y P X Y P X Y ====+==+==+==331212222233333(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)C (0.6)0.4C (0.7)0.3(0.6)(0.7=+++0.32076=(2)()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+(2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==1232233322123333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)(0.6)(0.3)C (0.6)0.4C 0.7(0.3)=+++31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.30.243++=3028207.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有辆汽车通过,10002问出事故的次数不小于的概率是多少(利用泊松定理)?解设表示出事故的次数,则(,)~10000.0001X X b0.10.1³=-=-==--´(2)1(0)(1)1e0.1eP X P X P X--大学数学云课堂大学数学云课堂0.3A 3028209.设事件在每一次试验中发生的概率为,3A 当发生不少于次时,指示灯发出信号,(1)5进行了次独立试验,试求指示灯发出信号的概率;(2)7.进行了次独立试验,试求指示灯发出信号的概率(1)5~650.3X A X 解设表示次独立试验中发生的次数,则(,)5553(3)C (0.3)(0.7)0.16308kkk k P X -=³==å(2)7~70.3Y A Y b 令表示次独立试验中发生的次数,则(,)7773(3)C (0.3)(0.7)0.35293kkk k P Y -=³==å大学数学云课堂e ,0,(0),00.xt A B x X F x ,x l -ì+³>í<î3028224.设随机变量分布函数为()=30282概率统计(北大出版社)课后习题二第24题分布函数视频详解1A B ()求常数,;2{2}{3}P X P X £()求,>;3().f x ()求分布密度00lim ()11(1),lim ()lim ()1x x x F x A F x F x B ®+¥®+®-=ì=ìï\íí==-îïîQ 解2(2)(2)(2)1eP X F l -£==-33(3)1(3)1(1e )e P X F l l -->=-=--=e ,0(3)()()0,0x x f x F x x l l -ì³¢==í<î大学数学云课堂a 3028227.求标准正态分布的上分位点,10.01;a a =(),求z /220.003.a a a =(),求z ,z (1)()0.01,1()0.01P X z z a a F >=\-=Q 解()0.09, 2.33z z a a F ==即查表得(2)()0.003,1()0.003P X z z a a F >=\-=Q ()0.997, 2.75z z a a F ==即查表得/2/2()0.0015,1()0.0015P X z z a a -F >=\=Q /2/2()0.9985, 2.96z z a a F ==即查表得x.大学数学云课堂00.9?3028235.随机数字序列要多长才能使数字至少出现一次的概率不小于()0~,0.1.X n X b n 解令为出现的次数,设数字序列中要包含个数字,则00(1)1(0)1C (0.1)(0.9)0.9nnP X P X ³=-==-³(0.9)0.1,22nn £\³即22.\随机数字序列至少要有个数字。
概率统计第二章习题答案.docx

第二章习题答案1、 P{Y 詡=(1-0.4尸 x0.4 k=l,2,…2、 用4表示第i 个阀门开P{X = 0} = P (A (X U 4))= p (A )(p (A ;)+ p (4)- P (石)P (忑))=0.2(0.2 + 0.2 - 0.2 x 0.2) = 0.072P{X =1} = P[A,(兀 U 石)U A^A 2A 3] = 0.8(0.2 + 0.2 - 0.04) + 0.2 x 0.82-0.416P{X =2} = P(A 1A 2A 3) = 0.83 = 0.512 3、 X~b(15,0.2)P{X =k} = C^0.2k xO.815-' k=0,l,2,……,15 (1) P{X = 3} =0.23 x 0.812 = 0.2501(2) >2}-l-C° 0.2° x0.815 -C :0.2x0.814 = 0.8329(3)P{1 < X <3} = Q50.21 x0.814 + C ;50.22 x0.813 + Cf 50.23 x0.812 =0.61295(4) P{X 〉5} = 1 —工生0.2* x0.8z =0.0611R=04、用X 表示5个元件中正常工作的个数P(X > 3) = Cf 0.93 x 0.12 + C" 0.94 x 0.1 + 0.95 =0.9914 5、设 X=(8000#产品的次品数}则 X~b(8000,0.001)近似地由于n 很大,P 很小,所以利用X 〜”⑻6、(l)X~n(10)15 [0*0-10P{X 〉15}=1-P{X V15} = 1-工 ------------ = 1-0.9513 = 0.0487*=o kl(2) V X~n( X).-.| = p{x >O } = I -P {X =0} = l-^-P{X<7} =工*=0 8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其分布第二节 离散随机变量一、选择1. 设离散随机变量X 的分布律为:),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C )(A) 0>λ (B)1+=b λ (C)b +=11λ (D)11-=b λ 二、填空1.进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是{} 1,2, , 54)51(1=⋅==-K K X P K三、计算题1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============第三节 超几何分布 二项分布 泊松分布一、选择1.设随机变量),3(~),,2(~p B Y p B X , {}{}()CY P X P =≥=≥1,951则若(A)43 (B)2917 (C)2719 (D)97 二、填空1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{})0902.0_____(32_42-=e X P =则.三、计算题1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~10610682108≈-≈=-=≥≈===≈==≈====⨯====⋯===------X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、填空题1.设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 . ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取( A )(A)52,53-==b a (B)32,32==b a (C)23,21=-=b a (D)23,21-==b a 2.设⎪⎪⎩⎪⎪⎨⎧≥<<**≤=2,12)(,4)(,0)(2x x xx x F ,当(*)取下列何值时,)(x F 是连续型随机变量的分布函数.( A )(A) 0 (B) 0.5 (C) 1.0 (D)1.5三.计算题1.设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A 第六节 连续随机变量的概率密度一、选择1.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它(B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为+∞<<∞-+=x x x F ,arctan 121)(π(1)(11)P X -≤≤= 0.5 (2)概率密度()f x =2111x +⋅π 三、计算题1. 设随机变量X 的概率密度:,10(),010,1c x x f x c x x x +-≤≤⎛=-≤≤ >⎝求:(1)常数c ;(2)概率(0.5)P X ≤ 解:(1)1)()(11=-++⎰⎰-dx x c dx x c ,c=1(2) (0.5)P X ≤=75.0)1()1(5.005.0=-++⎰⎰-dx x dx x2.已知随机变量X 的概率密度1(),2xf x e x -=-∞<<+∞, 求:分布函数()F x 。
解:x xt x te dt e dt e x F x 212121)(,0===<⎰⎰∞-∞-- x x tt x t te dt e dt e dt e dt e x F x --∞--∞---=+=+=≥⎰⎰⎰⎰21121212121)(,0000011,02()1,02xx e x F X e x -⎧-≥⎪⎪=⎨⎪<⎪⎩第七节 均匀分布、指数分布一、选择1.在区间[]1,2-上服从均匀分布的随机变量X 的密度函数是( B )(A ) 3,12()0,x f x -≤≤⎧=⎨⎩其它(B )1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其它(C ) ()3,f x x =-∞<<+∞ (D )1(),3f x x =-∞<<+∞2.服从参数为0.5的指数分布的随机变量X 的密度函数是( C )(A ) 22,0()0,x e x f x x -⎧>=⎨≤⎩ (B ) 2()2,x f x e x -=-∞<<+∞(C ) 121,0()20,0x e x f x x -⎧>⎪=⎨⎪≤⎩(D )121(),2x f x e x -=-∞<<+∞二、填空1.设随机变量X 在在区间[]1,2-上服从均匀分布,则 (1)(61)P x -<<-= 0 , (2) (41)P x -<<=32 ⑶ (23)P x -<<= 1 , (4) (16)P x <<=31三、计算题1.某仪器有三只独立工作的同型号电子元件,其寿命(单位:h )都服从同一指数分布,概率密度为:16001,0()6000,0x e x f x x -⎧>⎪=⎨⎪≤⎩试求:在仪器使用的最初的200h 内至少有一只电子元件损害的概率。
解:312006006001)200(e dx e X P x ==>⎰∞- (一只没损害E 的 概率) 设A 表示最初的200h 内至少有一只电子元件损害e e A P 111)(331-=⎪⎪⎭⎫ ⎝⎛-= 第八节 随机变量函数的分布一、选择1.设随机变量X 的概率密度为22,0()0,x e x f x x -⎧>=⎨≤⎩则随机变量2y X =的概率密度为( D )(A ) 2,()0,0y Y e y f y y -⎧>=⎨≤⎩ (B ) 22,0()0,y Y e y f y y -⎧>=⎨≤⎩(C ) 2,()0,0y Y e y f y y -⎧>=⎨≤⎩ (D ) ,0()0,0y Y e y f y y -⎧>=⎨≤⎩二、计算题1.设随机变量X 服从二项分布(3,0.4)B ,求2Y X X =-的概率分布。
2.设随机变量的概率密度2,01()0,x x f x ≤≤⎧=⎨⎩其它求2Y X =的概率密度。
解:1)(2)(2)()()()(,1002='⋅==≤≤-=≤=≤=≤≤⎰y y y f xdxy X y P y X P y Y P y F y Y yY因此1,01()0,Y y f y <<⎧=⎨⎩其它第九节 二维随机变量的联合分布一、选择题1.设二维随机变量(,)X Y 的联合概率密度为 (),0,0;(,)0,.x y e x y f x y -+⎧>>=⎨⎩其他则()P X Y <= ( A )(A )0.5 (B )0.55 (C ) 0.45 (D )0.6二、填空1. 下表列出了二维随机变量(,)X Y 联合分布律及关于X 和关于Y 的边缘分布律中的部 分数值,试将其余值填入表中的空白处2.设二维随机变量(,)X Y 的联合分布函数为(,)(arctan )(arctan )23F x y A B C =++ 则系数A =21π,B =2π,C =2π, (,)X Y 的联合概率密度为2226(,)(4)(9)f x y x y π=++三、计算题。
1.设二维随机变量(,)X Y 的联合概率密度为(2),0,0;(,)0,.x y Ae x y f x y -+⎧>>=⎨⎩其他 试求(1)常数A ; (2) 概率(01,02)P X Y ≤≤≤≤. 解:(1)由于(,)1f x y +∞+∞-∞-∞=⎰⎰,故(2)012x y AAe dxdy +∞+∞-+==⎰⎰,所以2A = (2)12(2)01(01,02)2x y P X Y dx e dy -+≤≤≤≤=⎰⎰14(1)(1)e e --=--第十节 二维随机变量的边缘分布一、计算题1.设二维随机变量X Y (,)的联合概率密度为e ,0(,)0,y x yf x y -⎧<<=⎨⎩其他,求X 的边缘概率密度)(x f X 。